
Dynamics of Random Early Detection

Dong Lin and Robert Morris
Division of Engineering and Applied Sciences

Harvard University
Cambridge, MA 02138 USA

Dynamics of Random Early Detection*

Dong Lin and Robert Morris
Division of Engineering and Applied Sciences

Harvard University
Cambridge, MA 02138 USA

Abstract

In this paper we evaluate the effectiveness of Random
Early Detection (RED) over traffic types categorized as non-
adaptive, fragile and robust, according to their responses to
congestion. We point out that RED allows unfair bandwidth
sharing when a mixture of the three traffic types shares a link. This
unfairness is caused by the fact that at any given time RED
imposes the same loss rate on all flows, regardless of their
bandwidths.

We propose Flow Random Early Drop (FRED), a modified
version of RED. FRED uses per-active-flow accounting to impose
on each flow a loss rate that depends on the flow’s buffer use.

We show that FRED provides better protection than RED
for adaptive (fragile and robust) flows. In addition, FRED is able
to isolate non-adaptive greedy traffic more effectively. Finally, we
present a “two-packet-buffer” gateway mechanism to support a
large number of flows without incurring additional queueing
delays inside the network. These improvements are demonstrated
by simulations of TCP and UDP traffic.

FRED does not make any assumptions about queueing
architecture; it will work with a FIFO gateway. FRED’s per-
active-flow accounting uses memory in proportion to the total
number of buffers used: a FRED gateway maintains state only for
flows for which it has packets buffered, not for all flows that
traverse the gateway.

1. Introduction

Thousands of flows may traverse an Internet gateway at
any given time. Ideally, each of these flows would send at exactly
its fair share, and the gateway would not need to make any
decisions. In practice, the load tends to fluctuate and the traffic
sources tend to be greedy. Thus a gateway queuing policy must
allow buffering of temporary excess load but provide negative
feedback if the excess load persists. Such a policy must prevent
high delay by limiting the queue size; it must avoid forcing queues
to be too short, which can cause low utilization; and it must
provide negative feedback fairly.

A number of powerful approaches to this problem are
known. If a gateway keeps a separate queue for each flow, it can
use Round-Robin Scheduling [9] to ensure fair shares of
bandwidth at short time scales. A network of gateways can also use
hop-by-hop flow control [15,23] to provide feedback to sources
indicating how much data they are allowed to send. Such systems
can guarantee that no data is ever lost due to congestion. While
very effective, these mechanisms are rarely used in datagram
networks. The main reason is that they typically require a gateway
to keep a separate queue for every flow that traverses it, including
short-lived and idle flows.

In order to reduce complexity and increase efficiency, IP
gateways usually maintain as little state as possible: they keep no
per-flow state, use a single first-in first-out (FIFO) packet queue
shared by all flows, and do not use hop-by-hop flow control. They
provide feedback to senders by discarding packets under overload.
A gateway estimates load by observing the length of its queue;
when the queue is too long, it drops incoming packets. Senders
react to packet loss by slowing down; TCP, for example, decreases
its window size when it detects packet loss. The simplest form of
packet discard, called Drop Tail, discards arriving packets when
the gateway’s buffer space is exhausted.

Drop Tail gateways often distribute losses among
connections arbitrarily [6]. Small differences in the round trip
times of competing TCP connections, for instance, can cause large
differences in the number of packets a Drop Tail gateway discards
from the connections. Drop Tail gateways also tend to penalize
bursty connections.

The gateway algorithms Early Random Drop (ERD) [10]
and Random Early Detection (RED) [5] address Drop Tail’s
deficiencies. ERD and RED use randomization to ensure that all
connections encounter the same loss rate. They also try to prevent
congestion, rather than just reacting to it, by dropping packets
before the gateway’s buffers are completely exhausted. Neither
ERD nor RED requires per-flow state; both should be easy to add
to an existing IP gateway and have little impact on its packet
forwarding efficiency.

The first half of this paper analyzes a number of
imperfections in RED’s performance. The main observation is that
dropping packets from flows in proportion to their bandwidths
does not always lead to fair bandwidth sharing. For example, if two
TCP connections unevenly share one link, dropping one packet
periodically from the low speed flow will almost certainly prevent
it from claiming its fair share, even if the faster flow experiences
more packet drops. Also, TCP connections with large window
sizes are more tolerant of packet loss than those with small
windows. It might take only one round trip time (RTT) for a large
window connection to recover from multiple packet losses,
whereas a timeout of one second or more may be needed for a flow
with a tiny window to recover from a single packet loss.

* This is a slightly revised version of the paper appeared in the
Proceedings of SIGCOMM’97.

© Association for Computing Machinery. Permission to make digital or
hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is
permitted. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

We also note that RED is designed with adaptive flows in
mind. TCP responds to small increases in loss rate with large
decreases in its sending rate. A source that sends too fast
regardless of loss rate would gain an unfair fraction of the
bandwidth through a RED gateway.

We present Flow Random Early Drop (FRED), a
modification to RED that improves fairness when different traffic
types share a gateway. FRED is more effective in isolating ill-
behaved flows, provides better protection for bursty and low speed
flows, and is as fair as RED in handling identical robust flows such
as large bulk-data transfers. FRED provides these benefits by
keeping state for just those flows that have packets buffered in the
gateway. The cost of this per-active-flow accounting is
proportional to the buffer size and independent of the total number
of flows, except to the extent that buffer use depends on the
number of active flows. As with RED, FRED can easily be added
to an existing FIFO-based gateway.

FRED can be extended to help support gateways with large
numbers of buffers; this in turn may be helpful when supporting
large numbers of active flows. Gateways with simple FIFO
queuing and large numbers of buffers risk high queuing delay
under low load and unfairness under high load. FRED, augmented
with a “two-packet-buffer” mechanism, allows use of large
numbers of buffers without these hazards.

In this paper, we use the terms flow and connection
interchangeably to represent a flow identified by its source/
destination addresses, port numbers, and protocol id.

2. Traffic Categories

Internet traffic is a mixture of various kinds. Some sources
use congestion control mechanisms such as TCP; others, such as
constant-bit-rate (CBR) video, do not react to congestion.
Although TCP traffic is the most dominant component overall,
different versions and implementations of TCP react differently to
congestion. Even when the implementations are identical, two
TCP connections may behave differently if they have different
congestion window sizes or round-trip times. In this paper we
categorize traffic into the following three groups, according to the
way the traffic handles congestion:

1. Non-adaptive: Connections of this sort take as much band-
width as they require and do not slow down under conges-
tion. Some audio and video applications fall into this
category.

2. Robust: These connections always have data to send and
take as much bandwidth as network congestion allows;
they slow down when they detect congestion. Robust flows
are capable of retransmitting lost packets quickly. They
ramp up bandwidth usage quickly when they detect spare
network capacity. Robust flows have enough packets buff-
ered at the gateway that they can obtain at least the fair
share of the bandwidth.

3. Fragile: These connections are also congestion aware, but
they are either sensitive to packet losses or slower to adapt
to more available bandwidth. They have less packets buff-
ered than robust flows at the gateway. For example, most
interactive terminal applications such as telnet do not have
data to send most of the time, but would like to send a
small number of clustered packets from time to time.

This paper assumes that non-adaptive traffic may need to
share resources with ordinary best-effort data traffic. Non-adaptive
connections do not stop sending packets under congestion. Unless
they are subjected to very high loss rates, they compete unfairly
with adaptive sources for buffer space and bandwidth.

There is no clear boundary between robust and fragile
traffic. Each TCP connection starts with a congestion window of
one packet during slow start. Some connections are able to expand
the congestion window and become robust, whereas others are
limited by data availability, receiver window constraints, or long
propagation delays. Therefore, robust connections usually have
larger windows or shorter RTTs than fragile connections.

When TCP connections with different numbers of buffered
packets compete at the gateway, proportional packet dropping does
not always guarantee fair bandwidth sharing. The reason for this is
that TCP treats packet loss as congestion indication, regardless of
the number of lost packets. A TCP connection that uses less than
the fair share will reduce its congestion window on a single packet
loss. In general, TCP connections with fewer buffers are at a
disadvantage competing with other connections. Buffer
discrepancy is caused by congestion window size and propagation
delay variations. Connections with large windows and small RTTs
consume the most buffers at the gateway.

3. Random Early Detection

A RED gateway drops incoming packets with a
dynamically computed probability when the average number of
packets queued exceeds a threshold called minth. This probability

increases with the average queue length and the number of packets
accepted since the last time a packet was dropped. This approach
controls the queue length more effectively than other existing
algorithms, as demonstrated in [5]. RED is simple to implement
because it drops only incoming packets and allows FIFO queuing.

RED’s goal is to drop packets from each flow in proportion
to the amount of bandwidth the flow uses on the output link [5]. It
does this by dropping each arriving packet with equal probability
(provided the average queue size does not change significantly).
Therefore, the connection with the largest input rate will have the
biggest drop percentage among total dropped packets. Assume that

the average queue size does not change for a short period , so

RED drops incoming packets with a fixed probability ; also

assume that connectioni’s current input rate is (or

packets per). The percentage of dropped packets from
connectioni is:

 (1)

For a FCFS service discipline, connectioni’s output rate is
proportional to its buffer occupancy, which is determined by
the percentage of accepted packets:

 (2)

The above two equations imply that RED drops packets in
proportion to each connection’s output usage under FCFS
scheduling.

δ
p

λi λi δ⋅

δ

λi p

λi p∑
--------------- λ

λi∑
------------=

λi 1 p–()
λi 1 p–()∑

----------------------------- λ
λi∑

------------=

From each connection’s point of view, however, the

instantaneous packet loss rate during a short period is ,

which is independent of the bandwidth usage. If the congestion is
persistent, which means the average queue length used by RED
has a minimum value above minth, the drop probability has a non-

zero minimum and therefore causes a minimum loss rate for all
connections, regardless of their bandwidth usage. This unbiased
proportional dropping contributes to unfair link sharing in the
following ways:

1. Although RED performs better than Drop Tail and Random
Drop, it still has a bias against fragile connections. The fact
that all connections see the same loss rate means that even
a connection using much less than its fair share will experi-
ence packet loss. This can prevent a low-bandwidth TCP
from ever reaching its fair share, since each loss may cause
TCP to reduce its window size by one half.

2. Accepting a packet from one connection causes higher
drop probability for future packets from other connections,
even if the other connections consume less bandwidth. This
causes temporary undesirable non-proportional dropping
even among identical flows.

3. A non-adaptive connection can force RED to drop packets
at a high rate from all connections. This contributes to
RED’s inability to provide a fair share to adaptive connec-
tions in the presence of aggressive users even if the conges-
tion is not severe.

In the following sections, we investigate RED’s behavior
with a mixture of different traffic types.

3.1 Fragile vs. Robust

To demonstrate the limitations of RED with fragile
connections, we simulated the configuration shown in Figure 1. A
TCP connection with a round-trip time (RTT) of 36 milliseconds
and a maximum window of 16 512-byte packets competes with
four TCP connections with RTTs of 6ms and unlimited windows
(up to 64 KB). The TCP implementation is a modified version of
Reno that can recover from multiple packet losses in a window,
much like the New-Reno TCP described in [11] and [4]. Each
sender always has data to send. The packet payload size is 512
bytes. Delayed ACK is enabled. Further details of the simulator
may be found in Section 11.1 and Section 11.2.

This experiment is similar to that found in [5], with a few
differences. The four local connections have windows with no
limit, rather than a limit of 12 1K-packets. Delayed ACK is
enabled, which makes sources more likely to send back-to-back
packets. We use 512 byte packets, as opposed to 1K bytes. TCP-
Tahoe was used in [5].

The long RTT connection can send no more than 16*512
bytes each 0.036 seconds, or 4.05% of the bottleneck link
capacity1. This is well below the 20% fair share in the presence of
the four local connections. Therefore, if the network were fair, the
bursty connection would be limited only by its window size and
RTT, and would get 4.05% of the bottleneck link.

1. Each 512 byte IP packet is carried by 12 cells in our ATM simulator. The
total ATM+AAL5 bandwidth overhead is 13.2%.

Our simulations vary the gateway buffer size from 16 to 56
packets. For each buffer size, we ran 10 simulations, each for 50
simulated seconds. Each TCP connection started at a random time
within the first five seconds; we took measurements only from the
second half of each simulation. Table 1 summarizes the results of
the simulations. Each column shows averaged performance results
for a specific gateway buffer size. The first body row shows the
ratio of bandwidth achieved by the long RTT connection divided
by the 4.05% maximum possible. Notice that the connection was
only able to run at about 70% of the maximum speed. This is
caused by the uniform loss rate experienced by all five
connections. The second body row shows the ratio of the
percentage of achieved bandwidth over the percentage of dropped
packets for the long RTT connection. Notice that the ratios are
close to 1.0, which implies that RED managed to keep the
dropping distribution proportional to the bandwidth distribution.
However, the output link capacity is not shared fairly. This
phenomenon exists regardless of the buffer size used. In all
simulations, the average queue size varied slightly about the RED
minimum threshold (BS/4). Increasing buffer size improved the
link utilization and raised the buffer occupancy for the four
adaptive connections, but did not increase fairness. The
performance numbers for a buffer size of 16 packets are
substantially lower than for other cases, because RED degraded to
tail-dropping when the average queue length reached maxth given

the limited buffering capacity. The second half of Table 1 shows
the average loss rates for the fragile and one of the robust
connections. A connection’s loss rate is calculated by dividing the
number of dropped packets by the total number of arrivals. The
loss rates agree with our claim that RED provides the same loss
rate for all connections regardless of the resource usage. In
addition, the long delay connection suffered more loss than others
when the buffer sizes are small which made RED similar to drop-
tail.

δ λp
λ

------ p=

BS=16 BS=24 BS=32 BS=40 BS=48 BS=56

BW/MAX 45% 67% 69% 70% 70% 71%

BW%/DROP% 0.456 1.05 1.03 0.982 0.911 0.940

Table 1. Performance of a long RTT TCP connection with limited
windows under RED (Second row shows the ratio of bandwidth
allocated over the 4.05% maximum possible. Third row shows ratio of
percentage of achieved bandwidth over percentage of dropped packets.
Third and Fourth rows show the loss rates of the fragile and one of the
robust connections.)

Sink

R-1

R-2

R-3

Fragile

R-4

 RED
gateway

d = 1 ms
100 mbps

d = 2 ms
45 mbps

d = 16 ms
45 mbps

Figure 1. A long delay TCP competes with four local TCP
connections through a RED gateway with buffer sizes BS = 16, 24,
32, 40, 48, 56 packets and minth = BS/4, maxth = BS/2, wq = 0.002,
maxp = 0.02.

During another experiment, we increased the maximum
window allowed for the long delay TCP connection to 64 KB. Our
simulations show that, in this configuration, the connection is able
to sustain 39% of the link capacity without the presence of the four
local TCP connections. This measurement agrees with our
estimation (64KB/(45mbps*36ms)). Table 2 summarizes the
performance results when the local traffic is present. Notice that
the fragile connection was severely penalized by the competing
traffic due to its long RTT value and failed to obtain a 20% share of
the link rate. RED failed to protect this connection even though it
successfully kept the drop distribution equal to the bandwidth
allocation. Once again, the second half of the table shows unbiased
loss rates among all connections.

The two experiments in this section demonstrate that
proportional dropping does not guarantee fair bandwidth sharing.
The combination of FIFO scheduling, RED’s unbiased
proportional dropping and TCP’s binary feedback treatment of
packet loss produce unfair bandwidth sharing at the bottleneck

gateway.

3.2 Between Symmetric Adaptive TCPs

We simulated two symmetric adaptive TCP connections in
a simpler configuration shown in Figure 2. The RED gateway has
32 packet buffers and uses the following parameters: minth = 8,

maxth = 16, wq = 0.002, maxp = 0.02. Figure 3 shows the

congestion windows of the two connections taken from a segment
of the simulation. The X-axis measures time in seconds; the Y-axis
shows the congestion window size in packets. Each line segment
of the curves represents a congestion avoidance phase. Each
downward pulse between two line segments is a fast recovery
phase. As shown in the figure, while connection 1 is increasing its
window in congestion avoidance, connection 2 is suffering packet
drops repeatedly, reducing its congestion window in half at each
recovery. When the window size drops below four packets,
connection 2 falls into a one-second retransmission time-out
(RTO). This figure demonstrates that RED can accidentally pick
the same connection from which to drop packets for a short period
of time, causing temporary non-uniform dropping among identical
flows.

Figure 4 shows the number of packets queued at the
gateway for each connection during the same period. Notice that
connection 2 has relatively few packets queued before it falls into
the RTO at time 0.38 second. This figure demonstrates that RED
may drop a packet with non-zero probability even if the connection
has no packets queued and other connections are consuming a
larger portion of the buffers and bandwidth.

We simulated the above configuration multiple times. This
phenomenon is found in a small percentage of the traces. But the
probability is large enough such that we can always find such a
case within 20 to 50 simulations.

Fragile’s Loss
Rate

1.13% 0.55% 0.42% 0.40% 0.37% 0.32%

R-1’s Loss Rate 0.49% 0.44% 0.40% 0.38% 0.35% 0.33%

BS=16 BS=24 BS=32 BS=40 BS=48 BS=56

BW/Link Rate 2.7% 3.9% 4.3% 4.5% 4.6% 4.6%

BW%/DROP% 0.522 0.989 1.01 1.04 0.995 0.907

Fragile’s Loss
Rate

0.97% 0.51% 0.43% 0.46% 0.37% 0.39%

R-1’s Loss Rate 0.51% 0.45% 0.40% 0.37% 0.35% 0.34%

Table 2. Performance of a long RTT TCP with unlimited windows
under RED (Second row shows the percentage of bandwidth allocated
over the link capacity. Third row shows ratio of percentage of allocated
bandwidth over percentage of dropped packets.)

BS=16 BS=24 BS=32 BS=40 BS=48 BS=56

Table 1. Performance of a long RTT TCP connection with limited
windows under RED (Second row shows the ratio of bandwidth
allocated over the 4.05% maximum possible. Third row shows ratio of
percentage of achieved bandwidth over percentage of dropped packets.
Third and Fourth rows show the loss rates of the fragile and one of the
robust connections.)

Sender1

Sender2

 RED
gateway

 Sink

d = 0.274 ms
155 mbps

d = 0.274 ms
155 mbps

d = 0.274 ms
77.5 mbps

Figure 2. Two identical TCP connections compete over a RED
gateway with buffer size 32 packets and (minth = 8, maxth = 16, wq
= 0.002, maxp = 0.02).

0

5

10

15

20

25

30

35

40

45

0.28 0.3 0.32 0.34 0.36 0.38

Pa
ck

et
s

Time (sec)

Connection 1’s Congestion Window
Connection 2’s Congestion Window

Figure 3. Congestion windows of the two TCP connections in
Figure 2.

0

2

4

6

8

10

12

14

0.28 0.3 0.32 0.34 0.36 0.38

Pa
ck

et
s

Time (sec)

Connection 1’s Buffered Packets
Connection 2’s Buffered Packets

Figure 4. Packet counts at the gateway for the two
connections in Figure 2.

3.3 Adaptive TCP vs. Non-adaptive CBR

In the experiment depicted in Figure 5, a TCP connection
shares a RED gateway with a non-adaptive constant-bit-rate (CBR)
UDP application which persistently sends data at 8 mbps, more
than its 5 mbps fair share of the bottleneck 10 mbps link. Such a
situation might arise when TCP competes against one or more
fixed-bandwidth audio or video streams. The CBR connection
starts at time 0, and the TCP connection starts one second later.

Figure 6 shows the bandwidth usage of the two connections
at the shared link. Notice that the UDP sender gets 8 mbps almost
all the time, whereas the TCP connection can only get the leftover
2 mbps. Because the gateway is not congested initially, no queue
builds up during the first second. TCP’s slow start causes a large
number of packets to be queued at the gateway. Both connections
suffer severe packet losses due to the sudden exponential
bandwidth increase. New-Reno TCP is able to survive for two fast
recovery phases, reducing its congestion window by half for each
phase. However, it falls into a time-out when its window size
becomes too small. From then on, the congestion avoidance phase
is able to utilize the 2 mbps available bandwidth leftover by the
CBR connection. The congestion window keeps increasing by one
packet for each RTT. After awhile, the aggregate input rate exceeds
the output link capacity and extra packets are queued at the
gateway. The reason the TCP sender cannot obtain its fair share is
due to the unfair FCFS scheduling which distributes the output
capacity according to queue occupancy. Since the input rate ratio is
4:1, the CBR connection gets four times as much output bandwidth
as the TCP connection. The RED gateway drops packets from both
connections even if the TCP connection is using less than its fair
share. Eventually the TCP sender slows down after detecting the
packet losses. This bandwidth reduction corresponds to the dips in
its bandwidth curve. This reduction of input rate causes the queue
to drain. At the same time, the CBR connection temporarily gets
over 8 mbps because it has packets buffered at the gateway. This
bandwidth shift corresponds to the spikes in its bandwidth curve.

One extreme case of this phenomenon is that when the non-
adaptive sender transmits at 100% of the network capacity, the
competing TCP connection is completely shut out. In general,
RED is ineffective at handling non-adaptive connections. Similar
results were observed by Zhang in [26] for Random Drop
gateways.

4. Flow Random Early Drop

In this section we present Flow Random Early Drop
(FRED), a modified version of RED. Our goal is to reduce the
unfairness effects found in RED. Instead of indicating congestion
to randomly chosen connections by dropping packets
proportionally, FRED generates selective feedback to a filtered set
of connections which have a large number of packets queued.

In brief, FRED acts just like RED, but with the following
additions. FRED introduces the parameters minq and maxq, goals

for the minimum and maximum number of packets each flow
should be allowed to buffer. FRED introduces the global variable
avgcq, an estimate of the average per-flow buffer count; flows with
fewer than avgcq packets queued are favored over flows with more.
FRED maintains a count of buffered packets qlen for each flow
that currently has any packets buffered. Finally, FRED maintains a
variable strike for each flow, which counts the number of times the
flow has failed to respond to congestion notification; FRED
penalizes flows with high strike values.

4.1 Protecting Fragile Flows

FRED allows each connection to buffer minq packets

without loss. All additional packets are subject to RED’s random
drop. Under perfect fair queueing and scheduling, a connection
which consumes less than the fair share should have no more than
one packet queued. With single FIFO queueing, this condition
does not hold. But the number of backlogged packets for low
bandwidth connections should still be small. FRED uses minq as

the threshold to decide whether to deterministically accept a packet
from a low bandwidth connection. An incoming packet is always
accepted if the connection has fewer than minq packets buffered

and the average buffer size is less than maxth. Normally, a TCP

connection sends no more than 3 packets back-to-back: two
because of delayed ACK, and one more due to a window increase.
Therefore, minq is set to 2 to 4 packets.

4.2 Managing Heterogeneous Robust Flows

When the number of active connections is small (N <<
minth/minq), FRED allows each connection to buffer minq number

of packets without dropping. Some flows, however, may have
substantially more than minq packets buffered. If the queue

averages more than minth packets, FRED will drop randomly

8 mbps

 TCP

 RED
gateway

 Sink

d = 2 ms
10 mbps

d = 2 ms
10 mbps

d = 2 ms
10 mbps

Figure 5. Adaptive TCP competes with a CBR UDP over a
RED gateway with buffer size 64 packets and (minth = 16,
maxth = 32, wq = 0.002, maxp = 0.02).

CBR

Sender

0

2

4

6

8

10

0 2 4 6 8 10 12

Ba
nd

w
id

th
 (m

bp
s)

Time (sec)

Adaptive TCP
8 mbps CBR UDP

Figure 6. CBR UDP gains more bandwidth share than TCP.

selected packets. Thus it may demonstrate the same kind of
unfairness as RED: FRED will impose the same loss rate on all the
connections that have more than minq packets buffered, regardless

of how much bandwidth they are using. Although this might be a
low probability event for a large back-bone gateway (where N >
c*minth/minq), it may occur frequently in a LAN environment

where RTT is 0 and the gateway has hundreds of buffers.
FRED fixes this problem by dynamically raising minq to

the average per-connection queue length (avgcq) when the system
is operating with a small number of active connections. For
simplicity, we calculate this value by dividing the average queue
length (avg) by the current number of active connections. A
connection is active when it has packets buffered, and is inactive
otherwise.

4.3 Managing Non-adaptive Flows

With a reasonable amount of buffering, an adaptive
connection should be able to adjust its offered load to whatever
bandwidth the network provides. Eventually, its packet arrival rate
should be no more than the departure rate. A TCP sender exhibits
this property. A non-adaptive connection, in contrast, can consume
a large portion of the gateway buffers by injecting more packet
arrivals than departures. Because of unfair FIFO scheduling, the
output bandwidth distribution equals the buffer occupancy
distribution. Therefore, fairness cannot be maintained without
proper connection level buffer usage policing.

FRED never lets a flow buffer more than maxq packets, and

counts the number of times each flow tries to exceed maxq in the

per-flow strike variable. Flows with high strike values are not
allowed to queue more than avgcq packets; that is, they are not
allowed to use more packets than the average flow. This allows
adaptive flows to send bursts of packets, but prevents non-adaptive
flows from consistently monopolizing the buffer space.

4.4 Calculating the Average Queue Length

The original RED estimates the average queue length at
each packet arrival. The low pass filter wq used in the algorithm

prevents the average from being sensitive to noise. Sampling on
arrival, however, misses the dequeue movements when there are no
packet arrivals. For example, if one packet arrives at time 0 when
both the instant and average queue length equal 500 packets, and
the next packet arrives 250 packet times later, the instant queue
length is 250. RED, however, would leave its calculated average at
nearly 500. Such miscalculation could result in low link utilization
due to unnecessary packet drops.

In FRED, the averaging is done at both arrival and
departure1. Therefore, the sampling frequency is the maximum of
the input and output rate, which helps reflect the queue variation
accurately. In addition, FRED does not modify the average if the
incoming packet is dropped unless the instantaneous queue length
is zero. Without this change, the same queue length could be
sampled multiple times when the input rate is substantially higher
than the output link rate. This change also prevents an abusive user
from defeating the purpose of the low pass filter, even if all his
packets are dropped. Rizzo independently identified similar

1. We omit the detail of avoiding double sampling at the same instant, one
at output and the other at input.

problems with RED’s averaging algorithm in the presence of non-
adaptive flows [22].

4.5 The Algorithm

The detailed FRED algorithm is given below.

Constants:
wq = 0.002;
min th = MIN(buffer size / 4, RTT);
maxth = 2*min th ;
maxp = 0.02;
min q = 2 for small buffers;

4 for large buffers;

Global Variables:
q: current queue size;
time: current real time;
avg: average queue size;
count: number of packets since last drop;
avgcq: average per-flow queue size;
maxq: maximum allowed per-flow queue size;

Per-flow Variables:
qlen i : number of packets buffered;
strike i : number of over-runs;

Mapping functions:
conn(P): connection id of packet P;
f(time): linear function of time;

for each arriving packet P:
if flow i = conn(P) has no state table

qlen i = 0;
strike i = 0;

if queue is empty
calculate average queue length avg

maxq = min th ;
// define the next three lines as block A
if (avg >= max th) {

maxq = 2;
}

identify and manage non-adaptive flows :
if (qlen i >= max q ||

// define the next line as line B
(avg >= max th && qlen i > 2*avgcq) ||
(qlen i >= avgcq && strike i > 1)) {
strike i ++;
drop packet P;
return;

}

operate in random drop mode :
if (min th <= avg < max th) {

count = count + 1;

only random drop from robust flows :
if (qlen i >= MAX(min q, avgcq)) {

calculate probability p a:
pb = max p(avg-min th)/(max th -min th);
pa = p b/(1 - count * p b);

with probability p a:
drop packet P;
count = 0;
return;

}
} else if (avg < min th) {

no drop mode :
count = -1;

} else {
// define this clause as block C
drop-tail mode :
count = 0;
drop packet P;
return;

}
if(qlen i == 0)

Nactive++;
calculate average queue length
accept packet P;

for each departing packet P:
calculate average queue length

if (qlen i == 0) {
Nactive--;
delete state table for flow i;

}

calculate average queue length:
if (q || packet departed)

avg = (1-wq)*avg + wq*q;
else {

m = f(time - q_time);
avg = (1-wq)m * avg;
// original RED missed the following
// action
q_time = time;

}

if (Nactive)
avgcq = avg / Nactive;

else
avgcq = avg;

avgcq = MAX(avgcq, 1);

if q == 0 && packet departed
q_time = time;

FRED’s ability to accept packets preferentially from flows
with few packets buffered achieves much of the beneficial effect of
per-connection queuing and round-robin scheduling, but with
substantially less complexity. This also means that FRED is more
likely to accept packets from new connections even under
congestion. Notice that RED’s unfair bias against low bandwidth
connections cannot be avoided by per-class queueing because each
TCP connection always starts with a congestion window of one
packet initially or after each retransmission time-out. Dropping
packets from small windows will cause the same problem between
connections within the same class. Because TCP detects
congestion by noticing lost packets, FRED serves as aselective
binary feedback congestion avoidance algorithm [14].

5. Simulation Results

We repeated the simulations described in Section 3 using
FRED with minq equal to two packets. Table 3 shows the

performance results of the configuration in Figure 1. As the first
body row shows, the long RTT connection is able to run at the
maximum possible speed as if there were no competition. The
lower half of the table shows the actual loss rates of the fragile
connection and one of the robust connections. The low loss enables
the fragile connection to ramp up to its maximum possible rate.

Table 4 shows the performance of the same connection
when its congestion window is allowed to grow up to 64 KB. Note
that it achieves a bandwidth close to the 20% fair share, except
when the buffer size is only 16 packets. In that case, FRED

degrades to tail-dropping, just like RED. In Section 6, we describe
an extension to solve the problem of supporting more flows than
the number of buffers. The loss rates in Table 4 show that FRED
relates packet drops with buffer usage. Even if the long distance
connection got the same bandwidth as others, its loss rates,
however, are much less than others due to its moderate buffer
consumption.

To demonstrate FRED’s ability to manage non-adaptive
flows more effectively, we augmented the experiment described in
Section 3.3 and Figure 5. A CBR UDP connection generates 8
mbps of traffic starting from time 0. At the end of each 20 second
interval, a new TCP connection starts to share the same gateway.
Figure 7 shows FRED’s bandwidth allocation among the five
connections for a period of 100 seconds. Unlike the RED
bandwidth distribution shown in Figure 6, each TCP connection is
able to ramp up from a window size of one packet to its fair share
of the link capacity. FRED limits the UDP connection’s bandwidth
by preventing it from using more than the average number of
buffers used by any of the flows.

For the symmetric TCP case described in Section 3.2, we
ran more than 10,000 simulations over the configuration in Figure
2. None of them produced a retransmission time-out. FRED’s
ability to protect small windows has completely prevented the TCP
connections from losing packets during ramp up. New-Reno TCP’s
ability to recover multiple packet losses without resetting the
congestion window has also contributed to the outcome.

6. Supporting Many Flows

The simulations presented so far all involve networks that
have more packets of storage than there are flows. There is,
however, good reason to believe that there are often more flows
than packets of storage in the Internet, and that TCP behaves
differently under such conditions [2,3,20]. For this reason, we now
present simulations with relatively large numbers of flows, as well
as an extension to FRED that improves its performance in such
situations.

Every active TCP connection tries to keep at least one
packet in flight. A large enough number of connections will tend to
keep gateway buffers full and will force some of the connections
into time-out. A gateway should allocate buffers fairly under these
conditions. A gateway should also allow network operators the
option of adding buffer memory proportional to the number of
flows without incurring unnecessary queuing delay.

The specific danger for a RED or FRED gateway is that
under heavy load the average queue size might often exceed maxth,

causing the gateway to operate as an unfair Drop Tail gateway. We
tested FRED under these conditions. In Figure 8, sixteen TCP
connections from the same source host share a FRED gateway
with parameters (BS=RTT=16, maxth=8, minth=4, wq=0.002,

maxp=0.02, minq=2). The link capacity between the gateway and

the sink host is one tenth of that of the link between the source host
and the gateway. 2000 retransmission timeouts occurred in a 300
second simulation. Figure 9 shows the output bandwidth allocation
for the first eight connections during a segment of the simulation.
Notice that at any moment only a subset of the connections share
the output link. Other connections are waiting for retransmission
timeouts. This is due to the fact that the gateway has only enough
buffers to support four to six connections given the small minq and

maxth values. FRED lets the connections take turns, giving inactive

connections priority each time a buffer needs to be reallocated. The
long term bandwidth distribution is very close to the fair share.
However, this non-smooth ON/OFF sharing is unfair for short
periods of time and causes large delay variations. Short-lived
connections might be treated unfairly due to scarce resources.
Furthermore, the gaps between successive ONs for the same
connection are determined by TCP’s exponential backoff
mechanism, which often imposes very high delays.

The timeouts and associated high delay variation could
potentially be eliminated by adding buffer memory. This approach
risks high delay and unfair buffer use. Nagle described a “one
packet switch” model to solve this problem and demonstrated that
a well-behaved flow only needs one packet buffer at the switch in
order to receive fair service provided by a round-robin scheduler
[21]. In this section, we extend FRED with a “two packet buffer”
mechanism to achieve a similar effect with FIFO scheduling.

We propose that when the number of simultaneous flows is
large, the gateway should provide exactly two packet buffers for
each flow. This should provide fair bandwidth sharing even with
FIFO queuing, since each flow will get bandwidth proportional to
the number of packets it has buffered. Therefore, as long as each
flow maintains one or two outstanding packets at the gateway, the
largest buffer occupancy, and thus bandwidth allocation
discrepancy should be no more than two to one. The following
pseudo code implements the FRED “two packet buffer” extension:

FRED many flow extension:
// delete block A and line B

// replace block C with the following
two packet mode (avg >= max th):
if(qlen i >= 2) {

count = 0;
drop packet P;
return;

}

This modification may cause TCPs to operate with small
congestion windows. Some TCPs, such as Vegas [1], can recover
quickly from lost packets even with a small window.
Unfortunately, other TCP implementations such as Tahoe or Reno
have to wait for three duplicate ACKs before a lost packet is
retransmitted, in order to avoid unnecessary retransmissions
caused by out of order delivery [12,13]. They will be forced to use
time-outs to recover from packet losses with tiny windows. To
overcome this weakness, we propose a modification to these TCPs
in Appendix Section 11.3. This change allows a sender with a
congestion window smaller than three packets to trigger the fast

BS=16 BS=24 BS=32 BS=40 BS=48 BS=56

BW/MAX 99% 98% 98% 98% 97% 97%

Fragile’s Loss
Rate

0.04% 0.01% 0.00% 0.00% 0.00% 0.00%

R-1’s Loss Rate 0.98% 0.85% 0.93% 0.88% 0.86% 0.76%

Table 3. Performance of a long RTT TCP connection under FRED
(Second row shows the ratio of bandwidth allocated over maximum
possible. The lower half shows the loss rates of the fragile connection
and one of the robust connections.)

BS=16 BS=24 BS=32 BS=40 BS=48 BS=56

BW/Link Rate 6.9% 19% 20% 20% 16% 15%

Fragile’s Loss
Rate

0.26% 0.08% 0.06% 0.07% 0.05% 0.04%

R-1’s Loss
Rate

1.35% 1.18% 1.21% 1.06% 0.86% 0.75%

Table 4. Performance of a long RTT TCP under FRED (Second row
shows the percentage of bandwidth allocated over the link capacity.
The lower half of the table shows the loss rates of the fragile connection
and one of the robust connections.)

0

1

2

3

4

5

6

7

8

0 20 40 60 80 100 120

Ba
nd

wi
dt

h
(m

bp
s)

Time (sec)

CBR UDP
TCP-1
TCP-2
TCP-3
TCP-4

Figure 7. FRED prevents a CBR UDP connection from taking
an unfair share of the bandwidth.

0

0.05

0.1

0.15

0.2

0.25

0.3

110 112 114 116 118 120

Ba
nd

w
id

th
 (%

)

Time (sec)

C-1
C-2
C-3
C-4
C-5
C-6
C-7
C-8

Figure 9. Connections in Figure 8 alternate ONs and OFFs to
share the scarce buffers under basic FRED.

FRED
Gateway

Sink

Source Host

C-1

C-2

C-3

C-4

C-5

C-6

C-7

C-8

Host

Figure 8. Sixteen TCP connections share a FRED gateway with
16 packet buffers (maxth=8, minth=4, maxp=0.02, wq=0.002,
minq=2).

d = 2 ms
10 mbps

d = 2 ms
100 mbps

C-9

C-10

C-11

C-12

C-13

C-14

C-15

C-16

retransmission and fast recovery without lowering the three
duplicate ACK threshold.

To test Figure 8 with FRED’s “two packet buffer”
extension, we added 16 packet buffers to the gateway and used the
same parameters as before. Only 20 retransmission timeouts
occurred during the simulation, rather than 2000. Figure 9 shows
the bandwidths of eight of the connections during a segment of the
simulation. With two packet buffering and the tiny window loss
recovery enhancement, each TCP connection is able to maintain a
smooth stream of packets through the bottleneck.

For comparison, we also simulated RED for both cases
(BS=16 and BS=32) and basic FRED (BS=16), all with the small
window enhancement enabled. Table 5 summarizes performance
results from all the simulations in this section. RED-16 and FRED-
16 produced the most timeouts for lack of buffering. FRED-16
performed slightly better than RED-16 due to the protection for
fragile connections. Adding more buffers to RED-32 did not
reduce the number of timeouts significantly even with the small
window enhancement. In contrast, FRED-32 allowed each
connection to buffer two packets and maintained the balance
among all competing connections.

Figure 11 shows the per connection bandwidth distribution.
For each connection, we measured the bandwidth usage at the
bottleneck at constant intervals (140ms) and created one data set
for all connections in the same simulation. Each curve in the figure
represents the frequency distribution of one data set. FRED-32 has
a small spike at zero and a large spike near the fair share, which
means almost perfect smooth sharing. For RED-16, RED-32, and
FRED-16, there is a large spike at zero, representing large number

of timeouts, and scattered small spikes between zero and eleven
times the fair share. FRED-16’s spikes are higher than RED-16
and RED-32 near one and lower elsewhere.

7. Operating in Byte Mode

Like RED, FRED can be configured to operate in byte
mode. To do this, all queue length related constants and variables
(minth, maxth, minq, maxq, qlen, avg, avgcq) have to be redefined

in the units of bytes. All constant expressions in the algorithm
should also be multiplied by MaximumPacketSize. The probability
calculation in byte mode is suggested in [5]:

Calculate probability p a in byte mode:
pb = max p (avg - min th)/(max th - min th)
pb = p b * PacketSize(P)/MaximumPacketSize
pa = p b/(1 - count * p b)

8. Conclusions

We have demonstrated that discarding packets in
proportion to the bandwidth used by a flow does not provide fair
bandwidth sharing at a gateway. A selective discard mechanism is
needed to protect flows that are using less than their fair share, and
to prevent aggressive flows from monopolizing buffer space and
bandwidth.

FRED, a modified version of RED, provides selective
dropping based on per-active-flow buffer counts. FRED keeps this
extra state only for flows that have packets buffered in each
gateway, and is compatible with existing FIFO queuing
architectures. Simulation results show that FRED is often fairer
than RED when handling connections with differing round trip
times and window sizes. FRED also protects adaptive flows from
non-adaptive flows by enforcing dynamic per-flow queueing
limits.

9. Acknowledgments

We thank our thesis advisor, Professor H.T. Kung, for his
support and guidance. His energy and insight at all levels are a
constant inspiration. We also appreciate the valuable comments
and suggestions from Trevor Blackwell, Koling Chang, Brad Karp,

RED-16 RED-32 FRED-16 FRED-32

total RTOs 2349 2006 2196 20

link utilization 95.7% 99.7% 99.3% 100%

TCP goodput (kbps) 496 500 499 503

per-flow throughput /
link-rate

6.17% 6.23% 6.21% 6.25%

Table 5. Performance measurements for RED and FRED with or
without large buffers. We used tcp-newreno with small window
recovery enhancement for all four tests. The TCP goodput
measurements do not include 13.2% ATM+AAL5 overhead.

0

0.02

0.04

0.06

0.08

0.1

0.12

110 112 114 116 118 120

B
an

dw
id

th
 (

%
)

Time (sec)

C-1
C-2
C-3
C-4
C-5
C-6
C-7
C-8

Figure 10. Connections in Figure 8 smoothly share the
bandwidth under the extended FRED with two RTT worth of
buffering.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

-1 0 1 2 3 4 5 6

B
an

dw
id

th
 F

re
qu

en
cy

 D
is

tri
bu

tio
n

(%
)

Proportion of Fairshare

fred-32
fred-16
red-32
red-16

Figure 11. For each connection, we measured the bandwidth
usage at the bottleneck at constant intervals (140ms) and
created one data set for all connections in the same simulation.
Each curve in the figure represents the frequency distribution
of one data set.

Vera Gropper, Allison Mankin, and the anonymous SIGCOMM
reviewers.

10. References

[1] Brakmo, L., O’Malley, S., Peterson, L., “TCP Vegas: New
Techniques for Congestion Detection and Avoidance,” SIG-
COMM’94

[2] Claffy, K., Braun, H-W., Polyzos, G., “A Parameterizable
Methodology for Internet Traffic Flow Profiling,” IEEE
Journal on Selected Areas in Communications, March 1995.

[3] Eldridge, C., “Rate Controls in Standard Transport Proto-
cols,” ACM Computer Communication Review, July 1992.

[4] Fall, K., Floyd S., “Simulation-based Comparisons of
Tahoe, Reno, and SACK TCP,” Computer Communication
Review, July 1996

[5] Floyd, S., Jacobson V., “Random Early Detection for Con-
gestion Avoidance,” IEEE/ACM Transactions on Network-
ing. August 1993

[6] Floyd, S., Jacobson, V., “On Traffic Phase Effects in Packet-
Switched Gateways,” Computer Communication Review,
April 1991

[7] Floyd, S., “TCP and Explicit Congestion Notification,”
Computer Communication Review, October 1994

[8] Floyd, S., “Connections with Multiple Congested Gateways
in Packet-Switched Networks Part 1: One-way Traffic,”
Computer Communications Review, October 1991

[9] Hahne, E., Gallager, R., “Round Robin Scheduling for Fair
Flow Control in Data Communications Networks,” IEEE
International Conference on Communications, June 1986

[10] Hashem, E., “Analysis of Random Drop for Gateway Con-
gestion control,” MIT-LCS-TR-465

[11] Hoe, J., “Improving the Start-up Behavior of a Congestion
Control Scheme for TCP,” SIGCOMM’96

[12] Jacobson, V., “Congestion Avoidance and Control,” SIG-
COMM’88

[13] Jacobson, V., “Modified TCP congestion avoidance algo-
rithm,” April 30, 1990, end2end-interest mailing list

[14] Jain, R., Ramakrishnan, K.K., Chiu, D., “Congestion Avoid-
ance in Computer Networks With a Connectionless Network
Layer,” DEC-TR-506

[15] Kung, H. T., Blackwell, T., Chapman, A., “Credit-Based
Flow Control for ATM Networks: Credit Update Protocol,
Adaptive Credit Allocation, and Statistical Multiplexing,”
SIGCOMM ‘94

[16] Kung, H.T., Chapman, A., The CreditNet Project, http://
www.eecs.harvard.edu/cn.html

[17] Lin, D., Kung, H.T., “TCP Fast Recovery Strategies: Analy-
sis and Improvements,” work in progress

[18] Mankin, A., Ramakrishnan, K., “Gateway Congestion Con-
trol Survey,” RFC1254

[19] Mankin, A., “Random Drop Congestion Control,” SIG-
COMM’90

[20] Morris, R., “TCP Behavior with Many Flows,” IEEE Inter-
national Conference on Network Protocols, October 1997,
Atlanta

[21] Nagle, J., “On Packet Switches with Infinite Storage,” IEEE
Transactions on Communications, Vol. 35, pp 435-438,
1987

[22] Rizzo, L., “RED and non-responsive flows,” end2end-inter-
est mailing list, June, 1997

[23] Tanenbaum, A.,Computer Networks, Prentice Hall, 2nd
Edition, 1989

[24] Turner, J.S., “Maintaining High Throughput during overload
in ATM Switches,” INFOCOM’96

[25] Villamizar, C., Song, C., “High Performance TCP in ANS-
NET,” Computer Communications Review, October 1994

[26] Zhang, L., “A New Architecture for Packet Switching Net-
work Protocols,” MIT-LCS-TR-455

11. Appendix

This section describes our simulator and the modifications
we made to TCP Reno for this work. Our detailed study of TCP’s
fast retransmission and fast recovery is described in [17].

11.1 The Simulator

Our simulator is a distant descendant of one written for the
DARPA/BNR funded CreditNet Project [16] in 1992. The
simulated ATM switch consists of N full duplex portcards. Each
output interface is capable of receiving and buffering one cell from
each input on each cell cycle. The switch implements pure EPD
with no partial packet discard in order to emulate packet switching.
We use 552-byte TCP/IP packets (including IP and TCP headers).
Each packet is carried in 12 ATM cells. RED/FRED decides
whether to drop a packet upon reception of the first cell in the
packet.

The simulator uses the NetBSD 1.2 TCP Reno source files
with a handful of modifications described below. The TCP
receivers consume data immediately.

11.2 TCP New-Reno

The version of TCP New-Reno used in this paper is similar
to that described elsewhere [4,11], but differs in some details. In
this section, we compare the New-Reno used in this paper with the
standard TCP Reno implemented in NetBSD 1.2.

When the sender is in recovery and receives a “partial”
ACK for some but not all of the original window, the sender
immediately retransmits the packet after the one acknowledged by
the partial ACK, and then continues with recovery.

The recovery process terminates when an ACK
acknowledges all the packets in the original window and the acked
sequence number plus half of the original window size
(snd_ssthresh) is greater or equal to the right edge of the current
window. This ensures that the sender will not immediately fall into
a new recovery phase. In addition, at the end of recovery the
congestion window is decreased to the number of packets in flight
plus one. This prevents bursts of packets from being sent at the end
of recovery.

11.3 TCP with Tiny windows

This section describes the TCP enhancement used in the
simulations at the end of Section 6. The enhancement allows TCP
to recover from losses even when the window is small.

When operating with a congestion window smaller than
about 10 packets, a TCP sender should send a new packet for each
of the first two duplicate ACKs. These two new packets will
generate more duplicate ACKs, increasing the sender’s chances of
entering fast retransmission. For example, if the current window is
two packets and the first packet is lost in the network, then packet 2
would cause one duplicate ACK for packet 1. At that moment there
are no packets in flight. The sender should transmit packet 3 upon
receiving the first duplicate ACK, which in turn prompts a second
duplicate ACK for packet 1. The sender should then transmit
packet 4, which will cause a third duplicate ACK and trigger fast

retransmission. This process takes three RTTs, but, as long as there
is at least one packet in flight, the connection will not fall into
time-out. This approach should not itself increase congestion,
since it follows the conservation of packets rule [12]. A duplicate
ACK received means a packet has left the network. By injecting
one new packet, the total number of packets in flight is still no
more than the congestion window allows. If the receiver’s
advertised window does not allow injecting more packets, the
sender should re-send the last packet in the window or simply the
packet that is causing duplicate ACKs. If the recovery phase is
triggered, the inflated congestion window should be restored back
for computing slow start threshold and the two extra packets
should be accounted for the total number of outstanding packets.

