Introduction to Computer Networks

COSC 4377

Lecture 4

Announcements

* HW2 due this week
e Start working on HW3

Today’s Topics

e HTTP Performance
 Domain Name System (DNS)

HTTP Performance

 What matters for performance?

 Depends on type of request
— Lots of small requests (objects in a page)
— Some big requests (large download or video)

Small Requests

Latency matters
RTT dominates

Two major causes:
— Opening a TCP connection

— Actually sending the request and receiving
response

— And a third one: DNS lookup!
Mitigate the first one with persistent

connections (HTTP/1.1)

— Which also means you don’t have to “open” the
connection each time

Browser Request

GET / HTTP/1.1

Host: localhost:3000

User-Agent: Mozilla/5.0 (Macinto

Accept: text/xml,application/xm ...
Accept-Language: en-us,en;qg=0.5
Accept-Encoding: gzip,deflate

Accept-Charset: IS0-8859-1,utf-8;9=0.7,*;9=0.7
Keep-Alive: 300

Connection: keep-alive

Small Requests (cont)

* Second problem is that requests are
serialized

— Similar to stop-and-wait protocols!

 Two solutions
— Pipelined requests (similar to sliding windows)

— Parallel Connections

 HTTP standard says no more than 2 concurrent
connections per host name

* Most browsers use more (up to 8 per host, ~35 total)
— How are these two approaches different?
— http://en.wikipedia.org/wiki/HTTP_pipelining

Larger Objects

* Problem is throughput in bottleneck link
e Solution: HTTP Proxy Caching

— Also improves latency, and reduces server
load

clients
proxy

cache
@ @
server

HTTP Proxy Protocol

? ?
> >

] T]
Client ? Proxy ? Server
= =

Find out how the protocol we just
designed is different from protocols
used by http client/proxy/server

Domain Name System

Host names and IP Addresses

* Host names
— Mnemonics appreciated by humans
— Variable length, ASCII characters
— Provide little (if any) information about location
— Examples: www.facebook.com, bbc.co.uk

 |P Addresses

— Numerical address appreciated by routers
— Fixed length, binary numbers

— Hierarchical, related to host location (in the
network)

— Examples: 69.171.228.14, 212.58.241.131

Separating Naming and Addressing

e Names are easier to remember
— www.chn.com vs 157.166.224.26

 Addresses can change underneath
— e.g, renumbering when changing providers

* Name could map to multiple addresses
— www.cnn.com maps to at least 6 ip addresses

— Enables
* Load balancing
e Latency reduction
 Tailoring request based on requester’s location/device/identity

 Multiple names for the same address
— Aliases: www.cs.brown.edu and cs.brown.edu

— Multiple servers in the same node (e.g., apache virtual
servers)

Scalable Address <-> Name Mappings

* Originally kept in a local file, hosts. txt
— Flat namespace
— Central administrator kept master copy (for the Internet)
— To add a host, emailed admin
— Downloaded file regularly

 Completely impractical today
— File would be huge (gigabytes)

— Traffic implosion (lookups and updates)
 Some names change mappings every few days (dynamic IP)

— Single point of failure
— Impractical politics (repeated names, ownership, etc...)

Goals for an Internet-scale name

- system
* Scalability

— Must handle a huge number of records
* With some software synthesizing names on the fly

— Must sustain update and lookup load
* Distributed Control

— Let people control their own names

e Fault Tolerance

— Minimize lookup failures in face of other
network problems

The good news

* Properties that make these goals easier to
achieve

1. Read-mostly database
Lookups MUCH more frequent than updates

2. Loose consistency

When adding a machine, not end of the world if it takes
minutes or hours to propagate

* These suggest aggressive caching

— Once you’ve lookup up a hostname, remember
— Don’t have to look again in the near future

Domain Name System (DNS)
TV

edu com gov mil org net uk fr
/\ / \ / \ JANVANWAN
princeton|--- mit | cisco|--- yahoo nasa -.- nsf arpa -.- navy acm ... ieee

UAA A AAAAAANA

cs ee | physics

/N A A

ux01 ux04

* Hierarchical namespace broken into zones
— root (.), edu., princeton.edu., cs.princeton.edu.,
— Zones separately administered :: delegation

— Parent zone tells you how to find servers for
subdomains

* Each zone served from multiple replicated
servers

DNS Architecture

edu

TV

com gov mil org net uk fr

v

princeton |--- mit

A\

CiSCO |-

/\

VAN /\ /\ JANVAWAN
- yahoo nasa -.- nsf arpa -.- navy acm ... ieee

AANAAAN

CS

/\

ux01 ux04

cc

AN

physics

AN

* Hierarchy of DNS servers

— Root servers

— Top-level domain (TLD) servers
— Authoritative DNS servers

* Performing the translation
— Local DNS servers
— Resolver software

Root DNS server

—_—

i

Resolver operation

* Apps make recursive

queries to local DNS B A =

server (1) El} : O— Lj

— Ask server to get answer Local ois server TLD DNS server
for you dns.poly.edu

* Server makes iterative (‘1[) \®

queries to remote B

servers (2,4,6) | L(J

— Ask servers who to ask \ﬂ_ﬁ Authoritative DS server
next A = |

Equueatmg host nl
— Cache results aggressively =~ ¢'s-potv-cau —

gala.cs.umass.adu

DNS Root Server

* Located in Virginia, USA
e How do we make the root scale?

Verisign, Dulles, VA

DNS Root Servers

e 13 Root Servers (www.root-servers.org)
— Labeled A through M (e.g, A.ROOT-SERVERS.NET)
* Does this scale?

A Verisign, Dulles, VA

C Cogent, Herndon, VA

D U Maryland College Park, MD

G US DoD Vienna, VA K RIPE London
H ARL Aberdeen, MD

J Verisign

| Autonomica, Stockholm
E NASA Mt View, CA

F Internet Software o "
Consortium -

PaIO Alto, CA\ ,

M WIDE Tokyo

B USC-ISI Marina del Rey, CA
L ICANN Los Angeles, CA

DNS Root Servers

e 13 Root Servers (www.root-servers.org)
— Labeled A through M (e.g, A.ROOT-SERVERS.NET)
e Replication via anycasting

A Verisign, Dulles, VA

C Cogent, Herndon, VA (also Los Angeles, NY, Chicago)

D U Maryland College Park, MD

G US DoD Vienna, VA K RIPE London (plus 16 other locations)
H ARL Aberdeen, MD _

J Verisign (21 locations) | Autonomica, Stockholm

s 29 other locations)

E NASA Mt View, CA
F Internet Software

Syt N HWIDE Tokyo

? us Seoul, Paris,

(and 37 otherm‘ >

San Francisco

B USC-ISI Marina del Rey, CA
L ICANN Los Angeles, CA

TLD and Authoritative DNS Servers

 Top Level Domain (TLD) servers
— Generic domains (e.g., com, org, edu)
— Country domains (e.g., uk, br, tv, in, ly)
— Special domains (e.g., arpa)
— Typically managed professionally

e Authoritative DNS servers

— Provides public records for hosts at an
organization
» e.g, for the organization’s own servers (www, mail,
etc)

— Can be maintained locally or by a service
provider

Reverse Mapping

* How do we get the other direction, IP address to
name?

 Addresses have a hierarchy:
— 128.148.34.7

* But, most significant element comes first

 |dea: reverse the numbers: 7.34.148.128 ...
— and look that up in DNS

 Under what TLD?
— Convention: in-addr.arpa

— Lookup 7.34.148.128.in-addr.arpa
— in6.arpa for IPv6

http://en.wikipedia.org/wiki/Reverse DNS_lookup

DNS Caching

* All these queries take a long time!
— And could impose tremendous load on root servers

— This latency happens before any real communication,
such as downloading your web page

* Caching greatly reduces overhead
— Top level servers very rarely change
— Popular sites visited often

— Local DNS server caches information from many
users

* How long do you store a cached response?
— Original server tells you: TTL entry
— Server deletes entry after TTL expires

Negative Caching

e Remember things that don’t work

— Misspellings like www.cnn.comm, ww.cnn.com

* These can take a long time to fail the first time

— Good to cache negative results so it will fail faster
next time

e But negative caching is optional, and not
widely implemented

DNS Protocol

TCP/UDP port 53

Most traffic uses UDP

— Lightweight protocol has 512 byte message limit
— Retry using TCP if UDP fails (e.g., reply truncated)

TCP requires messages boundaries
— Prefix all messages with 16-bit length

Bit in query determines if query is recursive

Resource Records

* All DNS info represented as resource records (RR)

name [ttl] [class] type rdata
— name: domain name
— TTL: time to live in seconds
— class: for extensibility, normally IN (1) “Internet”
— type: type of the record
— rdata: resource data dependent on the type

* Two important RR types

— A —Internet Address (IPv4)
— NS — name server

 Example RRs
bayou.cs.uh.edu. 3600 IN A 129.7.240.18

cs.uh.edu. 3600 IN NS ns2.uh.edu.
cs.uh.edu. 3600 IN NS dns.cs.uh.edu.

Some important details

* How do local servers find root servers?
— DNS lookup on a.root-servers.net ?
— Servers configured with root cache file
— ftp://ftp.rs.internic.net/domain/db.cache

— Contains root name servers and their addresses

. 3600000 IN NS A.ROOT-SERVERS.NET.
A.ROOT-SERVERS.NET. 3600000 A 198.41.0.4

* How do you get addresses of other name
servers?

— To obtain the address of www.cs.brown.edu, ask
a.edu-servers.net, says a.root-servers.net

— How do you find a.edu-servers.net?
— Glue records: A records in parent zone

dig

dig

dig

dig

Example

+norec bayou.cs.uh.edu

+norec bayou.cs.uh.edu

+norec bayou.cs.uh.edu

+norec bayou.cs.uh.edu

;; ANSWER SECTION:
bayou.cs.uh.edu. 3600

@a.root-servers.net

@a.edu-servers.net

@nsl.uh.edu

@dns.cs.uh.edu

IN A

129.7.240.18

[gnawali@bayou ~]$ dig handy.cs.uh.edu +trace [gnawali@bayou ~]S dig www.google.com +trace

; <<>> DiG 9.3.4-P1 <<>> handy.cs.uh.edu +trace

. global options: printemd ; <<>>DiG 9.3.4-P1 <<>> www.google.com +trace

94758 IN NS k.root-servers.net. ;; global options: printcmd
94758 IN NS j.root-servers.net. . 94874 IN NS h.root-servers.net.
94758 IN NS d.root-servers.net. . 94874 IN NS f.root-servers.net.
94758 IN NS b.root-servers.net.
94758 IN NS i.root-servers.net.
94758 IN NS l.root-servers.net. 94874 IN NS !.root-servers.net.
94758 IN NS f root-servers.net. . 94874 IN NS i.root-servers.net.
94758 IN NS m.root-servers.net. ;; Received 244 bytes from 129.7.240.1#53(129.7.240.1) in O ms
94758 IN NS g.root-servers.net.
gj;ig m m: h.root-servers.net. com. 172800 IN NS a.gtld-servers.net.
a.root-servers.net.
94758 IN NS Croot-servers.net. com. 172800 IN NS b.gtld-servers.net.
94758 IN NS e.root-servers.net com. 172800 IN NS c.gtld-servers.net.
;; Received 288 bytes from 129.7.240.1#53(129.7.240.1) in 0 ms com. 172800 IN NS d.gtld-servers.net.
com. 172800 IN NS e.gtld-servers.net.
edu. 172800 IN NS a.edu-servers.net.
edu. 172800 IN NS c.edu-servers.net.
edu. 177800 IN NS d.edu-servers.net. com. 172800 IN NS m.gtld-servers.net.
edu 172800 IN NS f.edu-servers.net ;; Received 495 bytes from 128.63.2.53#53(h.root-servers.net) in 48 ms
edu. 172800 IN NS g.edu-servers.net.
edu. 172800 IN NS |.edu-servers.net. google.com. 172800 IN NS ns2.google.com.
;; Received 268 bytes from 193.0.14.129#53(k.root-servers.net) in 38 ms google.com. 172800 IN NS ns1.google.com.
uh.edu. 172800 IN NS ns2 uh.edu. google.com. 172800 IN NS ns3.google.com.
uh.edu. 172800 IN NS ncc.uky.edu. google.com. 172800 IN NS ns4.google.com.
uh.edu. 172800 IN NS nsl.uh.edu. ;; Received 168 bytes from 192.5.6.30#53(a.gtld-servers.net) in 37 ms
uh.edu. 172800 IN NS mesquite.cc.uh.edu.
;; Received 181 bytes from 192.5.6.30#53(a.edu-servers.net) in 36 ms www.google.com. 604800 IN CNAME
hand hed www.l.google.com.
andy.cs.uh.edu. 3600 IN A 129.7.240.36
A le. . 300 IN A 74.125.227.48
;; Received 49 bytes from 129.7.1.6#53(ns2.uh.edu) in 0 ms www.l.google.com
www.l.google.com. 300 IN A 74.125.227.52
www.l.google.com. 300 IN A 74.125.227.51
www.l.google.com. 300 IN A 74.125.227.49
www.l.google.com. 300 IN A 74.125.227.50

;; Received 132 bytes from 216.239.34.10#53(ns2.google.com) in 40 ms

