Introduction to Computer Networks

COSC 4377

Lecture 4

Spring 2012

January 30, 2012

Announcements

- HW2 due this week
- Start working on HW3

Today's Topics

- HTTP Performance
- Domain Name System (DNS)

HTTP Performance

- What matters for performance?
- Depends on type of request
 - Lots of small requests (objects in a page)
 - Some big requests (large download or video)

Small Requests

- Latency matters
- RTT dominates
- Two major causes:
 - Opening a TCP connection
 - Actually sending the request and receiving response
 - And a third one: DNS lookup!
- Mitigate the first one with persistent connections (HTTP/1.1)
 - Which also means you don't have to "open" the connection each time

Browser Request

```
GET / HTTP/1.1
Host: localhost:8000
User-Agent: Mozilla/5.0 (Macinto ...
Accept: text/xml,application/xm ...
Accept-Language: en-us,en;q=0.5
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 300
Connection: keep-alive
```

Small Requests (cont)

- Second problem is that requests are serialized
 - Similar to stop-and-wait protocols!
- Two solutions
 - Pipelined requests (similar to sliding windows)
 - Parallel Connections
 - HTTP standard says no more than 2 concurrent connections per host name
 - Most browsers use more (up to 8 per host, ~35 total)
 - How are these two approaches different?
 - http://en.wikipedia.org/wiki/HTTP_pipelining

Larger Objects

- Problem is throughput in bottleneck link
- Solution: HTTP Proxy Caching
 - Also improves latency, and reduces server load

HTTP Proxy Protocol

Find out how the protocol we just designed is different from protocols used by http client/proxy/server

Domain Name System

Host names and IP Addresses

Host names

- Mnemonics appreciated by humans
- Variable length, ASCII characters
- Provide little (if any) information about location
- Examples: www.facebook.com, bbc.co.uk

IP Addresses

- Numerical address appreciated by routers
- Fixed length, binary numbers
- Hierarchical, related to host location (in the network)
- Examples: 69.171.228.14, 212.58.241.131

Separating Naming and Addressing

- Names are easier to remember
 - www.cnn.com vs 157.166.224.26
- Addresses can change underneath
 - e.g, renumbering when changing providers
- Name could map to multiple addresses
 - www.cnn.com maps to at least 6 ip addresses
 - Enables
 - Load balancing
 - Latency reduction
 - Tailoring request based on requester's location/device/identity
- Multiple names for the same address
 - Aliases: www.cs.brown.edu and cs.brown.edu
 - Multiple servers in the same node (e.g., apache virtual servers)

Scalable Address <-> Name Mappings

- Originally kept in a local file, hosts.txt
 - Flat namespace
 - Central administrator kept master copy (for the Internet)
 - To add a host, emailed admin
 - Downloaded file regularly
- Completely impractical today
 - File would be huge (gigabytes)
 - Traffic implosion (lookups and updates)
 - Some names change mappings every few days (dynamic IP)
 - Single point of failure
 - Impractical politics (repeated names, ownership, etc...)

Goals for an Internet-scale name system

- Scalability
 - Must handle a huge number of records
 - With some software synthesizing names on the fly
 - Must sustain update and lookup load
- Distributed Control
 - Let people control their own names
- Fault Tolerance
 - Minimize lookup failures in face of other network problems

The good news

- Properties that make these goals easier to achieve
 - Read-mostly database
 Lookups MUCH more frequent than updates
 - 2. Loose consistency
 - When adding a machine, not end of the world if it takes minutes or hours to propagate
- These suggest aggressive caching
 - Once you've lookup up a hostname, remember
 - Don't have to look again in the near future

Domain Name System (DNS)

- Hierarchical namespace broken into zones
 - root (.), edu., princeton.edu., cs.princeton.edu.,
 - Zones separately administered :: delegation
 - Parent zone tells you how to find servers for subdomains
- Each zone served from multiple replicated servers

DNS Architecture

- Hierarchy of DNS servers
 - Root servers
 - Top-level domain (TLD) servers
 - Authoritative DNS servers
- Performing the translation
 - Local DNS servers
 - Resolver software

Resolver operation

- Apps make recursive queries to local DNS server (1)
 - Ask server to get answer for you
- Server makes iterative queries to remote servers (2,4,6)
 - Ask servers who to ask next
 - Cache results aggressively

gaia.cs.umass.edu

DNS Root Server

- Located in Virginia, USA
- How do we make the root scale?

DNS Root Servers

- 13 Root Servers (www.root-servers.org)
 - Labeled A through M (e.g, A.ROOT-SERVERS.NET)
- Does this scale?

DNS Root Servers

- 13 Root Servers (www.root-servers.org)
 - Labeled A through M (e.g, A.ROOT-SERVERS.NET)
- Replication via anycasting

TLD and Authoritative DNS Servers

- Top Level Domain (TLD) servers
 - Generic domains (e.g., com, org, edu)
 - Country domains (e.g., uk, br, tv, in, ly)
 - Special domains (e.g., arpa)
 - Typically managed professionally
- Authoritative DNS servers
 - Provides public records for hosts at an organization
 - e.g, for the organization's own servers (www, mail, etc)
 - Can be maintained locally or by a service provider

Reverse Mapping

- How do we get the other direction, IP address to name?
- Addresses have a hierarchy:
 - -128.148.34.7
- But, most significant element comes first
- Idea: reverse the numbers: 7.34.148.128 ...
 - and look that up in DNS
- Under what TLD?
 - Convention: in-addr.arpa
 - Lookup 7.34.148.128.in-addr.arpa
 - in6.arpa for IPv6

http://en.wikipedia.org/wiki/Reverse_DNS_lookup

DNS Caching

- All these queries take a long time!
 - And could impose tremendous load on root servers
 - This latency happens before any real communication, such as downloading your web page
- Caching greatly reduces overhead
 - Top level servers very rarely change
 - Popular sites visited often
 - Local DNS server caches information from many users
- How long do you store a cached response?
 - Original server tells you: TTL entry
 - Server deletes entry after TTL expires

Negative Caching

- Remember things that don't work
 - Misspellings like www.cnn.comm, ww.cnn.com
- These can take a long time to fail the first time
 - Good to cache negative results so it will fail faster next time

 But negative caching is optional, and not widely implemented

DNS Protocol

- TCP/UDP port 53
- Most traffic uses UDP
 - Lightweight protocol has 512 byte message limit
 - Retry using TCP if UDP fails (e.g., reply truncated)
- TCP requires messages boundaries
 - Prefix all messages with 16-bit length
- Bit in query determines if query is recursive

Resource Records

All DNS info represented as resource records (RR)
 name [ttl] [class] type rdata

- name: domain name
- TTL: time to live in seconds
- class: for extensibility, normally IN (1) "Internet"
- type: type of the record
- rdata: resource data dependent on the type
- Two important RR types
 - A Internet Address (IPv4)
 - NS name server
- Example RRs

```
bayou.cs.uh.edu. 3600 IN A 129.7.240.18 cs.uh.edu. 3600 IN NS ns2.uh.edu. cs.uh.edu. 3600 IN NS dns.cs.uh.edu.
```

Some important details

- How do local servers find root servers?
 - DNS lookup on a.root-servers.net ?
 - Servers configured with root cache file
 - ftp://ftp.rs.internic.net/domain/db.cache
 - Contains root name servers and their addresses

```
. 3600000 IN NS A.ROOT-SERVERS.NET.
A.ROOT-SERVERS.NET. 3600000 A 198.41.0.4
...
```

- How do you get addresses of other name servers?
 - To obtain the address of www.cs.brown.edu, ask a.edu-servers.net, says a.root-servers.net
 - How do you find a.edu-servers.net?
 - Glue records: A records in parent zone

Example

```
dig +norec bayou.cs.uh.edu @a.root-servers.net
dig +norec bayou.cs.uh.edu @a.edu-servers.net
dig +norec bayou.cs.uh.edu @ns1.uh.edu
dig +norec bayou.cs.uh.edu @dns.cs.uh.edu
   :: ANSWER SECTION:
   bayou.cs.uh.edu.3600 IN A 129.7.240.18
```

[gnawali@bayou ~]\$ dig handy.cs.uh.edu +trace

```
; <<>> DiG 9.3.4-P1 <<>> handy.cs.uh.edu +trace
;; global options: printcmd
                          94758
                                  IN
                                           NS
                                                    k.root-servers.net.
                                           NS
                          94758
                                  IN
                                                   j.root-servers.net.
                          94758
                                  IN
                                           NS
                                                    d.root-servers.net.
                          94758
                                  IN
                                           NS
                                                    b.root-servers.net.
                                           NS
                          94758
                                  IN
                                                   i.root-servers.net.
                          94758
                                  IN
                                           NS
                                                   l.root-servers.net.
                          94758
                                           NS
                                  IN
                                                   f.root-servers.net.
                          94758
                                  IN
                                           NS
                                                   m.root-servers.net.
                          94758
                                  IN
                                           NS
                                                   g.root-servers.net.
                          94758
                                  IN
                                           NS
                                                   h.root-servers.net.
                          94758
                                  IN
                                           NS
                                                   a.root-servers.net.
                          94758
                                  IN
                                           NS
                                                   c.root-servers.net.
                          94758
                                  IN
                                           NS
                                                    e.root-servers.net.
;; Received 288 bytes from 129.7.240.1#53(129.7.240.1) in 0 ms
                                           NS
edu.
                          172800 IN
                                                    a.edu-servers.net.
                                           NS
edu.
                          172800 IN
                                                   c.edu-servers.net.
edu.
                          172800 IN
                                           NS
                                                   d.edu-servers.net.
                          172800 IN
edu.
                                           NS
                                                   f.edu-servers.net.
                                           NS
edu.
                          172800 IN
                                                   g.edu-servers.net.
                          172800 IN
                                           NS
edu.
                                                   Ledu-servers.net.
;; Received 268 bytes from 193.0.14.129#53(k.root-servers.net) in 38 ms
uh.edu.
                          172800 IN
                                           NS
                                                   ns2.uh.edu.
uh.edu.
                          172800 IN
                                           NS
                                                    ncc.uky.edu.
                                                   ns1.uh.edu.
uh.edu.
                          172800 IN
                                           NS
                          172800 IN
                                           NS
uh.edu.
                                                   mesquite.cc.uh.edu.
;; Received 181 bytes from 192.5.6.30#53(a.edu-servers.net) in 36 ms
                          IN
                                           129.7.240.36
handy.cs.uh.edu. 3600
                                  Α
;; Received 49 bytes from 129.7.1.6#53(ns2.uh.edu) in 0 ms
```

[gnawali@bayou ~]\$ dig www.google.com +trace

; <<>> DiG 9.3.4-P1 <<>> www.google.com +trace ;; global options: printcmd 94874 NS IN h.root-servers.net. NS 94874 IN f.root-servers.net. ••• 94874 IN NS I.root-servers.net. 94874 IN NS i.root-servers.net. ;; Received 244 bytes from 129.7.240.1#53(129.7.240.1) in 0 ms 172800 IN NS a.gtld-servers.net. com. 172800 IN NS b.gtld-servers.net. com. com. 172800 IN NS c.gtld-servers.net. d.gtld-servers.net. 172800 IN NS com. e.gtld-servers.net. 172800 IN NS com. 172800 IN NS m.gtld-servers.net. com. ;; Received 495 bytes from 128.63.2.53#53(h.root-servers.net) in 48 ms google.com. ns2.google.com. 172800 IN NS google.com. 172800 IN NS ns1.google.com. google.com. ns3.google.com. NS 172800 IN google.com. 172800 IN NS ns4.google.com. ;; Received 168 bytes from 192.5.6.30#53(a.gtld-servers.net) in 37 ms www.google.com. 604800 IN **CNAME** www.l.google.com. www.l.google.com. 300 IN Α 74.125.227.48 www.l.google.com. 300 IN 74.125.227.52 Α www.l.google.com. 300 IN 74.125.227.51 Α www.l.google.com. 300 IN Α 74.125.227.49 www.l.google.com. 300 IN Α 74.125.227.50

;; Received 132 bytes from 216.239.34.10#53(ns2.google.com) in 40 ms