
Pathlet Routing

P. Brighten Godfrey†, Igor Ganichev‡, Scott Shenker‡§, and Ion Stoica‡
∗

†University of Illinois at Urbana-Champaign ‡UC Berkeley §ICSI
pbg@illinois.edu, {igor,shenker,istoica}@cs.berkeley.edu

ABSTRACT
We present a new routing protocol, pathlet routing, in which
networks advertise fragments of paths, called pathlets, that
sources concatenate into end-to-end source routes. Intu-
itively, the pathlet is a highly flexible building block, captur-
ing policy constraints as well as enabling an exponentially
large number of path choices. In particular, we show that
pathlet routing can emulate the policies of BGP, source rout-
ing, and several recent multipath proposals.

This flexibility lets us address two major challenges for
Internet routing: scalability and source-controlled routing.
When a router’s routing policy has only “local” constraints,
it can be represented using a small number of pathlets, lead-
ing to very small forwarding tables and many choices of
routes for senders. Crucially, pathlet routing does not im-
pose a global requirement on what style of policy is used, but
rather allows multiple styles to coexist. The protocol thus
supports complex routing policies while enabling and incen-
tivizing the adoption of policies that yield small forwarding
plane state and a high degree of path choice.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Packet-switching
networks; C.2.2 [Network Protocols]: Routing Protocols;
C.2.6 [Internetworking]: Routers

General Terms
Design, Experimentation, Performance, Reliability

1. INTRODUCTION
Challenges for interdomain routing. Interdomain rout-
ing faces several fundamental challenges. One is scalabil-
ity: routers running the Internet’s interdomain routing pro-
tocol, Border Gateway Protocol (BGP) [25], require state

∗The first and fourth authors were supported in part by a
Cisco Collaborative Research Initiative grant.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’09, August 17–21, 2009, Barcelona, Spain.
Copyright 2009 ACM 978-1-60558-594-9/09/08 ...$10.00.

that scales linearly in the number of IP prefixes advertised
in the Internet. This is particularly a concern in the data
plane where the router stores the routing table, or forward-
ing information base (FIB). Because it has to operate at
high speeds and often uses SRAM rather than commodity
DRAM, FIB memory is arguably more constrained and ex-
pensive than other resources in a router [22]. Moreover, the
number of IP prefixes is increasing at an increasing rate [15],
leading to the need for expensive hardware and upgrades.
The Internet Architecture Board Workshop on Routing and
Addressing recently identified FIB growth as one of the key
concerns for future scalability of the routing system [22].

A second challenge for interdomain routing is to provide
multipath routing, in which a packet’s source (an end host or
edge router) selects its path from among multiple options.
For network users, multipath routing is a solution to two
important deficiencies of BGP: poor reliability [1, 14, 17]
and suboptimal path quality, in terms of metrics such as la-
tency, throughput, or loss rate [1, 27]. Sources can observe
end-to-end failures and path quality and their effect on the
particular application in use. If multiple paths are exposed,
the end-hosts could react to these observations by switching
paths much more quickly and in a more informed way than
BGP’s control plane, which takes minutes or tens of minutes
to converge [19, 21]. For network providers, multipath rout-
ing represents a new service that can be sold. In fact, route
control products exist today which dynamically select paths
based on availability, performance, and cost for multi-homed
edge networks [3]; exposing more flexibility in route selection
could improve their effectiveness. Greater choice in routes
may bring other benefits as well, such as enabling competi-
tion and encouraging “tussles” between different parties to
be resolved within the protocol [6].

But providing multiple paths while respecting network
owners’ policies is nontrivial. BGP provides no multipath
service; it selects a single path for each destination, which
it installs in its FIB and advertises to its neighbors. Several
multipath routing protocols have been proposed, but these
have tradeoffs such as not supporting all of BGP’s routing
policies [32, 30], exposing only a limited number of addi-
tional paths [28], making it difficult to know which paths
will be used [31, 23], or increase the size of the FIB [28, 31,
23], which would exacerbate the scalability challenge.

Our contributions. This paper addresses the challenges
of scalability and multipath routing with a novel protocol
called pathlet routing. In pathlet routing, each network
advertises pathlets—fragments of paths represented as se-
quences of virtual nodes (vnodes) along which the network

111

is willing to route. A sender concatenates its selection of
pathlets into a full end-to-end source route.

From this architecture come three key ideas. First, path-
lets and vnodes are highly flexible building blocks, able to
express many kinds of policies as well as enabling a dra-
matic amount of path choice in a clean protocol. Intuitively,
like path vector routing (i.e. BGP), pathlets can be used to
constrain how a packet transits an autonomous system (AS)
and where it goes after it leaves. But like source routing,
pathlets may be concatenated in exponentially many ways.
In fact, we show that pathlet routing’s data plane can em-
ulate the routing policies of BGP, loose and strict source
routing, and three recent multipath proposals: NIRA [30],
MIRO [28], and LISP [9]. We are not aware of any protocol
which can emulate pathlet routing’s policies, although there
are several that pathlet routing cannot emulate [32, 31, 23].

The second key idea is that an AS whose policies have only
“local” constraints can represent its policies using a small
number of pathlets, leading to small FIBs and many allowed
paths. We suggest a new class of policies of this type, lo-
cal transit (LT) policies, that allow networks to control the
portions of routes which transit across their own networks,
but otherwise expose the full flexibility of the Internet’s AS-
level routes to sources. A special case of LT policies are
valley-free routes, the common export policy used in BGP.
We show that this kind of LT policy has a large amount of
path choice which significantly improves reliability, and has
FIBs whose size scales with the number of neighbors of a
router, rather than with the number of destinations—thus
reducing the average number of FIB entries for the Internet
AS topology by more than 10, 000× compared with BGP.

The third key idea is that pathlet routing does not impose
a global requirement on what style of policy is used. It cleanly
allows multiple styles to coexist, for example with BGP-style
policies at some ASes, and LT-style policies at others. A
convenient consequence of our architecture is that regardless
of what the other ASes choose, the LT routers obtain the
entire benefit of small FIBs, and part of the improved path
choice. Intuitively, a router needs space in its forwarding
table only for the pathlets that it constructs.

We confirm these results in experiments with an imple-
mentation of pathlet routing. Our implementation also shows
that while our protocol can have greater messaging and con-
trol plane memory overhead than path vector protocols like
BGP, the overhead is small in Internet-like topologies.

Thus, pathlet routing supports complex BGP-style poli-
cies while enabling the adoption of policies that yield small
forwarding plane state and a high degree of path choice.

Paper outline. We introduce the core of the protocol in
Sec. 2, and the scheme for disseminating pathlets in Sec. 3.
Sec. 4 discusses new uses of pathlet routing, including LT
and mixed policies. In Sec. 5 we show pathlet routing can
emulate the policies of several other protocols. Sec. 6 de-
scribes and evaluates our implementation of pathlet routing.
We discuss related work in Sec. 7 and conclude in Sec. 8.

2. THE PATHLET ROUTING PROTOCOL
This section begins with a simple example (§2.1). We

then describe the core pathlet routing protocol: its building
blocks of vnodes and pathlets (§2.2), how pathlets are built
(§2.3), how packets are forwarded (§2.4), and how the sender
picks its route from the pathlets it knows (§2.5).

vnode

pathlet
(labeled with FID)

A router

3

a

a

A B C D E

3
2

7 1b
c

d e

3,2 2 7,1 1
Route in packet header arriving at each hop:

12.34.56.0 / 24

Figure 1: A pathlet routing example.

Besides this core protocol, we must specify how path-
lets are disseminated throughout the network. This is a
largely separable component of the design, because (unlike
BGP) route policy is enforced by what pathlets are con-
structed, rather than by how they are announced. For now,
the reader may assume “telepathic” routers which know ev-
ery constructed pathlet. We will present out dissemination
protocol in Section 3.

2.1 Example
Before defining the protocol in detail, we give a simple

example to illustrate the pathlet mechanism. Consider the
topology in Fig. 1 with routers A,B,C,D,E, each of which
has one vnode (a, b, c, d, e, respectively). Initially, the routers
learn the vnodes of their neighbors. They can then construct
one-hop pathlets to their neighbors, as A, C, and D have
done. A pathlet is given a forwarding identifier (FID) which
identifies it in the routing table of its first vnode. For ex-
ample, entry 7 in the routing table of vnode c instructs the
router to forward the packet to D.

A sender determines its destination by finding a vnode
tagged with the appropriate IP prefix, such as e in the ex-
ample. It specifies a route as a list of FIDs in the packet
header. A packet starting at c with route (7, 1) will have its
first FID popped off and will be forwarded to d with route
(1) in the header, whereupon the next FID is popped off
and the packet is forwarded to e with the empty route (),
indicating that it has reached its destination.

After one-hop pathlets are constructed, multihop pathlets
can be built using them. Here, B builds a pathlet b →
c → d → e. It picks FID 2, and sets the forwarding table
instructions to push (7, 1) onto the front of the packet’s route
and then forward it to C. A packet beginning at a can now
reach e using route (3, 2), as shown at the bottom of Fig. 1.

Note that the routers in this example have used different
styles of routing policy. A, C, and D have policies that are
“local”, i.e., they depend only on their neighbors. B has a
BGP-like policy which depends on the destination: it allows
transit from B to C only when the ultimate destination is
E. We will see these two styles again in Sec. 4.

In the rest of Sec. 2, we give a more detailed description
of the pathlet routing protocol.

2.2 Building blocks
Pathlet routing can be seen as source routing over a vir-

tual topology whose nodes are vnodes and whose edges are
pathlets. We describe these two building blocks next.

112

Vnodes. A vnode is a virtual node created by an AS to
represent the structure of routes within its own network.
Vnodes can be used in many ways (some of which we will
see later), but the simplest case is that each router has one
vnode.

An AS creates a vnode by setting up a routing table for
the vnode at one or more routers. Initially, each router is
configured with at least one vnode. When a router X opens
a control plane connection to a neighbor Y , it designates an
ingress vnode for Y : it sends Y a globally-unique vnode
identifier v, indicating that every packet X receives from Y
will be directed to v. The ingress vnode can be different
for each of X’s neighbors, thus allowing X to control routes
based on a packet’s previous hop. For example, in Sec. 4.1
we will construct vnodes representing ingress from neighbors
grouped into classes according to customer, provider, and
peer business relationships.

Routers learn most vnodes implicitly, when they are men-
tioned as part of a pathlet’s path. Additionally, a vnode can
be tagged with a destination IP prefix, as in e in Fig. 1. Tag
announcements are handled with the same dissemination al-
gorithm as pathlets (see Sec. 3).

Pathlets. A pathlet represents a sequence of vnodes v1 →
· · · → vn along which the AS X that originated the an-
nouncement is willing to route. The first vnode v1 is in X,
but the others may be in X or other ASes.

A pathlet is identified by a forwarding identifier, or
FID, f . To routers other than the pathlet’s creator, f is
simply an opaque variable-length string of bits with the se-
mantics that if a packet arrives at v1 and the packet’s source
route begins with f , then it will be forwarded along the path
v1 → · · · → vn, arriving at vn with f popped off the front of
the source route. The sender of a packet will place a series
of FIDs in the packet to indicate the full route.

To the router or routers on which v1 is instantiated, f is
used as an index into the vnode’s forwarding table. Thus, f
must uniquely identify the pathlet among all pathlets begin-
ning at v1—but importantly, f need not be globally unique
like the identifiers in IP source routing, or even unique within
an AS. The result is very compact FIDs. For example, in
Fig. 1, it would actually have been possible to give all path-
lets the same FID since they originate at different vnodes.

Our implementation uses the following variable-length FID
encoding scheme. The first bits of the FID indicate its
length: FIDs that begin with 0, 10, 110, 1110, and 1111
have total lengths of 4, 8, 16, 24, and 32 bits, respectively.
The remaining bits contain the unique identifier. In our LT
policies, most vnodes originate ≤ 8 pathlets, so these use
the short 4-bit FIDs. Other encoding schemes are possible,
and an AS can unilaterally pick its own scheme, since other
routers simply view the FID as an opaque string of bits.

2.3 Pathlet construction
In the “base case” of pathlet construction, a pathlet con-

nects two vnodes, v1 → v2. In the general case, after X
has learned or constructed some pathlets, it can concate-
nate these to build longer pathlets which take the form
v1 → P1 → · · · → Pk, where each Pi is an existing pathlet.
The router gives the pathlet a FID f , and in the forwarding
table for v1, it associates f with:

• a next hop rule to reach v2: instructions for forward-
ing packets to the next vnode in the pathlet’s path.

Examples include transferring the packet to another
vnode at the same router; sending it on a certain out-
going interface; or tunneling it across an intradomain
routing protocol like OSPF to an egress point.

• the remaining FIDs: the list of FIDs necessary to
route the packet from the second vnode to the final
vnode in the pathlet. If the pathlet has just one hop,
this list is empty. Otherwise it is a list r1, . . . , rk, where
each ri is the FID for pathlet Pi.

Readers nostalgic for LISP might think of these two fields
as the CAR and CDR of the pathlet’s forwarding information.

For example, in Fig. 1, most of the pathlets are the “base
case” one-hop pathlet, which can be constructed immedi-
ately after each router X opens the control plane connec-
tions to its neighbors and learns their ingress vnodes for
X. After the one-hop pathlets are disseminated through the
network (according to the protocol of Sec. 3), router B can
create the “general case” pathlet b→ c→ d→ e by concate-
nating the two pathlets c→ d and d→ e. In the forwarding
table for vnode b, it maps the FID 2 to the remaining FIDs
(“push (7, 1) onto the front of the route”) and the next hop
rule (“send the packet to router C”).

2.4 Packet forwarding
Each router has multiple forwarding tables: one for each

of its vnodes. The table for each vnode v is an exact-match
lookup table with one entry for each pathlet beginning at v.
The entry maps the pathlet’s FID to the next hop rule and
the remaining FIDs, as described above.

When a packet is sent from router Y to X, it is interpreted
as arriving at the specific vnode v which is X’s ingress vnode
for Y . It is safe to assume that the previous hop cannot be
spoofed: X knows on which of its interfaces it received the
packet, and the interface would be associated with a specific
neighboring AS.

The router X then inspects the route in the packet header.
If it is empty, the packet is delivered locally. Otherwise the
route is a sequence of FIDs (f1, f2, . . . , fn) of the pathlets
forming the route to its destination. Initially, this is set by
the sender to be the selected route. The router checks for f1
in the forwarding table for the ingress vnode v. If no entry is
found, the packet is malformed and is dropped. Otherwise,
the table maps f1 to a next hop rule and the remaining FIDs
r1, . . . , rk for this pathlet. It pops off the packet’s first FID
f1 and pushes the remaining FIDs, resulting in a route of
r1, . . . , rk, f2, . . . , fn. Finally, it forwards the packet to the
next vnode, according to the next hop rule.

Fig. 1 gives a packet forwarding example. At a, the first
FID (3) is popped off and used to look up the next-hop
rule and remaining FIDs. There are no remaining FIDs be-
cause it is a one-hop pathlet, so the packet is forwarded to
b according to the next-hop rule. At b, the next FID (2)
is popped. Here the remaining FIDs (7, 1) are pushed onto
the route since this is a multihop pathlet, and then it is
forwarded to c according to the next-hop rule. At c and d
FIDs are popped off the route, none are pushed on, and the
packet is forwarded. Finally the packet arrives at e with the
empty route, where it is delivered.

Note that it is impossible for a sender to “cheat” and use
a source route that violates the routers’ policies, even if it
somehow gains knowledge of every pathlet. This is simply
because there are no forwarding entries for invalid routes.

113

2.5 Route selection
Each router learns a set of pathlets, via control plane

mechanisms to be discussed later. It can select from among
these a route for each packet that it sends. A simple way to
do this is to build a graph in which each vnode is a node,
and each pathlet v1 → . . . → vn is a single edge v1 → vn

(perhaps given a cost equal to the number of ASes through
which the pathlet travels). Then, similar to link state rout-
ing, run a shortest path algorithm on this graph to produce
a sequence of edges (i.e., pathlets) to each destination. After
the router has made its path selection, it places the sequence
of FIDs associated with the chosen pathlets into the packet
header, and sends it.

Note that this algorithm requires a map of the entire In-
ternet, as learned by the control plane. However, as we
will see (§6), it is not dramatically more state than BGP
disseminates. And memory use in this algorithm is not as
critical as in the FIB, for several reasons. First, it is per-
formed by edge routers which do not need as high packet
processing speeds as core routers, so the map can be stored
in slower (larger, cheaper) memory. Second, an edge router
can cache routes for the (presumably small) set of destina-
tions to which it is sending at any one point in time, so that
the route computation is needed only for the first packet in
each connection, or the caching could be offloaded to the
senders. In fact, it would be feasible for many end-hosts
(rather that edge routers) to choose routes themselves, but
the protocol between end-hosts and their gateway routers is
beyond the scope of this work.1

Routers have the freedom to make more intelligent choices
than the simple shortest path algorithm presented above,
through information learned outside of the pathlet routing
protocol. Options include learning path properties based
on observations of performance or availability [32, 4]; com-
mercial route selection products [3]; each network operat-
ing a route monitoring service for its users [30]; third-party
route selection services [20], or even a global“Internet weath-
ermap” service that would assist end-hosts in their route
selection.

3. PATHLET DISSEMINATION
We motivate our dissemination algorithm with two straw

man proposals (§3.1). We then describe our chosen dissemi-
nation algorithm (§3.2), the choice of which pathlets to dis-
seminate (§3.3), and an extension where nonadjacent routers
exchange pathlets (§3.4).

Note that the algorithm we present here and evaluate in
Sec. 6 should be seen only as one feasible design. The choice
of dissemination algorithm largely does not affect the rest
of our design, and could easily be replaced with another
approach.

3.1 Design rationale

Straw man #1. Suppose we simply broadcast all pathlets
to the entire network using a link state algorithm. This is
in fact not a policy concern: if pathlet routing is used as

1For many end-hosts, it would be feasible to learn pathlets
from the gateway router and run the same algorithm pre-
sented here. Alternately, the gateway router could give the
end-host several choices without detailing what those routes
are, as in [31, 23]; or path selection could be performed en-
tirely by routers.

intended, then policy is enforced in the data plane, rather
than through obscurity in the control plane. If a certain
route is not allowed, then the appropriate forwarding table
entries do not exist, so no sequence of bits placed in the
packet header can cause a packet to traverse the route.

Instead, the problem with this approach is simply that
there may be too many pathlets. Certain cases would be
manageable, such as if all ASes use the Local Transit policies
that we propose; but there is no fundamental constraint on
how many pathlets an AS constructs.

Straw man #2. Suppose now that we use a standard
broadcasting algorithm, except any router may decide to
propagate only a subset of its known pathlets. This solves
the scalability problem. However, it leads to a subtle issue
when there are multiple simultaneous failures: it is possible
for a router to learn of a pathlet which later fails, but not
be notified of the failure because the channel over which it
would have learned about the pathlet’s state has also failed.
We omit an example due to space constraints. The key point
is that it would be possible for a router to continue to use a
pathlet for an arbitrarily long time after it has failed.

3.2 Pathlet dissemination algorithm
We choose a path vector algorithm to disseminate path-

lets, much as BGP notifies the Internet of the existence of
IP prefixes. We use a standard, bare-bones path vector pro-
tocol, with a pathlet announcement containing the pathlet’s
FID and its sequence of vnode identifiers.

Path vector has two important properties. First, it solves
the scalability problem from the first straw man, by allow-
ing routers to propagate an arbitrary subset of their known
pathlets (much as BGP allows routers to choose which routes
to export). Second, it guarantees that if a pathlet fails, it
will eventually be withdrawn from all routers that learned
of it (intuitively because path vector remembers the dissem-
ination channel).

This choice of path vector might seem ironic, given that
our goal is to improve on BGP’s path vector routing; but
we use path vector only to make pathlets known, not to
pick packets’ routes. In particular, the dissemination path
attribute (corresponding to BGP’s ASPATH) is used only
for detection of loops in the dissemination channel, not as a
path along which to route data packets.

The main disadvantage of path vector is that a router
must remember up to O(δ`) state for each pathlet rather
than O(1) state as in a broadcasting algorithm, where δ is
the number of neighbors and ` is the average path length.
However, we have a great deal of flexibility to optimize the
overhead of the algorithm, compared with BGP’s use of path
vector. The simplest optimization is that we never need
to switch to a “more preferred” dissemination path, since
they are all equally acceptable; see our experimental results
concerning message rates in Sec. 6.3. Other optimizations
to reduce both messaging and memory overhead would be
feasible, as we discuss in Sec. 8.

3.3 Which pathlets are disseminated?
Since we use a path vector dissemination protocol, each

router can choose exactly which subset of its known pathlets
to announce to its neighbors, just as in BGP’s export filter.
The rule we choose is as follows.

Suppose v is router X’s ingress vnode for neighbor Y .
From among all the pathlets that X knows (both those

114

it constructed and those it learned from neighbors), it an-
nounces a subset to Y , as follows:

1. Announce pathlets which form a shortest path tree
from v to all destination vnodes reachable from v.

2. Announce any additional pathlets that are reachable
from v, up to limit(δ) pathlets originating at each AS
with δ AS-level neighbors.

Step 1 ensures that sufficient pathlets are supplied in order
that Y can reach every destination reachable from v. Step 2
adds desirable redundancy. In our implementation, we use
limit(δ) = 10 + δ, so that higher-degree ASes can announce
more pathlets. But this particular choice is not critical since
Step 1 handles reachability.

3.4 Extensions
Information dissemination in distributed systems can gen-

erally be described as either “push” or “pull”. The above dis-
semination algorithm, like BGP, pulls routing state. But an
easy extension of our protocol allows any router to initiate
a control plane connection with any other (perhaps non-
adjacent) router, and pull certain pathlets, such as those
relevant to a specified destination. This extension can be
used to emulate control-plane features of three recent mul-
tipath routing proposals: MIRO, NIRA, and LISP (§5). It
is also similar to BGP’s multihop option, where an eBGP
session connects to non-adjacent routers.

4. NEW USES OF PATHLET ROUTING
In this section, we discuss three practical examples of what

one can do conveniently with pathlet routing, but not with
BGP or most other protocols: Local Transit policies (Sec-
tion 4.1) allow networks to control one of the most impor-
tant aspects of routing policy—the portions of routes which
transit across their own networks—while permitting very
small forwarding tables and a large degree of route choice
for senders. Pathlet routing cleanly supports mixed poli-
cies (Section 4.2), for example with some ASes using BGP-
style policies and some using LT policies. The LT adopters
still have small forwarding tables, and some of the benefit
of additional route choice. Finally, pathlet routing may be
a more flexible way of offering multiple types of service
along the same physical path (Section 4.3).

4.1 Local Transit Policies
Definition. A network X has a local transit (LT) pol-
icy when X’s willingness to carry traffic along some route
depends only on the portion of the route that crosses X’s
network. In other words, under an LT policy the permissi-
bility and cost of some path, according to X, is a function
only of the ingress and egress points of the path in X. An
alternate definition is that the policy can be constructed
using pathlets which never extend beyond X’s neighboring
vnodes—hence, the policy is local. (Note that LT policies
concern only how traffic may transit X’s network; X may
still have arbitrary preferences on the paths taken by traffic
that X sends.)

An important example of LT policies is valley-freeness [11],
a common export policy in BGP today. Valley-free routes
can be defined as follows: each neighbor is labeled as a cus-
tomer, provider, or peer; a BGP route is exported to a neigh-
bor X if and only if either the next hop of the route is a

customer or X is a customer. This is a function only of the
ingress and egress points, and hence is an LT policy.

To the best of our knowledge, other multipath routing pro-
tocols [8, 28, 30, 18, 23, 32] cannot implement local transit
policies, though some [30] can implement special cases.

Advantages, disadvantages, incentives. LT policies are
an example of policies in which constraints are local. In
general, this locality leads to two advantages over BGP-style
policies. First, the pathlets can be combined in potentially
an exponentially large number of ways, leading to improved
performance and reliability for senders. Second, they can be
represented with a small number of pathlets, leading to small
forwarding tables. (We will demonstrate both advantages in
Sec. 6.)

The primary disadvantage is that policies cannot depend
on a route’s destination. Such policies are used in BGP,
where ASes select and advertise their most preferred route
on a per-destination basis. Thus, ASes would end up per-
mitting routes other than the one for each destination that
is cheapest. A more minor issue is that LT policies use
slightly more control plane state than BGP (as we will see
in Sec. 6), but this is not as constrained a resource as data
plane memory.

We argue that for a large fraction of ASes, the advantages
of LT policies may outweigh the disadvantages. LT-capable
routers require less data plane memory and hence less cost,
and are much less susceptible to scalability problems as the
Internet grows; and providing more path choice is a ser-
vice that customers may be willing to pay for. Providing
more paths may also attract more traffic and hence more
revenue. Moreover, the disadvantage of policy locality is
limited since the common BGP export policy of enforcing
valley-free routes is an LT policy. At a higher level, we note
that offering multipath network services at a constant price
regardless of the path may be a feasible business model for
the same reasons that today’s transit services have a fixed
rate regardless of the destination.

Ultimately, whether ASes choose to use LT policies de-
pends on business decisions and payment mechanisms, but
pathlet routing makes it feasible at a technical level. Fur-
thermore, as we will see in Section 4.2, this is a decision that
can be made by each AS individually.

Implementation. Figure 2 depicts two ways of implement-
ing LT policies in pathlet routing. The simplest way uses
one ingress vnode for each neighbor. Then, the AS con-
structs a pathlet between each ingress-egress pair for which
it wants to allow transit service. However, this results in
O(δ2) pathlets for a network with δ neighbors.

Fortunately, we can use our vnode abstraction for a much
more compact representation. We assign each neighbor to a
“class”, an abstract group of neighbors which are equivalent
from a policy standpoint. Examples are business relation-
ships (customer, provider, peer) or potentially geographic
regions. We have vnodes representing ingress and egress for
each class (rather than each neighbor), and then construct
the appropriate pathlets between these vnodes.

This reduces the number of pathlets from O(δ2) to O(c2 +
δ), where c is the number of classes. We argue that the num-
ber of classes would typically be small. For example, in the
case of valley-free routes, we need only 2 classes, customer
and provider/peer, for a total of 4 + δ pathlets per AS. This
is depicted in Fig. 2.

115

in out

in out

providers and peersproviders and peers

customers customers

destination vnode
(tagged with IP prefix)

vnode

pathlet

AS

Figure 2: Two ways to implement a local transit
policy are to connect the appropriate ingress-egress
pairs (left), or to group neighbors into classes and
connect the appropriate classes (right). Here we
show the vnodes and pathlets in one AS to permit
valley-free routes.

One difficulty arises with class-based LT policies. If an
AS is internally partitioned, it may not be able to represent
reachability as a class-based LT policy, which implicitly as-
sumes that if the provider class can reach the customer class,
then all providers can reach all customers. A solution is for
the AS to advertise two sets of LT policies, one on each
side of the partition, in the rare case that it becomes inter-
nally partitioned. Alternately, the AS can simply continue
announcing the pathlets; sources will realize that some path-
lets have failed and will switch to a different route, assuming
another is available.

4.2 Mixed Policies
In this section we describe how pathlet routing supports

mixed policies, in particular with some ASes using tradi-
tional BGP-style policies, and some using LT-style. Mixed
policies are important because it allows ASes to make in-
dependent choices about their policies. Some may require
restrictive BGP style policies; others may use LT-style poli-
cies, giving up some control but getting the benefit of small
forwarding tables and providing many possible paths. It is
unlikely that either choice would be preferred by all ASes.

We require no new protocol mechanisms to support mixed
policies; routers run the algorithms we have already de-
scribed in Sections 2 and 3, constructing the pathlets ap-
propriately to match their routing policy. However, since
we believe this is an important way of using pathlet routing,
we illustrate the process here.

Emulating BGP. As a prelude, we illustrate the non-mixed
case when all ASes use BGP-style policies. To emulate BGP,
each AS constructs one vnode v from which all its pathlets
originate, and which is its ingress vnode for all neighbors. If
it owns an IP prefix, then it has a second vnode w tagged
with the prefix, from which no pathlets depart. It then
constructs a pathlet from v to every destination it can reach,
along its most-preferred available path. If the destination is
at w, this is a one-hop pathlet; otherwise it is a multihop

pathlet which adds one hop to one of the pathlets it learned
from a neighbor. This is depicted below in a topology with
a single IP prefix destination:

w
v

To mimic BGP’s export rules, in which routes are ex-
ported to only certain neighbors, there are two options.
First, the router may simply not announce certain path-
lets to its neighbors. This mimics BGP “too closely”, since
a neighbor could still use a prohibited path if, for example,
it managed to guess the pathlet’s FID. (Similarly, in BGP,
a neighbor could send a packet even when there is no an-
nounced route for the destination IP.) A solution which is
better than BGP is to enforce policy in the forwarding tables
themselves. For the common valley-free export policy, this
can be done with a small constant number of additional vn-
odes and pathlets, similar to the LT construction of Fig. 2;
we omit the details.

A BGP-policy router in a mixed setting. In the previ-
ous example all routers used BGP-style policies. Now con-
sider a “mixed” network, where the leftmost router in the
previous example continues using BGP-style policies, but
the others use LT policies. It runs the same algorithm as
before, building a pathlet to each destination. However, it
may now have an exponentially large set of possible paths to
each destination, rather than one path through each neigh-
bor. This necessitates a generalization of the BGP decision
process to select the best path without constructing each op-
tion explicitly. For example, it could run a least-cost path
algorithm, with large costs assigned to its provider links, less
cost on its peering links, and lowest cost on its customer
links.

The resulting pathlet is also slightly different: instead of
adding one hop to a multihop pathlet, it is built by con-
catenating multiple short pathlets from the LT nodes, high-
lighted below:

The result is a single long pathlet:

An LT-policy router in a mixed setting. Due to lo-
cality, an LT router’s pathlets do not depend on pathlets
constructed elsewhere. Therefore, it has the same number
of pathlets originating from its vnodes, and hence the same
small routing tables regardless of what other routers do.

However, it does have to deal with disseminating other
routers’ pathlets in the control plane. If an LT node has δ
neighbors using BGP-style policies, then it receives O(δn)
pathlets for a network of size n, and all of these are reach-
able from its ingress vnodes. The router would therefore
be happy to disseminate them all. In fact, a mixed setting
of BGP-style and LT policy routers could result in O(n2)
pathlets usable by LT nodes. However, our dissemination-
limiting mechanisms from Sec. 3.3 will take effect, and only
a small number of these will be propagated.

116

4.3 Quality of Service
We discuss one final novel use of pathlet routing. Our

protocol’s abstraction of the topology results in a convenient
mechanism to set up multiple paths along the same physical
path. In particular, an AS can construct multiple “parallel”
pathlets, over the same sequence of vnodes. Packets can
then be treated differently depending on which pathlet is
used. For example, an AS could provide better or worse
throughput or delay, or more non-traditional services like
reliable packet delivery across that pathlet rather than a full
end-to-end route, similar to new services proposed by Ford
and Iyengar [10]. To inform sources of these different types
of service, pathlet announcements can be tagged with labels,
or sources could discover performance by measurement or
by a third-party routing appraisal service, as discussed in
Section 2.5.

This approach is more flexible and extensible than other
approaches for several reasons. First, the service is selected
for a specific segment of a path, rather than for the entire
path. Thus, different combinations of services are possible
and an AS which is not involved in providing a particular
type of service does not need to support that service or even
be aware of what services a packet is using in other ASes.
Second, the bits in the packet header are not tied to a small
number of predetermined meanings (as in, for example, IP’s
Type of Service bits). Instead, the header bits (FIDs) are
tied to a much more extensible control plane announcement
by the AS providing the service.

One drawback is that the amount of routing state in-
creases as more types of service are offered. However, in
terms of forwarding plane state, this only affects the ASes
that are offering the service; and if an AS is using policies
like Local Transit policies, the amount of forwarding plane
state is quite small to begin with.

5. POLICY EXPRESSIVENESS ANALYSIS
In this section, we develop a framework for comparing

routing protocols. We show that pathlet routing’s data
plane can emulate any policy expressible in the data plane
of several existing protocols using a similar amount of state,
even though these protocols have substantially different for-
warding architectures. Our goal is to support the claim that
pathlet routing is highly expressive, but we also believe this
framework is of independent interest since it takes a step
towards making sense of the large number of proposed pro-
tocols in this area.

We begin by discussing intuition for pathlet routing’s flex-
ibility (§5.1). We then we define policy emulation (§5.2) and
discuss the protocols pathlet routing can emulate (§5.3) and
those it cannot (§5.4), highlighting some limitations of our
protocol. These results are summarized in Figure 3.

5.1 Intuition
Why does pathlet routing appear to be so flexible, gener-

alizing multiple other routing protocols? One piece of the
intuition is that many protocols incorporate some variant of
tunneling. Our pathlet construct elevates the tunnel to be
a “first-class object” that can be advertised, concatenated,
and source-routed. We will repeatedly use pathlets to emu-
late tunnel-like features of other protocols. However, this is
only part of the story since we also utilize vnodes.

At a higher level, the following intuition is simple yet pow-
erful. One of the most flexible and general abstractions is

Feedback-based
 routing

Pathlet routing

Strict
source routing

Loose
source routing

MIRO NIRA

LISP
Routing

Deflections,
Path splicing

BGP

Figure 3: Relative policy expressiveness of the data
planes of routing protocols. P → Q indicates P can
emulate the routing policies of Q.

the graph. Pathlet routing allows routing policies to be spec-
ified as an arbitrary virtual graph, whose nodes are vnodes
and whose directed edges are pathlets.

5.2 Definition of policy emulation
Our analysis focuses on the data plane: the information

carried in a packet and in the forwarding table, and forward-
ing operations. We found that considering only the data
plane gives a much cleaner and more well-defined way of rea-
soning about protocols, compared with modeling both the
data and control planes. We will also discuss control plane
differences between the protocols, leaving rigorous analysis
of their control planes to future work.

A configuration of a protocol is defined by an arrange-
ment of forwarding table state at each router. Given a con-
figuration c1 from protocol P and a configuration c2 from
protocol Q, we say that c1 covers c2 when

• every end-to-end route which is allowed in c1 is also
allowed in c2, and every end-to-end route which is pro-
hibited in c1 is also prohibited in c2; and

• for each router i, |c1(i)| = O(|c2(i)|), where |cj(i)| de-
notes the amount of forwarding state for router i in
configuration j.

Finally, we say that protocol P can emulate Q if for every
configuration c2 of Q, there is a configuration c1 of P such
that c1 covers c2. In other words, if P can emulate Q, then
P can match every possible outcome of Q in terms of allowed
paths, prohibited paths, and forwarding table size.

This definition is limited. We have chosen not to incor-
porate aspects of policy like the price of a route, visibility
of routes, misbehavior outside the rules of the protocol, or
game-theoretic aspects like which outcomes might actually
arise under selfish behavior, or the control plane as discussed
above. However, we believe that policy emulation provides
a way to begin reasoning about the relative strengths of dif-
ferent protocols.

5.3 Protocols pathlet routing can emulate
Due to space constraints, we only briefly describe some of

the protocols and the emulation relationships between them.

BGP [25]. We outlined how pathlet routing can emulate
BGP (in both the data an control planes) in Section 4.2.

NIRA [30] offers more choice to sources than BGP, while
simultaneously reducing control plane state. IP addresses
are assigned so they encode a specific path between a router
and the “core” of the Internet or a peering point. A source

117

and destination IP address together specify a full end-to-
end route. The most challenging part of emulating NIRA
is that an AS can allow or prohibit routes based on the up-
stream hops as far back as the core providers. In contrast,
in the usages of pathlet routing we have seen so far, policies
depend only on the immediately prior hop and any down-
stream hops. However, it is possible to construct vnodes to
encode the packet’s upstream hops, using the same amount
of state as NIRA. This requires some coordination of vnode
names in the control plane between neighbors, but no data
plane changes.

The basic NIRA protocol is limited to valley-free routes,
so it cannot emulate the other protocols we consider. An ex-
tension including a source-routing option is described in [29]
but is not analyzed here.

Locator/ID Separation Protocol (LISP) [9] maps a
topology-independent endpoint ID into an egress tunnel router.
BGP is used to tunnel a packet to its destination’s egress
tunnel router, which delivers it to the final destination us-
ing the endpoint ID. This arrangement can reduce forward-
ing state since most routers need only know about egresses,
rather than all endpoints. Pathlet routing can emulate LISP
by concatenating a pathlet representing the tunnel and a
pathlet representing the remainder of the route.

IP strict source routing [8], IP loose source rout-
ing [8] and MIRO [28]. Pathlet routing can emulate these
protocols in a straightforward manner. The common thread
in these protocols and LISP is routing via waypoints or tun-
nels, which we find can be emulated with MIRO’s data plane.
(Note, however, that MIRO’s data and control planes were
intended for a significantly different usage scenario in which
most paths are set up via standard BGP and a relatively
small number of additional tunnels are constructed.) We
omit a full description due to space constraints.

5.4 Protocols pathlet routing cannot emulate
Feedback Based Routing (FBR) [32] is source routing
at the AS level, with each link tagged with an access control
rule. A rule either whitelists or blacklists a packet based
on prefixes of its source or destination IP address. Pathlet
routing cannot emulate FBR for two reasons. First, it is
difficult for pathlet routing to represent policies based on
upstream hops. Essentially, the only way to carry utilizable
information about a packet’s origin is to encode the origin
into the vnodes the packet follows, which would increase the
number of necessary vnodes and hence the amount of state
by a factor of n relative to FBR, where n is the number of
nodes in the network. (Note that we solved a similar prob-
lem in emulating NIRA, but NIRA’s solution used the same
amount of state as ours.) The second problem in emulat-
ing FBR is that FBR has both blacklisting and whitelisting,
while pathlet routing effectively has only whitelisting. FBR
can therefore represent some policies efficiently for which
pathlet routing would require significantly more state.

But FBR cannot emulate pathlet routing either. For ex-
ample, controlling access based only on source and destina-
tion address ignores intermediate hops which can be taken
into account by pathlet routing (and BGP).

Routing deflections [31] and interdomain path splic-
ing [23]. In these protocols, each hop can permit multiple
alternate paths to the destination. The packet includes a

“tag” [31] or “splicing bits” [23] to specify which alternative
is used at each step. The selected path is essentially a pseu-
dorandom function of the tag.

Pathlet routing cannot emulate these protocols due to the
handling of tags. In [31] the tag has too few bits to repre-
sent the set of all possible routes that the routers intended
to permit, so the de facto set of allowed routes is a pseudo-
random subset of those—an effect which to the best of our
knowledge pathlet routing cannot reproduce. One mode of
operation in [23] behaves the same way. A second mode of
operation in [23] uses a list of source-route bits to explicitly
select the next hop at each router; pathlet routing would be
able to emulate this version.

But there is also a problem in the control plane. Even
if pathlet routing can match the allowed paths in the data
plane, actually using the paths would require the senders to
know what FIDs to put in the packet header. Because [31,
23] allow per-destination policies as in BGP, this can result
in a large amount of control plane state in pathlet rout-
ing. Routing deflections and path splicing avoid this control
plane state by not propagating alternate path information;
the tradeoff is that the senders and ASes in those protocols
cannot identify which end-to-end paths are being used.

6. EXPERIMENTAL EVALUATION
We implemented pathlet routing as a custom software

router, and evaluated it in a cluster environment. We de-
scribe the structure of our implementation in Sec. 6.1, the
evaluation scenarios in Sec. 6.2, and the results in Sec. 6.3.

6.1 Implementation
We implemented pathlet routing as a user-space software

router, depicted in Fig. 4. Each router runs as a separate
process and connects to its neighbors using TCP connec-
tions, on which it sends both data and control traffic.

Our router contains three main modules: a vnode man-
ager, a disseminator, and a controller. Through the imple-
mentation we found that it is possible to shield the core
policy module (the controller) from the details of pathlet
dissemination and vnode management, making it compact
and easy to tune to the specific needs an AS might have.
We describe these three modules briefly.

Controller

Disseminator

wire

Pathlet advertisements
and withdrawals

 Vnode
Manager

Pathlet Store
Ingress
Vnode
Announce-
ment
Messages

 Data
Packets

Vnode

Pathlet
(un)available

Store these
local pathlets

Advertise
these
pathlets to
these peers

Install/remove
forwarding entries

Create/delete
Vnodes

Figure 4: Structure of the software pathlet router.

118

The vnode manager is responsible for directing incoming
data packets to vnodes, which store their forwarding tables
and perform the lookup, as well as for sending the data
packets out to the next hop. The vnode manager also sends
and receives control messages that inform peers about the
ingress vnodes.

The disseminator stores the pathlets and sends and re-
ceives pathlet announcements and withdrawals. When a
new pathlet becomes available or a pathlet is withdrawn,
it notifies the controller. When the controller decides to ad-
vertise or withdraw a pathlet from a particular neighbor, it
calls the disseminator to execute the decision.

While the vnode manager and the disseminator are gen-
eral and oblivious to the AS’s policy, the controller encap-
sulates the policy logic. It implements the policy by con-
structing and deleting pathlets and vnodes and by deciding
which pathlets to announce to which peers. In our imple-
mentation, one makes a router an LT router or BGP-style
router by picking the corresponding controller.

6.2 Evaluation scenarios
Policies. We tested three types of policies: LT policies,
Path Vector-like policies, and mixed policies, with 50% of
nodes randomly chosen to use LT policies and the rest using
PV.

The special case of LT policies that we test are valley-free
routes, as in Fig. 2. The PV policies emulate BGP. Specif-
ically, we mimic the common BGP decision process of pre-
ferring routes through customers as a first choice, through
peers as a second choice, and providers last. We then break
ties based on path length and router ID, similar to BGP. We
use the common BGP export policies of valley-free routes.

Topologies. We tested two types of topology. Internet-
like topologies annotated with customer-provider-peer re-
lationships were generated using the algorithm of [7]. Each
AS is represented as a single router. Random graphs were
generated using the G(n,m) model, i.e., n nodes and m ran-
dom edges, excluding disconnected graphs. In the random
graph there are no business relationship annotations; ASes
prefer shortest paths and all paths are exported. Unless oth-
erwise stated, these graphs have 400 nodes and an average
of 3.8 neighbors per node.

Event patterns. We show results for several cases: the
initial convergence process; the state of the network after
convergence; and a sequence of events in which each link
fails and recovers, one at a time in uniform-random order,
with 8 seconds between events for a total experiment length
of 3.6 hours. We implemented link failures by dropping the
TCP connection and link recovery by establishing a new
TCP connection.

Metrics. We record connectivity, packet header size, for-
warding table size, number of control plane messages, and
control plane memory use. The CDFs of these metrics that
we present are the result of three trials for each evaluation
scenario, each with a fresh topology. We show all data points
(routers or source-destination pairs) from all trials in a single
CDF.

6.3 Results
Forwarding plane memory. Fig. 5 shows a CDF of the
number of forwarding table entries at each router. The num-

ber of entries varies with the node degree for LT routers, and
with the size of the network for PV nodes. As a result, the
LT nodes have a mean of 5.19 entries in the all-LT case and
5.23 in the mixed case. PV averages 400.5 entries in the
mixed and all-PV cases.

We also analyzed an AS-level topology of the Internet gen-
erated by CAIDA [5] from Jan 5 2009. Using LT policies in
this topology results in a maximum of 2, 264 and a mean of
only 8.48 pathlets to represent an AS. In comparison, BGP
FIBs would need to store entries for the between 132, 158
and 275, 779 currently announced IP prefixes, depending on
aggregation [2]. Thus, in this case LT policies offer more
than a 15, 000× reduction in forwarding state relative to
BGP.

Route availability. One of the principal advantages of
multipath routing is higher availability in the case of failure,
since the source can select a different path without waiting
for the control plane to reconverge.

We measure how much LT policies improve availability as
follows. We allow the network to converge, and then take a
snapshot of the routers’ forwarding tables and the pathlets
they know. We then select a random set of links to be failed,
and determine for each pair of routers (X,Y) whether there
is a working X ; Y route in the data plane, using only the
pathlets that X knows. If so, then X has a continuously
working path to Y , without waiting for the control plane to
detect the failures and re-converge. Thus, we are measuring
how often we can avoid PV’s transient disconnectivity. (This
measurement ignores the algorithm X uses to find a working
path among its options, which is outside the scope of this
work. However, a simple strategy, like trying a maximally
disjoint path after a failure, is likely to perform well.)

The results of this experiment are shown in Fig. 6. Rel-
ative to PV, which emulates the availability of BGP, LT
has significantly improved availability. In fact, it has the
best possible availability assuming ASes allow only valley-
free routes, because every path allowed by policy is usable
in the data plane. In the random graph topology, we see a
bigger connectivity improvement in part because the possi-
ble paths are not constrained by valley-freeness.

In the mixed environment, the LT nodes obtain the ma-
jority of the improvement of a full deployment of LT nodes.
To further illustrate this relationship, Fig. 6 shows how con-
nectivity improves as a function of the fraction of nodes that
use LT policies, in an 80-node random graph. Here the num-
ber of failed links is fixed at 5, and we report the mean of 5
trials.

In the random graph topology in Fig. 6, we also show
availability when fewer pathlets are advertised: in particu-
lar, each router advertises only the shortest path tree (see
Sec. 3.3). This worsens availability, but improves the num-
ber of control messages, as we describe next.

Control plane messages. Fig. 7 shows the CDF of the
number of messages received by a router following a link
failure or recovery event.

Consider the Internet-like topology. LT has more objects
being announced than PV: an average of 5.19 pathlets per
node, vs. 1 per destination in the PV case. One might
therefore expect 5.19× as many messages. However, LT has
only 1.69× as many as PV. There are two factors that cause
this. First, when a link recovers, PV needs to send many
messages because its path preferences (selected by the BGP

119

Figure 5: Forwarding table
(FIB) size for the Internet-
like topology (left) and the
random graph (right).

0 100 200 300 400
Number of Forwarding Table Entries

0.0

0.2

0.4

0.6

0.8

1.0

Fr
a
ct

io
n
 o

f
S
a
m

p
le

s

Internet-Like

LT

LT in Mixed

PV in Mixed

PV

0 100 200 300 400
Number of Forwarding Table Entries

0.0

0.2

0.4

0.6

0.8

1.0

Fr
a
ct

io
n
 o

f
S
a
m

p
le

s

Random

LT

LT in Mixed

PV in Mixed

PV

0.00 0.02 0.04 0.06 0.08 0.10
Fraction of Links Failed

0.00

0.05

0.10

0.15

0.20

0.25

Fr
a
ct

io
n
 o

f
(s

rc
,
d
st

)
P
a
ir

s
D

is
co

n
n
e
ct

e
d

Internet-Like

PV

PV in Mixed

LT in Mixed

LT

0.00 0.02 0.04 0.06 0.08 0.10
Fraction of Links Failed

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Fr
a
ct

io
n
 o

f
(s

rc
,
d
st

)
P
a
ir

s
D

is
co

n
n
e
ct

e
d

Random

PV

PV in Mixed

LT Tree

LT in Mixed

LT

0.0 0.1 0.2 0.3 0.4 0.5
Fraction of LT Nodes in the Graph

0.00

0.02

0.04

0.06

0.08

0.10

Fr
a
ct

io
n
 o

f
(s

rc
,
d
st

)
P
a
ir

s
D

is
co

n
n
e
ct

e
d

Effect of LT Nodes on Connectivity

From PV Nodes

From LT Nodes

Figure 6: Probability of disconnection for a varying number of link failures in the Internet-like topology (left)
and the random graph (center), and as a function of the number of LT nodes (right).

Figure 7: CDF of the
number of messages re-
ceived by a router follow-
ing a link state change, for
the Internet-like topology
(left) and the random graph
(right).

100 101 102 103

Number of Messages

0.0

0.2

0.4

0.6

0.8

1.0

Fr
a
ct

io
n
 o

f
S
a
m

p
le

s

Internet-Like

PV

PV in Mixed

LT in Mixed

LT

100 101 102 103 104

Number of Messages

0.0

0.2

0.4

0.6

0.8

1.0

Fr
a
ct

io
n
 o

f
S
a
m

p
le

s

Random

PV

PV in Mixed

LT in Mixed

LT Tree

LT

Figure 8: Scaling of messag-
ing and control memory in
the Internet-like graph, for
100, 200, 300, 400, and 500
nodes.

100 150 200 250 300 350 400 450 500
Topology Size

0

500

1000

1500

2000

2500

3000

N
u
m

b
e
r

o
f

M
e
ss

a
g
e
s

Average Number of Messages Received by a Router
 During Initial Convergence.

LT

PV in MX

LT in MX

PV

100 150 200 250 300 350 400 450 500
Topology Size

20

40

60

80

100

120

140

160

180

C
o
n
tr

o
l
M

e
m

o
ry

 S
iz

e
 i
n
 K

B

Average Maximum Control Memory at a Router During
Convergence and Failure/Recovery of Each Link

PV in MX

LT

LT in MX

PV

120

Figure 9: CDF of the size of
the route field in the packet
header, for the Internet-like
topology (left) and the ran-
dom graph (right).

0 2 4 6 8 10 12
Maximum Header Size (bytes)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
a
ct

io
n
 o

f
S
a
m

p
le

s

Internet-Like

PV

PV in Mixed

LT in Mixed

LT

0 2 4 6 8 10 12
Maximum Header Size (bytes)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
a
ct

io
n
 o

f
S
a
m

p
le

s

Random

PV

PV in Mixed

LT in Mixed

LT

decision process) cause it to switch back to paths using the
recovered link. In contrast, in the LT case we need only
advertise a single pathlet for the recovered link (see discus-
sion in Sec. 3.2). Second, according to our dissemination
algorithm (Sec. 3.3), many of those 5.19 pathlets are never
disseminated to some parts of the network, because they are
not reachable.

In the random graph topology, the second factor is not
true. Not only does every router learn all pathlets, but it
learns them from all of its neighbors. The result is 10.3×
as many messages as PV. However, this can be reduced if
nodes simply advertise fewer pathlets, which is safe as long
as the advertised pathlets reach every destination. The line
“LT Tree” in Fig. 7 shows the case when we advertise only
a tree reaching all destinations (described in Sec. 3.3). This
reduces the messaging overhead to just 2.23×. The tradeoff
is that there are fewer choices of paths, and connectivity in
the face of failures is worsened, as shown in Fig. 6.

Fig. 8 plots the messaging cost for initial convergence as a
function of n, the number of nodes in the topology. LT and
PV have similar scaling properties for this metric because
both, like BGP, use a path vector dissemination algorithm
to announce objects; PV announces one object per node and
LT announces O(δ) (where δ is the number of neighbors),
which is independent of n.

Control plane memory. Since control plane memory use
is dependent on the implementation, we evaluate its scal-
ing properties. Asymptotically, if the n nodes each have δ
neighbors and the mean path length is `, BGP and PV poli-
cies need to store Θ(n) announcements of mean size Θ(`)
from up to δ neighbors, for a total of Θ(nδ`) state in the
worst case. In a full LT deployment there are Θ(δn) path-
lets; each announcement has size Θ(`) and is learned from
up to d neighbors, for a total of Θ(nδ2`) in the worst case.

Fig. 8 shows the mean (over routers and over three trials)
of the maximum (over time for each of trial) of the control
plane state at each router. A trial consists of allowing the
network to converge and then failing and recovering each
link once. The results confirm that PV and LT policies scale
similarly as a function of n. It is also apparent that with
the Internet-like topologies, we don’t reach the worst case
in which LT is a factor δ worse than PV .

It may be possible to optimize our dissemination algo-
rithm to reduce control state and messaging; see Sec. 8.

Header size. Fig. 9 shows the CDF over source-destination
pairs (X,Y) of the number of bits in the route field of the
packet header for the shortest X ; Y route. The number

of bits may vary as the packet travels along the route; we
report the maximum (which for LT policies occurs at the
source).

Header length scales with the path length. In our Internet-
like graph, the mean path length is 2.96 and headers average
4.21 bytes. An AS-level topology of the Internet mapped by
CAIDA [5] from Jan 22 2009 has mean path length 3.77,
so we could therefore extrapolate that mean header length
would be about 27% greater in a full Internet topology, i.e.,
less than 6 bytes, assuming other characteristics of the topol-
ogy remain constant. Even the maximum header length of
12.5 bytes in our implementation would not add prohibitive
overhead to packet headers.

7. RELATED WORK
We have compared the policy expressiveness of a num-

ber of multipath routing protocols in Section 5. Here we
compare other aspects of the protocols.

MIRO [28] uses BGP routes by default. Only those ASes
which need an alternate path (say, to avoid routing through
one particularly undesirable AS) need to set up a path.
But this increases the latency of constructing a path, and
increases forwarding plane state if there are many paths.
MIRO is likely easier to deploy than pathlet routing in to-
day’s network of BGP routers.

NIRA [30] provides multiple paths and very small for-
warding and control state as long as all routers have short
paths to the “core”; but for arbitrary networks, forwarding
state may be exponentially large. The scheme requires a po-
tentially complicated assignment of IP addresses, and works
primarily for Internet-like topologies with valley-free routing
policies. Exceptions to these policies may be difficult.

Routing deflections [31] and path splicing [23] permit poli-
cies specified on a per-destination basis, while still providing
many path choices with limited deviations from the primary
paths. However, sources are not aware of what paths they
are using, [31] has relatively limited choice of paths, and [23]
can encounter forwarding loops.

IP’s strict source routing and loose source routing [8] pro-
vide source-controlled routing but have limited control for
policies. For this reason and due to security concerns un-
related to our setting, they are not widely used. They can
also result in long headers because each hop is specified as
an IP address, unlike our compact forwarding identifiers.

Feedback based routing [32] suggested source-based route
quality monitoring that is likely to be a useful approach for
pathlet routing.

121

Platypus [24] is similar to loose source routing except each
waypoint can be used only by authorized sources to reach ei-
ther any destination, or a specified IP prefix. Pathlet routing
supports a different set of policies and enforces these using
the presence or absence of forwarding tables, rather than
cryptography.

R-BGP [18] adds a small number of backup paths that
ensure continuous connectivity under a single failure, with
relatively minimal changes to BGP. However, it somewhat
increases forwarding plane state and is not a full multipath
solution. For example, sources could not use alternate paths
to improve path quality.

LISP [9] reduces forwarding state and provides multiple
paths while remaining compatible with today’s Internet. Al-
though it can limit expansion of forwarding table size, LISP’s
forwarding tables would still scale with the size of the non-
stub Internet, as opposed to scaling with the number of
neighbors as in our LT policies.

MPLS [26] has tunnels and labels similar to our pathlets
and FIDs. It also shares the high level design of having the
source or ingress router map an IP address to a sequence
of labels forming a source route. However the common use
of these mechanisms is substantially different from pathlet
routing: tunnels are not typically concatenated into new,
longer tunnels, or inductively built by adding one hop at
a time. To the best of our knowledge MPLS has not been
adapted to an interdomain policy-aware routing.

Metarouting [13], like pathlet routing, generalizes routing
protocols. It would be interesting to explore whether pathlet
routing can be represented in the language of [13].

8. CONCLUSION
Pathlet routing offers a novel routing architecture. Through

its building blocks of vnodes and pathlets, it supports com-
plex BGP-style policies while enabling and incentivizing the
adoption of policies that yield small forwarding plane state
and a high degree of path choice. We next briefly discuss
some limitations and future directions.

We suspect it is possible to optimize our path vector-based
pathlet dissemination algorithm. The techniques of [16] may
be very easy to apply in our setting to reduce control plane
memory use from O(δ`) to O(`) per pathlet, where δ is the
number of neighbors and ` is the mean path length. Routers
could also pick dissemination paths based on heuristics to
predict stability, which for common failure patterns can sig-
nificantly reduce the number of update messages [12]. The
more radical approach of [30] could also be used to dramat-
ically reduce state in Internet-like environments.

Traffic engineering is an important aspect of routing that
we have not evaluated. One common technique—advertising
different IP to different neighbors to control inbound traffic—
is straightforward to do in our LT policies. But source-
controlled routing would dramatically change the nature of
traffic engineering, potentially making it more difficult for
ISPs (since they have less control) and potentially making
it easier (since sources can dynamically balance load).

Acknowledgements
We thank the authors of [7] for supplying the Internet-like
topologies.

9. REFERENCES
[1] D. G. Andersen, H. Balakrishnan, M. F. Kaashoek, and

R. Morris. Resilient overlay networks. In Proc. 18th ACM
SOSP, October 2001.

[2] Routing table report.
http://thyme.apnic.net/ap-data/2009/01/05/0400/mail-global.

[3] Avaya. Converged network analyzer.
http://www.avaya.com/master-usa/en-
us/resource/assets/whitepapers/ef-lb2687.pdf.

[4] B. Awerbuch, D. Holmer, H. Rubens, and R. Kleinberg.
Provably competitive adaptive routing. In INFOCOM, 2005.

[5] CAIDA AS ranking. http://as-rank.caida.org/.

[6] D. Clark, J. Wroclawski, K. Sollins, and R. Braden. Tussle in
cyberspace: defining tomorrow’s Internet. In SIGCOMM, 2002.

[7] X. Dimitropoulos, D. Krioukov, A. Vahdat, and G. Riley.
Graph annotations in modeling complex network topologies.
ACM Transactions on Modeling and Computer Simulation
(to appear), 2009.

[8] J. P. (ed.). DARPA internet program protocol specification. In
RFC791, September 1981.

[9] D. Farinacci, V. Fuller, D. Meyer, and D. Lewis. Locator/ID
separation protocol (LISP). In Internet-Draft, March 2009.

[10] B. Ford and J. Iyengar. Breaking up the transport logjam. In
HOTNETS, 2008.

[11] L. Gao and J. Rexford. Stable Internet routing without global
coordination. IEEE/ACM Transactions on Networking,
9(6):681–692, December 2001.

[12] P. B. Godfrey, M. Caesar, I. Haken, S. Shenker, and I. Stoica.
Stable Internet route selection. In NANOG 40, June 2007.

[13] T. Griffin and J. Sobrinho. Metarouting. In ACM SIGCOMM,
2005.

[14] K. P. Gummadi, H. V. Madhyastha, S. D. Gribble, H. M. Levy,
and D. Wetherall. Improving the reliability of internet paths
with one-hop source routing. In Proc. OSDI, 2004.

[15] G. Huston. BGP routing table analysis reports, 2009.
http://bgp.potaroo.net/.

[16] E. Karpilovsky and J. Rexford. Using forgetful routing to
control BGP table size. In CoNEXT, 2006.

[17] N. Kushman, S. Kandula, and D. Katabi. Can you hear me
now?! it must be BGP. In Computer Communication Review,
2007.

[18] N. Kushman, S. Kandula, D. Katabi, and B. Maggs. R-BGP:
Staying connected in a connected world. In NSDI, 2007.

[19] C. Labovitz, A. Ahuja, A. Bose, and F. Jahanian. Delayed
Internet routing convergence. In ACM SIGCOMM, 2000.

[20] K. Lakshminarayanan, I. Stoica, S. Shenker, and J. Rexford.
Routing as a service. Technical Report UCB/EECS-2006-19,
UC Berkeley, February 2006.

[21] Z. M. Mao, R. Bush, T. Griffin, and M. Roughan. BGP
beacons. In IMC, 2003.

[22] D. Meyer, L. Zhang, and K. Fall. Report from the iab workshop
on routing and addressing. In RFC2439, September 2007.

[23] M. Motiwala, M. Elmore, N. Feamster, and S. Vempala. Path
splicing. In ACM SIGCOMM, 2008.

[24] B. Raghavan and A. C. Snoeren. A system for authenticated
policy-compliant routing. In ACM SIGCOMM, 2004.

[25] Y. Rekhter, T. Li, and S. Hares. A border gateway protocol 4
(BGP-4). In RFC4271, January 2006.

[26] E. Rosen, A. Viswanathan, and R. Callon. Multiprotocol label
switching architecture. In RFC3031, January 2001.

[27] S. Savage, T. Anderson, A. Aggarwal, D. Becker, N. Cardwell,
A. Collins, E. Hoffman, J. Snell, A. Vahdat, G. Voelker, and
J. Zahorjan. Detour: Informed Internet routing and transport.
In IEEE Micro, January 1999.

[28] W. Xu and J. Rexford. MIRO: Multi-path Interdomain
ROuting. In SIGCOMM, 2006.

[29] X. Yang. NIRA: a new Internet routing architecture. Technical
Report Ph.D. Thesis, MIT-LCS-TR-967, Massachusetts
Institute of Technology, September 2004.

[30] X. Yang, D. Clark, and A. Berger. NIRA: a new inter-domain
routing architecture. IEEE/ACM Transactions on
Networking, 15(4):775–788, 2007.

[31] X. Yang and D. Wetherall. Source selectable path diversity via
routing deflections. In ACM SIGCOMM, 2006.

[32] D. Zhu, M. Gritter, and D. Cheriton. Feedback based routing.
Computer Communication Review (CCR), 33(1):71–76, 2003.

122

