
Revisiting IP Multicast

Sylvia Ratnasamy
Intel Research

Andrey Ermolinskiy
U.C.Berkeley

Scott Shenker
U.C.Berkeley and ICSI

ABSTRACT
This paper revisits a much explored topic in networking – the search
for a simple yet fully-general multicast design. The many years of
research into multicast routing have led to a generally pessimistic
view that the complexity of multicast routing – and inter-domain
multicast routing in particular – can only be overcome by restrict-
ing the service model (as in single-source) multicast. This paper
proposes a new approach to implementing IP multicast that we
hope leads to a reevaluation of this commonly held view.

Categories and Subject Descriptors: C.2.2 [Network Protocols]:
Routing Protocols
General Terms: Design.
Keywords: Routing, Multicast.

1. INTRODUCTION
In 1990, Deering proposed IP multicast – an extension to the IP

unicast service model for efficient multipoint communication [1].
The multicast service model offered two key benefits: (1) the effi-
cient use of bandwidth for multipoint communication and, (2) the
indirection of a group address which allows for network-level ren-
dezvous and service discovery. Deering’s proposal triggered an era
of research on the implementation and applications of IP multi-
cast. In terms of actual deployment, this research has had some-
what mixed success. On the one hand, support for multicast is built
into virtually every endhost and IP router and the service is often
deployed within enterprise networks. However there is little cross-
provider global deployment of multicast, and today, fifteen years
after Deering’s seminal work, the vision of a ubiquitous multicast
“dialtone” remains an elusive, if not altogether abandoned, goal.

Theories abound for why this vision was never realized (e.g.,
[2–4]). Very broadly, most of these can be viewed as questioning
the viability of IP multicast on two fronts. The first is its practical
feasibility given the apparent complexity of deploying and manag-
ing multicast at the network layer. The second is the desirability of
supporting multicast with many questioning whether the demand
for multicast applications justified the complexity of its deploy-
ment, whether ISPs could effectively charge for the service, the
adequacy of alternate solutions, and so forth.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’06, September 11–15, 2006, Pisa, Italy.
Copyright 2006 ACM 1-59593-308-5/06/0009 ...$5.00.

This paper directly addresses the issue of feasibility, proposing
a simpler approach to implementing IP multicast that we call Free
Riding Multicast (FRM). We focus on inter-domain multicast for
which complexity proved particularly acute but (as we describe
later) FRM can be extended to the intra-domain scenario as well.
FRM offers two key advantages over existing solutions:

• by leveraging existing unicast routes, FRM virtually elim-
inates the need for a distributed multicast route computa-
tion thus side-stepping much of the network layer complexity
associated with traditional solutions (hence the name “Free
Riding”).

• a domain’s participation and use of inter-domain multicast is
effected via the same channel as in the unicast case, namely
BGP, thus offering network operators a familiar framework
within which to tackle the management (access control, ac-
counting, etc.) of a multicast service.

These advantages however come at a cost and the core tradeoff
FRM makes is to tilt the complexity of route computation to the in-
ternals of a router (as opposed to distributed protocol mechanism).
Consequently, FRM requires more storage and algorithmic sophis-
tication at routers and can be less efficient in bandwidth consump-
tion than traditional multicast solutions. However this tradeoff – the
avoidance of distributed computation and configuration at the cost
of optimal efficiency – is one we believe is worth exploring given
technology trends [5] that can endow routers with significant mem-
ory and processing on the one hand and our continued difficulties
taming wide-area routing algorithms on the other [6, 7].

The primary focus of this paper is the design and evaluation of
FRM. We lay the context for our work in Section 2, then discuss
prior work and our overall approach in Sections 3 and 4 respec-
tively. We present the design, evaluation and implementation of
FRM in Sections 5, 6 and 7 respectively. Finally, we observe that
FRM represents a more general approach to supporting network-
layer services such as anycast or data-centric routing. We touch on
this and other directions in Section 8.

Our contribution is a new approach to implementing multicast
that we hope would lower the technical barriers to its deployment.
At the same time, our exploration is triggered in part by the sus-
picion that the desirability of multicast too might merit rescrutiny.
We briefly touch on this in the following section.

2. IN DEFENSE OF IP MULTICAST
While we make no claims to understand the “market” for multi-

cast, we observe that many of the applications that originally mo-
tivated the research on multicast have (finally) arrived and would
still be well served by native multicast support.

15

One example is massive multiplayer games (MMORPGs) with
reports of 30-100% [8, 9] annual subscription growth and upto 5
million active subscriptions in a year [10]. In these games, a player’s
moves must be propagated to those in its “virtual” vicinity. Cur-
rently, game operators achieve this by deploying multiple servers,
each assigned a region of the virtual world, that relay commu-
nication between players. Thus, for n nodes in a virtual region,
the corresponding server’s bandwidth requirements vary from O(n)
to O(n2) depending on the extent to which timeliness constraints
allow multiple updates to be aggregated [11, 12]. Such scaling
can be problematic and indeed numerous reports cite overloaded
servers affecting the user experience [8, 12].1 In a simple sce-
nario, game operators might use multicast to cut server bandwidth
to between O(1) to O(n). In a more sophisticated scenario, play-
ers might directly multicast updates thus offloading data forward-
ing from servers. In short, IP Multicast can aid game operators
in building more lightweight, and hence ultimately cheaper infras-
tructure.

Another example is the adoption of Internet TV technology [15]
with several providers already in customer trials. These efforts
use IP multicast within their networks but currently rely on pre-
provisioned channels from the content source in to their networks.
Such provisioning allows ISPs to deliver content from major con-
tent providers to their immediate access customers. Supporting
multicast across domains would further allow ISPs to transitively
extend this delivery to more viewers and content providers without
requiring each content provider to partner with individual ISPs.

File-sharing, software updates, RSS dissemination, video con-
ferencing, grids are additional examples of deployed services that
could potentially leverage multicast delivery.

It has been argued however that it is difficult for ISPs to charge
for the use of multicast, leaving them with little incentive for de-
ployment. As Diot et al. observe [3], this has much to do with
the open, available-to-all usage model of earlier research. We as-
sume that ISPs will instead enforce a more closed access model
enabling them to charge for and better control usage (Section 8).
Given a closed usage model, the emergence of ISP hosting services
and IPTV lend hope that viable charging models exist; i.e., ISPs
charge server operators and/or endusers for multicast connectivity.

A rejoinder is that alternate techniques such as source-specific
(SSM) or application-layer multicast can meet the needs of the
above applications. Regarding SSM, we note that multi-source
applications do exist (e.g., game servers exchanging summary up-
dates, P2P, video conferencing) and FRM could support these with
complexity comparable (although different in nature) to SSM. SSM
also loses the rendezvous features of the more general service model;
while difficult to assess precisely, the many uses of a DHT’s indi-
rection capabilities [16–18] and the interest in auto-discovery mech-
anisms that enable opportunistic [19, 20] or configuration-free net-
working [17] suggest that low-level rendezvous might be a broadly
useful feature.

Which leaves us with application-layer solutions. While both
network and application layer solutions offer the benefits of mul-
ticast – efficient multipoint communication and indirection – they
do so with very different tradeoffs. While application layer so-
lutions are less constrained by the operational concerns of ISPs,
scaling these to a global user population with even modest per-user
bandwidth requirements represents a serious investment in band-
width, server resources, and management. For example, the global

1A revealing anecdote is the virtual demonstration in which, to
protest issues with Warcraft’s [13] operators, players overloaded
and crashed operator servers by assembling in one virtual loca-
tion [14].

adoption of IPTV with no support for multicast would require the
ubiquitous deployment of video servers down at the DSLAM level.
Moreover, deployments of such scale are likely beyond the resources
of any single application provider but independent deployments
bring with them non-trivial issues of application-level peering and
interoperability. Network-layer solutions by contrast, allow the de-
ployment of services that scale by augmenting an existing global
ecosystem of infrastructure, services, customers, and peering ar-
rangements. As a deployment vehicle, this can be particularly at-
tractive for general-purpose services such as multicast or rendezvous,
that can serve a variety of applications. The clear downside is that
any evolution to this complex ecosystem is inevitably constrained.

While these tradeoffs are well-recognized, the reputed complex-
ity of IP multicast has had the unfortunate consequence of trans-
forming the debate on the desirability of IP multicast into one of
whether it is strictly necessary to support multicast in routers. By
lowering the complexity of network-layer multicast, we hope in-
stead to revert back to debating its utility. In this context, the above
discussion offers examples of existing applications that stand to
gain from ISP deployment of IP multicast. We conjecture that ulti-
mately both network and application-layer solutions to multicast –
each used as appropriate – have much to offer in the implementa-
tion and scaling of networked applications such as network games,
IPTV, etc. and it would be valuable to leave the door open to both
approaches.

3. FRM: BACKGROUND, APPROACH
IP Multicast offers endhosts a simple abstraction: a host can join

or leave a multicast group G and any host can send to a group G.
As with unicast, the internals of the network provide the founda-
tional packet delivery service atop which richer functionality may
be implemented at endsystems. The multicast routing problem is
thus key to supporting the service model and has been the subject
of much research over the years [4, 21–27]. We start with a brief
review of this literature. In the following, we distinguish between
multicast routing and forwarding – the former to refer to the con-
struction of distribution trees, the latter to the process by which
routers propagate packets.

3.1 Multicast Routing
Deering’s early work defined DVMRP, a broadcast-and-prune

approach in which a packet multicast by a source S is forwarded
towards all endhosts and those that receive unwanted packets send
“prune” messages up the distribution tree toward the source [1,21].
DVMRP constructs efficient shortest-path trees from any source but
scales poorly for which reason it is typically limited to intra-domain
routing.

Another intra-domain protocol is MOSPF, a multicast extension
to unicast OSPF in which a router augments its link state advertise-
ment with the list of groups for which it has local receivers which
allows all routers to compute the shortest path tree from any source
to all receivers. MOSPF is a fairly incremental extension and builds
efficient trees but is limited to networks that run link-state proto-
cols.

Shared tree protocols such as Core-Based Trees (CBT) [22] and
PIM-SM [23] emerged to address the poor scaling of flood-and-
prune tree construction. These protocols associate a special ren-
dezvous point (RP) router that serves as the root of a single tree
shared across all senders for a group. A new receiver sends a JOIN
message along the unicast path towards the group’s RP, instanti-
ating forwarding state at routers along the way. While shared-tree
protocols offer a dramatic improvement in scalability, they give rise
to non-trivial issues regarding the placement and discovery of RPs.

16

Perhaps more importantly, the RP is the nerve center that deter-
mines the very availability of a PIM-SM tree and hence ISPs proved
reluctant to depend on RPs run by other ISPs. This led to the devel-
opment of the Multicast Source Discovery Protocol [24] that allows
domains to discover and interconnect multiple RPs in a loose mesh.
To accommodate the incremental deployment of PIM-SM/MSDP,
multi-protocol extensions were introduced in BGP-4 (MBGP) [27].
MSDP has its own scaling problems and was thus originally in-
tended as a temporary measure pending the deployment of a more
scalable inter-domain solution.

BGMP [25] is one such proposal and incorporates many of the
above ideas [25]. BGMP supports source-rooted, shared and bidi-
rectional shared trees. Key to BGMP is the association of a group
to a “home” AS responsible for allocating the group address. A
group’s home AS acts as the domain-level RP for the group’s rout-
ing tree. To map a group to its home AS, BGMP proposes address
advertisement (AAP) [25] that may be used in conjunction with
MASC [28], a dynamic address allocation protocol.

The ever increasing complexity of multicast routing led Hol-
brook et al. [4] to challenge the wisdom of Deering’s service model.
They argued that many large-scale applications only require deliv-
ery from a single, often well-known, source. By exposing the iden-
tity of this source to the endpoints, routing can be greatly simpli-
fied by having receivers just send JOIN messages directly towards
the source, moving RP discovery out of routers. Their Express pro-
tocol (now PIM-SSM) thus proposes a single-source service model
in which a multicast “channel” is identified by both a group (G) and
source (S) IP address. Endhost joins/leaves specify an (S,G)
channel address and only the source S may transmit to a channel.

Holbrook et al’s insight represents a practical compromise that
has done much to further ISP adoption of IP Multicast. The price
is a loss in generality – with SSM, a group address is tied to a
specific endhost IP address and hence the value of multicast as a
network-layer rendezvous mechanism is largely lost. FRM makes a
different compromise – retaining generality and seeking simplicity
by accepting higher bandwidth and (off-the-fast-path) storage costs
at routers.

3.2 Multicast Forwarding
The above centered on efforts to scale multicast routing. Of at

least equal concern is the scalability of multicast forwarding state
within routers. Because group membership need not be topologi-
cally contained, multicast forwarding entries are not easily aggre-
gatable and, left unchecked, forwarding state grows linearly in the
number of groups that pass through a router. Thaler and Hand-
ley [29] propose an interface-centric implementation model appli-
cable to shared-bus router architectures which allows some aggre-
gation. Their implementation model however does not apply to
switched router architectures nor implementations which store for-
warding state as a list of per-group incoming-outgoing interfaces.
Moreover, in the absence of careful address allocation, forwarding
state remains fundamentally linear in the number of active groups
and can hence be non-trivial. Radoslavov [30] proposes “leaky”
aggregation that tradesoff bandwidth for scalability in state while
Briscoe et al. [31] propose a scheme wherein applications coop-
erate to select addresses that aid aggregation. To the best of our
knowledge, none of these schemes have been adopted in common
router implementations.

Discussion. The quest for a satisfactory multicast routing so-
lution thus led down an increasingly tortuous path. Perhaps re-
flective of this is the somewhat daunting list of multicast protocols
found in most commercial routers; e.g., Cisco routers advertise im-

AS P

AS X
AS Y

AS Z

s

a.b.*.*c.d.e.*

e.f.*.*

R1 R2

AS Q
AS U

AS VRs

AS M

m.n.*.*

Figure 1: FRM: group membership and forwarding.

plementations of PIM-SM, PIM-DM, Bidir-PIM, PIM-SSM, Au-
toRP, MBGP, MSDP and IGMP v1,v2,v3 (while still lacking sup-
port for address allocation (MASC/AAP) and scalable inter-domain
(BGMP) protocols!) It is hard, even in retrospect, to cleanly lay the
blame for this abundance of mechanism at the feet of any one prob-
lem or issue as each solution addresses a very real concern. Unfor-
tunately, the complexity of the ensemble greatly raises the barrier
to deployment of a multicast service. Our primary goal with FRM
was thus to provide a “leaner” solution while retaining acceptable
performance. Next, we describe our approach to achieving this.

4. FRM: APPROACH AND TRADEOFFS

4.1 Approach
In the abstract, multicast delivery requires knowledge of: (1)

which end hosts are group members and, (2) how to reach these
member hosts or domains. While most solutions combine these
two components into a single from-the-ground-up protocol, FRM
decouples membership discovery from route discovery. This sep-
aration offers the advantage that, once group members are known,
any source can construct the multicast tree from its unicast routes
to each member host. This is easily done for path-vector or link-
state unicast protocols that reveal the required paths; as we discuss
in Section 8, this approach can also be adapted to distance-vector
protocols.

As stated earlier, we focus on inter-domain routing in which sce-
nario the basic FRM scheme operates as follows: a domain’s BGP
advertisements are augmented with a description of the multicast
groups currently in use within the domain. These adverts are then
propagated as per the normal operation of BGP thereby giving ev-
ery (border) router a description of the groups present in each desti-
nation prefix. To discover the dissemination tree for a group G, the
the border router at the source (denoted Rs) scans its BGP table to
identify those prefixes with members of G. Having thus identified
all destination domains, Rs simply computes the dissemination tree
from the union of the BGP unicast paths to all destination domains.
Rs then forwards a single copy of the packet to each next hop on
this dissemination tree along with an encoding of the subtree each
next hop must in turn forward the packet along.

Figure 1 illustrates this process: A packet multicast to G by host
s arrives at Rs. From their BGP advertisements, Rs learns that pre-
fixes a.b. ∗ .∗, c.d.e.∗, and e. f . ∗ .∗ have members in G and com-
putes the multicast tree from the BGP paths from V to each of the

17

above prefixes and forwards one copy of the packet to Q along with
an encoding of the subtree in dashed-line and another copy to U
with an encoding of the subtree in dash-dot-dash style.

4.2 Discussion
To some extent, FRM can be viewed as extending MOSPF to

the inter-domain arena. This extension however is non-trivial be-
cause we do not have a complete network map at the inter-domain
level. The path-vector nature of BGP allows a router to compute
the shortest path(s) from itself to a set of receivers but not from any
source to a set of receivers. This complicates forwarding as a router
that receives a packet has no way of knowing which subset of re-
ceivers it should forward towards since it does not know whether it
lies on the shortest path from the source to those receivers. For ex-
ample, in Figure 1: R1 and R2 both have BGP entries for prefixes
c.d.e.∗ , a.b. ∗ .∗ , and e. f . ∗ .∗, and can hence infer the presence
of group members in these prefixes. However, when R1 receives a
packet from Rs, it has no easy way of knowing not to forward to-
ward e. f .∗ .∗ and likewise R2 towards c.d.e.∗ and a.b.∗ .∗. While
one might employ a limited form of flood-and-prune this raises is-
sues similar to DVMRP in terms of scalability and vulnerability to
dynamics. An alternate option might be to change BGP to a pol-
icy compliant link-state protocol however this represents a major
overhaul of BGP which we avoid. FRM’s forwarding is instead
designed to exploit and live within the constraints of the informa-
tion BGP offers. Finally, we note that while PIM and Express too
leverage existing unicast routes they do so only in forwarding JOIN
messages towards the rendezvous point; packet delivery still relies
on group-specific forwarding state laid down by JOINs.

4.3 Tradeoffs
The core tradeoff FRM makes is to cut down on distributed pro-

tocol mechanism at the cost of demanding more from the internal
capabilities of routers. This offers both advantages and challenges.
On the positive side, we offer the following observations:

Parsimony in protocol mechanism. In terms of protocol
complexity the basic FRM framework requires: (1) extending BGP
to carry group membership information and (2) that an AS on occa-
sion filter some group for a downstream customer AS (for reasons
described in Section 5).

ISP control. Because group membership is explicitly advertised
through BGP, an ISP has ultimate (and easy) control over which
groups its customers subscribe to; e.g., to block an undesired group,
an ISP can simply drop it from its BGP advertisement. FRM also
allows ISP control over sources in its domain as border routers have
knowledge of (and control over!) the destination domains included
in the dissemination tree. As articulated by Holbrook et al., this
assists in source-based charging as an ISP can now infer the traffic
“amplification” due to a multicast transmission.

Ease of configuration. FRM avoids the contentious selection
of RPs and new inter-domain protocols, instead piggybacking mem-
bership state over BGP.

Centralized route construction. In FRM, the multicast tree
is computed in its entirety by the source’s border router using exist-
ing unicast routes. This not only eliminates the need for a separate
multicast routing algorithm but also spares us new routing anoma-
lies [6, 7].

General service model. FRM supports a multi-source service
model with efficient source-rooted trees.

The key challenges FRM faces include:

State requirements. FRM incurs the overhead of advertising
and maintaining group membership. While true for all multicast
protocols, FRM disseminates membership information more widely
than traditional protocols and hence incurs greater overhead. Specif-
ically, group state in FRM is aggregated per destination prefix rather
than on the basis of topology.

Unorthodox packet forwarding. Traditional packet forward-
ing involves a (longest prefix match) lookup on the destination ad-
dress to obtain the next hop along which to send the packet. By
contrast, in FRM, finding the next hop(s) requires that the access
border router scan its entire BGP table and that intermediate nodes
decipher the encoded tree. FRM faces the challenge of achieving
this in a manner that is both scalable and amenable to high-speed
forwarding.

Bandwidth overhead. FRM’s use of what is effectively a form
of multicast source routing incurs additional bandwidth costs.

The remainder of this paper presents the design and evaluation
of a protocol that addresses the above concerns.

5. DESIGN
The design of FRM comprises two (mostly separable) compo-

nents – group membership discovery and multicast packet forward-
ing. This section presents our solutions for each along with a qual-
itative evaluation of their resource requirements. Our design as-
sumes the license to quite significantly modify a router’s inter-
nal operation though we do not modify unicast processing and re-
quire only a modest (and hardware-friendly) upgrade to forwarding
plane. This appears reasonable given vendors’ past willingness to
incorporate new multicast routing into their routers. Our discussion
of the overhead due to packet processing in routers follows standard
assumptions – that high speed forwarding is assisted if packets are
processed entirely on line cards and that the memory and process-
ing available at the route processor may be comparable to high end
machines but is more limited at line cards.

5.1 Advertising Group Membership
To leverage unicast routes, group membership information must

be maintained at the same granularity as unicast routing destina-
tions. For this, FRM augments BGP to include per-prefix group
membership information. A border router augments its BGP ad-
vertisements with a description of the group addresses active – i.e.,
with at least one member host – within its domain. Because simple
enumeration leaves little opportunity for scaling to large numbers
of groups, we encode active group addresses using bloom filters
which allow advertisements to be compressed in a manner that in-
troduces false postives but no false negatives and hence never re-
sults in service being denied to valid group members. The pos-
sibility of false positives however implies that a domain may on
occasion receive traffic for a group it has no interest in. To handle
this, the receiving domain R can either simply drop the unwanted
traffic or, similar to DVMRP, can inform the upstream domain U to
cease forwarding traffic for that particular group. This latter can be
implemented by installing an explicit filter rule at U or by having R
recode its advertisement to U into multiple bloom filters such that
the offending false positive is eliminated. In this paper, we assume
the use of filter rules.

Through the intra-domain multicast protocol (Section 5.3), a bor-
der router discovers which groups are active in its local domain and

18

encodes these addresses into a group bloom filter, denoted GRP BF.
The length of a GRP BF is selected by reasoning in terms of the
number of filter entries an AS is allowed by its upstream ASes.
Each false positive results in a filter being installed at the upstream
provider’s network and hence, if an AS is allowed f upstream fil-
ters, then we set its target false positive rate to MIN(1.0, f /(A−G))
where G is the number of groups to be encoded and A is the total
size of the multicast address space. This choice follows from the
observation that a false positive can only be triggered by one of
A−G addresses which improves scalability by allowing for appro-
priately smaller GRP BFs at large G; e.g., a domain with G ∼ A
ought only use a single bit that tells upstream domains to forward
all multicast traffic its way. The filter size L is then computed using
the above false positive rate. For efficient manipulation (compres-
sion, aggregation, expansion), we require that L be a power of two
and assume a well known maximum length Lmax.

A border router then piggybacks GRP BFs on its regular BGP ad-
vertisements. If customer prefixes are aggregated, a corresponding
aggregate GRP BF is computed as the bitwise-OR of the individ-
ual customer GRP BFs . Finally, based on its available memory, a
router can independently choose to compress a GRP BF of length L
by repeated halving wherein the filter is split in two halves that are
then merged by a bitwise-OR. Inversely, a previously compressed
bloom filter can be expanded by repeated concatenation to obtain
the desired length. Of course, both aggregation and compression
result in a corresponding increase in the false positive rate.

Memory requirements. The total memory due to GRP BF state
at a participant border router is on the order of the number of desti-
nation prefixes times the average GRP BF length. This can be non-
trivial – for example, our evaluation in Section 6 estimates GRP BF
memory for 170,000 prefixes and 1 million active groups at ap-
proximately 2 GB. Fortunately, FRM’s forwarding scheme does not
require that GRP BF state be stored in the forwarding tables on in-
dividual line cards and instead places GRP BF state in the BGP RIB
on the route processor. As such, the main impact due to the mem-
ory requirements for GRP BF state is the monetary cost of memory.
At even current memory prices, this should to be a minor increment
to overall router costs [5].

Bandwidth and processing requirements. In keeping with
the incremental nature of BGP, changes in GRP BFs are communi-
cated as deltas and hence the rate of updates depends primarily on
the rate at which groups are added to, or removed from, a GRP BF.
Advertisements are for the domain as a whole and hence require
updating only when the number of group members drops below
one or rises above zero and hence unlikely to fluctuate rapidly, par-
ticularly if withdrawals are damped (as is likely [32]). Moreover,
updates are small – on the order of the number of bloom filter hash
functions for each added/deleted group. In terms of processing,
GRP BF updates, unlike BGP route updates, do not trigger route re-
computations and only rarely require updating the actual forward-
ing tables on line cards (we describe when this is needed in the
following section). Instead, processing GRP BF updates is largely a
matter of updating the BGP RIB in the route processor’s memory.
Thus, both the frequency and processing overhead due to GRP BF
updates should be tractable.

5.2 Multicast Forwarding
FRM processes packets differently at the border router in the

access domain for the source (Rs), and border routers in the transit
core (Rt). We discuss each in turn.

Forwarding on GRP BF state at Rs. A packet multicast by
source s to a group G is delivered via the intra-domain multicast
routing protocol to Rs, the border router in the source’s domain. Rs
scans its BGP RIB, testing each GRP BF entry to identify the des-
tination prefixes with members in G and constructs the AS-level
multicast tree T (G) from the union of the individual AS-level paths
to each member prefix. T (G) can be computed in O(p×d) where p
is the number of prefixes and d the average AS path length. We as-
sume these operations are performed by the route processor where
GRP BF state is stored. While rather expensive, two factors render
this computational complexity manageable. First is simply that, as
an access router, Rs is under less forwarding load (in terms of both
number of groups and total packets) than core routers and is hence
better positioned to absorb this overhead. Second, and more valu-
able, is that Rs can cache, or even precompute, the results of the
lookup so that this computation is only invoked on the first packet
sent to each group. Thus, the complexity of lookups on GRP BF
state is incurred only by access border routers and, even there, only
once for each group with active sources in the local domain.

Forwarding on cached state at Rs. As described above,
Rs caches the results of the initial lookup on a group address G.
Cached forwarding state is indexed by group address and hence
accessed by exact-match lookups. Many well-known techniques
exist for efficient exact-match lookups and we assume that FRM
would employ any of these as appropriate – e.g., CAMs and direct-
memory data structures offer O(1) exact-match lookups while more
compact data structures achieve exact-match lookups in logarith-
mic time [33, 34]. The total memory requirements for cached for-
warding state depends on the number of groups with active sources
within the domain and the per-group forwarding state. The latter of
these depends on the size of the tree T(G) (we enumerate the exact
forwarding state Rs must cache in the discussion on forwarding at
Rt that follows). Our evaluation in Section 6 suggests that this state
could be mostly accommodated in RAM on line cards – for ex-
ample, our evaluation estimates a 400MB cache for a domain that
has simultaneously active sources for 1 million groups [35–37]. If
the memory on line cards cannot accommodate the entire cache,
one might only cache state for high data rate groups on line cards
leaving the route processor to handle forwarding for low data rate
groups. Our implementation achieves this with LRU cache replace-
ment.

In summary, caching replaces the linear scan of the BGP RIB’s
GRP BF state by an exact-match lookup on cached forwarding state
and, if needed, should be mostly achievable in line cards. We note
that Rs maintains per-group forwarding state. However, as men-
tioned earlier, we believe this scaling is reasonable here because
the number of groups (with active sources) in Rs’s domain is likely
lower than in core transit domains. In fact, the intra-domain multi-
cast protocol is likely to impose similar scaling.

Forwarding at Rt. Multicast delivery is now a matter of for-
warding the packet along T (G), the AS-level tree computed by Rs,
with appropriate packet replication at fanout domains. However,
as described in Section 4, Rs cannot simply forward the packet to
each of its next hop ASes on the tree as an interior AS does not
know which subset of destination prefixes it should in turn forward
to. Moreover, such an approach would impose forwarding state
and complexity akin to that at Rs on all routers – a scenario we’ve
argued against. We instead adopt an approach in which Rs commu-
nicates T(G) to intermediate routers. FRM implements this using
a “shim” header above the IP header into which Rs encodes the
edges from T (G). A tree edge from autonomous system A to B is

19

State scaling lookup used stored when
at in used

GRP BFs O(|p|.g) linear Rs route per
scan proc. group

cached O(gs.T (gs)) exact Rs line per pkt
GRP BFs match card
encoded AS filter Rt line per pkt

links degree match card

Table 1: FRM: packet processing requirements. |p| is the total
number of prefixes at a BGP router and g the average groups per
prefix. gs is the number of groups with active sources in domain
s and T (gs) the average size of the dissemination trees for groups
with source in s.

assigned the unique label ‘A:B’ and Rs encodes these edge labels
into the shim header it constructs for each of its next hops. Hence,
in Figure 1, Rs would encode ‘Q:P’, ‘P:X’ and ‘P:Y’ in its packets
to R1 and ‘U:Z’ in those to R2. Note that our choice of encoding
edge labels is actually crucial in allowing Rs to disambiguate for-
warding responsibility amongst interior ASes and allows the shim
header inserted at Rs to be carried unchanged all the way to the des-
tination(s) with no updating at intermediate routers (e.g., this would
not be possible were Rs to encode only the AS numbers of nodes in
the tree).

For scalability reasons similar to those discussed in Section 5.1,
we encode the dissemination tree into the shim header using a
bloom filter (denoted TREE BF) and deal with false positives as
described in Section 5.1. However, unlike the GRP BF advertise-
ments, we require that the TREE BF be of fixed length – or one of
a small set of well-known lengths – so as to be amenable to fast
processing in hardware. This raises the issue of picking an appro-
priate TREE BF length. A too small header can lead to high false
positive rates for large groups while a TREE BF length selected to
accommodate even the largest groups would be needlessly wasteful
in the per-packet overhead the shim header imposes. Our solution
instead is the following: we pick a fixed TREE BF size of h bits,
a target false positive rate f and compute e, the number of edges
that can be encoded in h bits while maintaining a false positive rate
≤ f . We then use a standard bin-packing algorithm to decompose
the tree into groups of subtrees such that the number of edges in
each group is less than e. This bin-packing can be computed in a
single (typically partial) pass over T (G). Each group of subtrees is
then encoded into a single shim header and transmitted as a sepa-
rate packet. Note that this approach can cause certain links to see
multiple copies of a single multicast transmission.

The “tax” due to our source-encoded forwarding is thus twofold
(we quantify these in Section 6):

• in its bandwidth consumption, source-encoded forwarding
can be more inefficient than traditional multicast due to the
per-packet shim header and redundant transmissions (on cer-
tain links) for groups too large to be encoded into a single
shim header.

• the per-group forwarding state cached at Rs must now in-
clude the shim header(s). I.e., for each cached group G, Rs
caches the list of next hop ASes and the shim header(s) asso-
ciated with each next hop.

The payoff is highly scalable and efficient packet processing at
intermediate routers – to forward a packet, Rt need only check
which of its AS neighbor edges are encoded in the shim header’s
TREE BF. I.e., if A is Rt’s AS number, then, for each neighbor AS
B, Rt checks whether ‘A:B’ is encoded in the packet’s shim header

in which case it forwards a copy of the packet to B. This offers two
advantages. The first is that Rt ’s “forwarding” state is essentially a
list of its neighbor edges. This state is independent of any partic-
ular group G and hence the number of such forwarding entries at
Rt depends only on its domain’s AS degree. Measurements report
per-domain AS degree distributions ranging from 1 to under 10,000
with a power-law distribution and hence we can expect the number
of forwarding entries at Rt to be low– potentially several orders of
magnitude lower than the number of multicast groups – and easily
accommodated on line cards.

For efficient packet processing, we store neighbor edges in their
encoded representation; i.e., each edge is inserted into, and stored
as, a separate TREE BF bloom filter. The lookup operation at Rt is
then similar to standard filter matching – for each neighbor edge,
Rt checks whether the corresponding bits are set in the packet’s
TREE BF. There are a variety of options by which to implement this
but perhaps the simplest is to use TCAM with the bloom filter for
each neighbor edge stored in one TCAM row and all zero bits set to
the “don’t care” value [40]. With this, all edges can be matched in
parallel with a single TCAM access. Alternately, this state can be
stored in RAM and an edge matched in logarithmic time. Finally,
as mentioned before, the shim header remains unmodified along the
entire path and requires no updating at Rt .

The second advantage to source-encoded forwarding is that, be-
cause the forwarding state at Rt depends only on its (mostly static)
set of AS neighbors, no wide-area protocol mechanism is required
to construct and maintain this state. Source-encoded forwarding
thus achieves sparseness in protocol mechanism and scalable for-
warding state though at the cost of some additional bandwidth and
memory (at Rs) usage.

Table 1 summarizes the state requirements due to FRM. We note
that while FRM tilts the burden of forwarding state and complexity
onto source access domains, this is a not displeasing arrangement
as the benefit of multicasting is greatest at the source (a receiver’s
bandwidth consumption is unchanged with multicast). Finally, we
note that source-encoded forwarding (somewhat unlike IP source
routing) is easily implemented in hardware and selects paths com-
pliant with the policy choices of intermediate ISPs.

5.3 FRM and Intra-domain Protocols
Many of the operational and scaling issues that complicate inter-

domain multicast routing are less acute in the intra-domain scenario
and hence it appears reasonable to retain existing solutions (e.g.,
PIM-SM, DVMRP) at the intra-domain level. These can interface
to FRM in a straightforward manner; e.g., a group’s internal RP
could notify border routers of domain-wide group membership and
packets could be relayed to/from FRM border routers via tunnel-
ing to the RP or by having border routers join groups with active
sources. If desired however, FRM could be extended to the intra-
domain scenario; we briefly discuss this in Section 8.

6. EVALUATION
In this section, we use simulation and trace-driven calculation to

estimate the storage and bandwidth overhead due to FRM’s group
membership and forwarding components. Due to space constraints,
we present only key results for likely usage scenarios. a more de-
tailed parameter exploration is presented in [41].

Setup. To relate performance directly to end-user behavior, we
allow U=232−p users in a domain of prefix length p and assume
that each user joins k groups selected using some group popularity
distribution from a total of A simultaneously active groups. Unless
stated otherwise, we model group popularity using a zipfian distri-

20

 24

 25

 26

 27

 28

 29

 30

 31

 32

 33

 34

 10 12 14 16 18 20

T
o

ta
l
G

R
P

_
B

F
 m

e
m

o
ry

 (
b

y
te

s
)

[l
o

g
2
s
c
a
le

]

A: total active groups [log2scale]

k=1 group per user
k=10 groups per user

k=100 groups per user

Figure 2: Total GRP-BF storage per border router.

bution akin to the Web [42] and pessimistically assume no locality
in group membership; any locality would only improve scalability.
We use Subramanian et al.’s Oct’04 snapshots of BGP routing ta-
bles and their AS-level topologies annotated with inter-AS peering
relationships [43].

6.1 Group Membership

Memory overhead. Per-prefix GRP BFs are required to store
group membership information. We compute the GRP BF size for a
single prefix as follows: the number of groups advertised per prefix
– denoted G – is the expected number of distinct groups given that
U users each pick k-from-A as per the selected group popularity
distribution and hence the corresponding GRP BF size is the bloom
filter size needed to encode G items for a target false positive rate of
f /(A−G) (recall that f is the target number of filters per prefix).
Then, to estimate the total storage due to GRP BF state at a BGP
router, we use real BGP tables [43] and compute the total storage
per router as the sum of the GRP BF size corresponding to each
prefix entry. Figure 2 plots this total storage for increasing A for
f =10 and k =1, 10, and 100 groups per user.

Overall, we see that the memory required to maintain group
membership state, while not trivial, is very manageable given cur-
rent storage technology and costs. For example, 1 million simul-
taneously active groups and 10 groups per user requires approxi-
mately 3 GB – an amount of memory found today on even user
machines. Moreover, the trend in memory costs should allow FRM
to handle the relatively slower growth in BGP table size.

Bandwidth costs. We use back-of-the-envelope calculations to
show that the bandwidth due to updating group membership is tractable.
Recall that a domain updates its membership for group G only
when the number of members of G within the domain falls to, or
rises above, zero. Moreover, some domain-level damping of group
departures is likely. We thus generously assume a prefix sees a new
group appear or an existing group depart every second. Updates are
conveyed as the set of GRP BF bit positions to be set/reset. Hence
if we assume GRP BFs use 5 hash functions and bit positions are
represented as 24 bit values (in multiples of 256-bytes), then updat-
ing membership for a single prefix requires approximately 15 bytes
per second (Bps). If we assume a router with full BGP routes has
200,000 prefix entries (current reports indicate ∼170,000 FIB en-
tries [44]) then the total bandwidth consumed due to updates would

Group size Ideal multicast FRM per-AS unicast

100 28 28 38
1000 158 159 246

10,000 1000 1012 1962
100,000 4151 4233 9570

1M 8957 9155 21754
10M 15353 15729 39229

Table 2: total-tx: the total number of packet transmissions
for increasing group sizes.

be approximately 3MBps – a small fraction of the bandwidth ca-
pacity at core BGP routers.

The first node to join a group within its prefix/domain incurs
the latency due to inter-domain GRP BF update propagation. (The
latency of subsequent joins is that of an intra-domain join.) Un-
like regular BGP updates, GRP BF updates do not trigger distributed
route recomputations and hence their rate of propagation will likely
be limited primarily by protocol constraints (if any) used to bound
update traffic (as opposed to concerns about routing loops, incon-
sistencies, and the like). Our current prototype limits inter-AS
GRP BF updates to once per second which would lead to a “first-
time” join latency of ∼ 1-6 seconds given current AS path lengths
[44]. Further deployment experience would be required to better
gauge appropriate update intervals.

6.2 Forwarding Overhead

Bandwidth costs. The bandwidth overhead due to FRM for-
warding stems from: (1) the per-packet shim header and, (2) the
redundant transmissions required when subtrees are too large to be
encoded in a single shim header. We assume fixed 100 byte shim
headers and measure the overhead in packets transmitted; our re-
sults extrapolate to different shim header sizes in a straightforward
manner.2

We use two metrics to quantify FRM’s overhead due to redun-
dant transmissions:

• total-tx: the total number of packet transmissions re-
quired to multicast a single packet from the source to all re-
ceivers

• per-link-tx: the number of transmissions per link used
to multicast a single packet from source to all receivers.

To calibrate FRM’s performance, we measure the above for: (1)
“ideal” multicast in which exactly one packet is transmitted along
each edge of the source-rooted tree and, (2) per-AS unicast in which
the source unicasts each member AS individually. This latter can
be achieved using only FRM’s group membership component and
thus represents a simple network layer solution that requires no
multicast-specific forwarding at routers (as does FRM).

Table 2 lists total-tx for increasing group sizes. We see that
for all group sizes, the overall bandwidth consumed by FRM is
very close to that of ideal multicast (between 0-2.4% higher) while
per-AS unicasts can require more than twice the bandwidth of ideal
multicast. As expected, the difference between FRM and ideal mul-
ticast grows with increasing group size due to the multiple shim
headers needed to encode the larger trees.

2100 bytes represents ∼10% overhead on typical data (i.e., non-
ack) packets which appears reasonable. In practice, for greater effi-
ciency, a source might choose from a few well-known shim header
sizes; e.g., we find even 20B headers would suffice for groups of
upto a few thousand.

21

 1

 10

 100

 1000

 10000

 0.9 0.92 0.94 0.96 0.98 1

Nu
m

be
r o

f p
ac

ke
t r

ec
ep

tio
ns

 p
er

 A
S

Percentage of ASes on tree

FRM, 1000 users
FRM, 100,000 users

FRM, 10M users
per-AS ucast, 1000 users

per-AS ucast, 100,000 users
per-AS ucast, 10M users

Figure 3: CDF of per-link-tx, the transmissions per AS link
for FRM and per-AS unicasts.

 1

 10

 100

 0.995 0.996 0.997 0.998 0.999 1

Nu
m

be
r o

f p
ac

ke
t r

ec
ep

tio
ns

 p
er

 A
S

Percentage of AS domains on tree

group size=10M; entire tree
group size=10M; tree w/o leaf ASes
group size=10M; w/ aggr links

Figure 4: CDF of transmissions per (AS) link with optimizations
to reduce the size of the encoded tree.

 1

 10

 100

 1000

 10000

 0.9 0.92 0.94 0.96 0.98 1

Nu
m

be
r o

f f
or

wa
rd

in
g

en
tri

es
 p

er
 A

S

Percentage of all ASes

no aggregate links
aggr; nbrth=0.1,pktth=0.1
aggr; nbrth=0.5,pktth=0.25
aggr; nbrth=0.75,pktth=0.5

Figure 5: CDF of forwarding entries per AS. Tests with aggregate
links use a group size of 10 million.

Figure 3 plots the CDF of per-link-tx for FRM and per-AS
unicasts for different group sizes (per-link-tx is always one
for ideal multicast). In all cases, over 90% of links see exactly one
transmission per link. However, we see that with per-AS unicasts,
the worst-case per-link-tx can be over 40 for group sizes of
just 1,000 and almost four orders of magnitude greater than ideal
multicast for very large group sizes. FRM’s tree-encoded forward-
ing significantly reduces this overhead as over 99.5% of links see
exactly one transmission and the worst-case per-link-tx (at
10M users) drops to 157 relative to 6950 transmissions for per-AS
unicasts.

We note that this is a stressful scenario – for our trace, 10 mil-
lion users selected with no topologically locality results in every
AS having a group member and is thus equivalent to broadcasting
to the entire Internet. In such cases, FRM’s overhead of ∼ 150
transmissions on a single link might well represent a reasonable
penalty. Nonetheless, we look for techniques to further reduce this
overhead. Examination reveals that the highest per-link-tx

occurs at large ISPs that have both high degree and a large number
of downstream ASes (e.g., ATT, Usenet, Level-3). This leads us
to propose two performance optimizations – one fairly trivial and
another that, while light on mechanism, requires more forwarding
state at core routers.

Optimization#1: no leaves. Here, customer ASes at the leaves
of the dissemination tree are not encoded into the shim header. This
could be acceptable because a provider AS that receives traffic for
a group G can easily determine which of its immediate customer
ASes have advertised membership in G and forward traffic appro-
priately. Now however, a multi-homed customer AS may on occa-
sion receive traffic from more than one upstream provider. In this
case the customer AS can, as in the event of a false positive, push
filter requests to the provider sending it unwanted traffic. From fig-
ure 4, we see that this improves the worst-case transmissions per
link by approximately an order of magnitude.

Optimization#2: aggregate links. If the number of tree
edges from an AS A is a large fraction of either A’s total edges
(nbrthresh) or the total edges per packet (pktthresh), then the en-
coding router Rs replaces the edges from A by an aggregate edge
‘A:∗’ that tells A to forward the received packet on all outgoing
edges. Figure 4 plots the transmissions per link for nbrthresh =
pktthresh = 0.5 while Table 3 reports the worst-case transmissions
per links for different nbrthresh and pktthresh.3 We see that the use
of aggregate links can allow FRM to match optimal multicast.

Aggregate links implicitly include non-tree edges. To avoid A
sending packets out along non-tree edges, when A receives a packet
matching ‘A:∗’, it forwards the packet to a neighbor B only if the
packet also matches ‘B:X’ for some X, neighbor of B. This requires
that A know of B’s edges that lie on the path from A to various des-
tinations. Fortunately, this information is locally available from A’s

3We note that the parameters (nbrthresh and pktthresh) do not re-
quire to be globally consistent and are instead selected indepen-
dently by Rs. Moreover, the effectiveness of a particular parame-
ter choice is immediately evident when decomposing the tree and
hence Rs can experiment with a few parameter choices to achieve a
target overhead.

22

 0

 100

 200

 300

 400

 500

 600

 700

 800

 100 1000 10000 100000 1e+06

Ca
ch

e s
ize

 (M
B)

Number of groups with sources per domain (A)

FRM
FRM w/ no leaves

FRM w/ aggregate edges

Figure 6: Cache size for increasing A, the number of groups with
active sources in a domain.

BGP table and can hence be obtained with no additional protocol
mechanism but requires that A store additional AS edges in its for-
warding table. To control this increase, A can maintain 2-hop edges
for only a few neighbors and indicate these through (for example)
a flag associated with a BGP path it advertises. In our tests, we
assume an AS maintains 2-hop edges for only its customers and
measure the corresponding increase in forwarding state.

In summary, for very large groups, aggregate edges can improve
the efficiency FRM to match optimal multicast at the cost of ad-
ditional forwarding state but little new mechanism (specifically, an
additional BGP flag attribute, a new conditional clause in the tree
decomposition at Rs and an additional matching rule in the forward-
ing at transit Rt routers).

Storage costs. The forwarding state at a core router Rt is made
up of its AS neighbor edges and hence the number of forwarding
entries at Rt is the AS degree of its domain. The use of aggregate
links adds additional 2-hop edges to the forwarding table. Figure 5
plots the cummulative distribution of the number of forwarding en-
tries per AS for both basic FRM, and FRM using aggregate edges.
We see that the power-law AS degree distributions means that the
vast majority of ASes have remarkably small forwarding tables –
in all cases, over 90% have less than 10 entries. We also see that
for most ASes the number of forwarding entries is unchanged by
the use of aggregate edges. The worst-case number of entries how-
ever increases from approximately 2,400 without aggregate links to
14,071 with aggregate links. While a significant relative increase,
this is still a small number of forwarding entries in the absolute.
The corresponding memory requirements can be computed as the
number of entries times the size of the bloom filter (recall we store
each edge as a bloom filter). With 100 byte bloom filters, this gives
a worst-case forwarding table of 2,400 entries, ∼ 240KB for FRM
and 14,071 entries, 1.4MB for FRM with aggregate edges both of
which can be comfortably accommodated with current TCAM us-
age [37, 45].

The forwarding state at the source’s border router Rs consists
of the cached shim header(s) for those groups with active sources
within the domain. To compute the amount of cached state, we as-
sign a domain a total of A groups with active sources and assume,
as before, that users join each group based on a zipfian group pop-
ularity distribution and enforce a minimum group size (of all 8 do-
mains) to avoid empty groups. For each resultant group size, we

nbrthresh ⇒ 0.1 0.25 0.5 0.75
pktthresh ⇓

0.1 1 1 2 2
0.25 1 2 2 3
0.5 1 2 2 6

Table 3: Worst-case transmissions per (AS) link with aggregate
links and different nbrthresh and pktthresh.

TCP

DomainPrefix ActiveGroups

Prefix1 GrpFilter1

Prefix2 GrpFilter2

Prefix3 GrpFilter3

,,, …

 netlink

GrpNum Nexthops GrpNum M emberIP AsNum NexthopIP

[AS1, HDR1] xxx.xxx.xxx.xxx AS1 xxx.xxx.xxx.xxx

[AS2, HDR2] xxx.xxx.xxx.xxx AS2 xxx.xxx.xxx.xxx

[AS3, HDR3] xxx.xxx.xxx.xxx AS3 xxx.xxx.xxx.xxx

[AS4, HDR4] xxx.xxx.xxx.xxx … …

[AS5, HDR5] xxx.xxx.xxx.xxx

… … … … LocalAsNum
ASLocal

user
kernel

FRM kernel m odule

FRM H drCache LocalGrpM em bers BGPPeerTable

xorp_bgp

AS1 BGP peer

AS2 BGP peer

AS3 BGP peer

BGP RIBLocalGrpM em bership

{G3, G4}

GrpFilterLocal

G1

G2

G3

G4

Figure 7: Software architecture of the FRM prototype

compute the corresponding number of shim headers as above. Fig-
ure 6 plots the cache size for increasing A. If we assume on the
order of several hundred megabytes of RAM on line cards, then we
see that Rs could support line-card-only forwarding for upto several
hundred thousand groups and over a million groups using the above
optimizations. The initial sub-linear scaling trend is because cache
requirements for highly popular groups dominate the initial cache
size while the later linear scaling reflects our limit on the minimum
group size. We note that our tests are stressful in that groups 1-25
all have over 10 million users; i.e., every domain has 25 groups
with sources simultaneously multicasting the entire Internet.

In summary, caching should allow source border routers to han-
dle forwarding in the line cards for at least several hundred thou-
sand groups.

7. IMPLEMENTATION
We have built a prototype FRM router that runs under the Linux

operating system using the eXtensible Open Router Platform (XORP)
[46]. Figure 7 illustrates the overall structure of the FRM pro-
totype. A Linux kernel module implements the FRM forwarding
plane and a user-level component manages group membership state
and propagates membership updates to neighboring ASes. The
user-level module runs in the execution context of the XORP BGP
daemon (xorp bgp) and communicates with the kernel-side FRM
module via the Linux netlink mechanism. At kernel level, the
FRMHdrCache table caches forwarding state for groups that have
sources in the router’s local domain while the BGPPeerTable
holds the encoded AS edges used to forward transit packets. The
GRP BFs are stored in the BGP RIB in XORP. Our prototype cur-
rently lacks support for interfacing FRM to intra-domain multicast
routing protocols; instead, as an interim mechanism, we maintain
a local table (LocalGrpMembers) that stores the IP addresses
of local group members. A more scalable implementation might,
for example, store the IP address of the group’s local RP. We mod-

23

ify the designated router (DR) side of the IGMP implementation
to insert/remove shim headers. Endhosts are thus unchanged and
FRM routers only update shim headers. Our impementation adds
3500 lines of code to the Linux kernel and 1900 lines to the BGP
daemon.

7.1 Packet Processing
The kernel delivers incoming multicast packets to the FRM mod-

ule. If the source address indicates that the packet originated in the
router’s local domain, then we first check for forwarding state in
the FRMHdrCache cache.

Source domain: cache miss. In the event of a cache miss,
the kernel upcalls to xorp bgp to request the multicast tree for
the packet’s destination group. xorp bgp responds with a set of
structures of the form ASx : SubTreex, where ASx is the AS number
of a direct child node and SubTreex is a list of edges in the subtree
at ASx. The kernel parses the daemon’s response and constructs the
FRM shim headers for every ASx.

Our shim header consists of 32 control bits, followed by the
TREE BF. The first 4 control bits hold the number of bloom filter
hash functions, followed by 4 bits for the length of the TREE BF in
multiples of 16 bytes. The next 16 bits carry a checksum computed
over the shim header; the last 8 bits are currently left for future
protocol extensions.

Once the headers are computed, a copy of the packet is made for
each ASx, its shim header updated appropriately, and then sent out.
We use an auxiliary data structure (BGPPeerTable) in the kernel
to map from the AS number of a BGP peer to its corresponding
next-hop IP address. Finally, we add the destination group address
and the set of shim headers for each ASx into FRMHdrCache. The
FRMHdrCache cache is indexed by group address and uses a basic
LRU replacement scheme.

Source domain: cache hit. In the event of a cache hit, pro-
cessing is simple – a copy of the packet is made for each ASx entry
associated with the destination group, the packet’s shim header is
updated with the appropriate shim header, and the packet sent to
ASx.

Transit domain processing. If the packet did not originate in
the router’s local domain, processing is straightforward: we decre-
ment the IP TTL, update the IP checksum and finally traverse the
BGPPeerTable checking for the presence of the edge denoted
‘ASlocal : ASx’ in the packet’s FRM header. If present, we forward
a copy of the packet to the next-hop address for ASx. As the last
step,a copy of the packet is sent to every local member listed in the
LocalGrpMembers table.

We measure the forwarding latency for the above code paths.
Our measurements were performed on a 1.8GHz IBM Thinkpad
with 1GB RAM running FRM under Linux RedHat 9, kernel level
2.4.20-8. Table 4 lists the forwarding time for packets that hit in
the FRMHdrCache cache under increasing fanout (i.e., outgoing
copies) for different payload sizes. Relative to unmodified Linux,
FRM exhibits similar scaling behavior but is always slower in the
absolute. Examination reveals this is primarily because our FRM
implementation incurs one additional buffer copy for every packet
sent – in standard multicast, an identical copy of the packet is sent
to all outgoing next hops while generates a distinct copy of the
packet (with appropriate shim header) for every neighbor and hence
replicates the original buffer.

To measure the forwarding time for packets that suffer a cache

Fanout Linux mcast FRM FRM FRM
1-byte pkts 1-byte 128-bytes 1024 bytes

1 0.4 0.7 0.8 1.2
128 25.4 64.8 76.2 89.5
256 50.7 132.5 154.2 177.5
512 101.2 262.7 308.6 351.4

Table 4: Forwarding time (in µsecs) at Rs when the group is in
FRMHdrCache.

#entries 117519 29296 7300 1831 471 0
in tree

proc. time 303.2 124.8 89.1 74.5 68.3 65.8

Table 5: Forwarding time (in milliseconds) at Rs when the group
is not in FRMHdrCache. Packets are 512 bytes.

miss, we populate the RIB with an Oct’04 snapshot of a BGP table
with 117519 prefix entries and initialize a fraction of prefixes to in-
dicate membership in the packet’s destination group. Table 5 lists
the forwading time for an increasing number of prefixes included
in the tree. We see that, in the worst case where every prefix has
a group member, it takes approximately 303.2 ms to forward the
packet. Further investigation revealed this time is dominated by the
cost of the BGP RIB scan. Although clearly expensive, we do not
view the processing latencies of cache misses as cause for concern
due to two reasons: First, these measured latencies are entirely de-
pendent on the processor speed and other hardware characteristics
of the router which is, in our case, a uniprocessor IBM Thinkpad.
In reality, header construction can be parallelized and optimized on
SMPs. Second, this latency is only incurred on the first packet sent
to a group, and can be rendered even more infrequent by avoiding
cache misses through pre-computation and an appropriate choice
of the cache size.

Finally, Table 6 lists the forwarding latency for transit pack-
ets for different tree fanout values and different sizes of the table
BGPPeerTable. We observe that transit forwarding is efficient
and only marginally more expensive than a cache hit at the source
router for the same tree fanout. As with source forwarding, the
processing time scales linearly with the number of outgoing packet
copies. As expected (given our software implementation) the re-
sults are linearly dependent on the domain’s AS degree though
TCAM would avoid this.

In summary, the design of FRM admits a straightforward imple-
mentation of the cache hit and transit forwarding code paths that
achieve efficiency comparable to that of the native kernel forward-
ing. For cache misses, we believe a combination of hardware and
software optimizations, along with a sufficient cache memory al-
lotment can make the performance impact of misses negligible but
an exploration and evaluation of performance optimizations merits
further study, particularly in the context of realistic router forward-
ing engines.

Fanout ⇒ 1 32 128 256 512 1024
AS deg. ⇓

1 7.6
32 10.9 38.8
128 17.0 43.8 127.1
256 27.7 54.5 137.1 220.7
512 45.6 73.5 159.4 248.8 402.2

1024 81.4 113.4 204.5 308.0 465.2 748.7

Table 6: Forwarding time (in µsecs) at Rt for 512-byte packets.

24

7.2 Advertising group membership changes
An endhost’s IGMP reports are delivered to its designated router

(DR). In our current implementation, we modify DRs to relay these
reports directly to the source FRM router Rs which updates its
LocalGrpMembers table. We define a new optional transitive
path attribute FRM UPDATE for communicating incremental group
membership changes and FRM GRP BF for the initial transfer of
GRP BFs at the start of a peering session.

To avoid a full scan of FRMHdrCache, we use an auxiliary data
structure that efficiently resolves a bit position into a set of pointers
to cached groups associated with that bit.

In our evaluations, the processing cost of an update message for a
single group activation event that modifies 6 bits in the membership
Bloom filter and invalidates a single FRMHdrCache entry (with
1024 entires present in the cache) requires total processing time of
18.6 µsec. It takes 0.34 µsec to update the Bloom filter and 18.33
µsec to perform the invalidation.

Finally, to test FRM end-to-end, we set up a local testbed of
4 interconnected FRM routers, with 2 Windows desktops running
unmodified VAT [47] that connect to our FRM network via our
modified DRs. We observed packet delivery from the VAT source
to receivers demonstrating that FRM can forward packets end-to-
end using legacy endhost stacks and applications.

8. DISCUSSION:

Usage model. It is likely that a multicast service deployed to-
day, would not adopt an open usage model. We speculate on possi-
ble usage models but stress that issues of address allocation, access
control and charging merit much greater scrutiny than we can pro-
vide here.

ISPs might control use of multicast at two levels – per-user and
per-group. The first determines whether a user is allowed to send
and/or receive multicast traffic (independent of which groups). As
with unicast connectivity, users sign up with their local ISP for mul-
ticast service and the local ISP handles access control and charging
of users. ISPs might distinguish between service offerings that al-
low users to both send and receive traffic from those that only allow
a user to receive multicast traffic. For senders, ISPs might choose
to charge based in proportion to the group size or include limits on
the (AS-level) group size in the service agreement. FRM assists
ISPs in this regard as it allows the access provider to accurately
compute and control the extent of the dissemination tree.

Access control at the group level controls which group addresses
are routable. ISPs might each be allocated a portion of the mul-
ticast address space and, to create a group, a user must explicitly
obtain an address from some ISP. The role of the allocating ISP is
merely to legitimize the group and does not constrain membership
of the group in any way. ISPs only route group addresses that can
be proven to have been legitimately allocated by a recognizable ISP.
For this, an allocating ISP signs the group address with its private
key; group members may retrieve this signature via the same chan-
nel (e.g., DNS) used to discover the group address and can present
the signature to its local ISP when it joins and/or sends to a group.
To verify signatures, ISPs use the signing ISP’s public key which
can be disseminated along with an ISP’s BGP adverts. Allocation
of a group address can be associated with a fee and a lease period
allowing prices to be driven by demand.

The above serves to limit service to legitimate users and legit-
imate groups but does not attempt to regulate which users are al-
lowed access to which groups. We conjecture that this may be a
tractable level of control for ISPs to implement while leaving more

fine-grained access control to be handled by applications as per
their (different) needs. At the same time, the above access con-
trol schemes could accommodate some extensions for more fine-
grained control; e.g., a user’s service contract could limit the groups
it may join or the allocating ISP’s signature could include a list of
authorized sender IP addresses.

Finally, while the above assumes ISPs control address allocation,
this is not strictly required as FRM imposes no structural restric-
tions on the allocation and use of group addresses.

Attacks on the FRM protocol. With the above, malicious at-
tempts to trigger frequent GRP BF would be limited to legit groups
which should make it harder to cause domain-wide fluctuations in
membership. Moreover, this is tantamount to a user attacking its
local ISP which increases attacker exposure. The same is true for
malicious users that send to many different (valid) groups so as
to burden routers with the more expensive tree construction opera-
tions.

Intra-domain FRM. FRM may be applied unmodified within
domains that run link-state protocols. For domains with distance-
vector-based protocols, FRM requires modification to work in the
absence of complete path information. For this, we could encode
destination nodes, as opposed to tree edges, in the shim header. As
mentioned in section 5 this would require that intermediate routers
repartition the set of encoded leaves to avoid duplicate forwarding
though the results of this could be cached.

Relative to running intra-domain link-state MOSPF, FRM’s source-
encoded forwarding reduces the state and computational load at in-
termediate routers but requires a shim header. Admittedly, these
are modest advantages and hence replacing intra-domain MOSPF
by FRM would more likely be motivated by a desire for unifor-
mity in intra and inter-domain solutions. Relative to intra-domain
PIM-SM, FRM avoids the need to configure RPs.

Other routing services. As FRM makes no use of hierarchical
address allocation or aggregation, its implementation represents a
fairly general abstraction – subscription to, and location of – flat
identifiers and could thus be applied to more general routing ser-
vices such as IP layer anycast, data-centric or name-based routing.
The main difference is that multicast requires matching all sub-
scriptions while the above require matching any. The only impli-
cation to our design is that false positives would be undesirable; a
simple solution would be to instead, enumerate subscriptions or use
compression that admits only false negatives.

9. CONCLUSION
FRM represents a different approach to implementing multicast.

It is simpler in the wide area (no distributed tree construction), eas-
ier to configure (no need to place RPs), and allows providers to
work within the familiar BGP framework to handle inter-provider
issues. These features come at a cost of reduced efficiency and
greater demands on border routers; a tradeoff that we believe is
worth exploring given technology trends.

FRM tackles a purely technical barrier to deployment and other
barriers do exist. However, given the growing adoption of Internet
broadcasting, massively multiplayer games, and other networked
applications we conjecture the time may be right to revisit IP mul-
ticast and re-evaluate its chances.

25

10. ACKNOWLEDGMENTS
We thank Katerina Argyraki, Kevin Fall, Zhi Li, Timothy Roscoe

and the anonymous reviewers for their valuable input that helped
improve this work. We would also like to thank Hitesh Ballani for
helpful discussions on exploiting router resources.

11. REFERENCES
[1] Stephen Deering and David Cheriton. Multicast routing in datagram

internetworks and extended LANs. ACM Transactions on Computer
Systems, 8(2):85–110, May 1990.

[2] Yang hua Chu, Sanjay Rao, and Hui Zhang. A Case for End System
Multicast. In Proceedings of SIGMETRICS 2000, CA, June 2000.

[3] Christophe Diot, Brian Levine, Bryan Lyles, H. Kassem, and
D. Balensiefen. Deployment issues for IP multicast service and
architecture. IEEE Network Magazine. Special Issue on Multicasting,
2000.

[4] Hugh Holbrook and David Cheriton. Ip multicast channels: Express
support for single-source multicast applications. In Proceedings of
SIGCOMM ’99, Cambridge, MA, September 1999.

[5] ISC Domain Survey, January 2005.
[6] Craig Labovitz, Abha Ahuja, Abhijit Abose, and Farnam Jahanian.

An experimental study of delayed Internet routing convergence.
2000.

[7] Matthew Caesar, Donald Caldwell, Nick Feamster, Jennifer Rexford,
Aman Shikh, and Jacobus van der Merwe. Design and
Implementation of a Routing Control Platform. In Proc. of NSDI,
2005.

[8] E. Castronova. Network Technology, Markets and the Growth of
Synthetic Worlds. In Second Workshop on Network and Systems
Support for Games (NetGames). ACM, May 2003.

[9] MMOGCHART. http://www.mmogchart.com ,
http://terranova.blogs.com/terra nova/2003/10/growth rates of.html.

[10] Blizzard Entertainment. WoW Surpasses 5 Million Customers
Worldwide. 2005. http://www.blizzard.com/press/051219.shtml.

[11] N. Sheldon, E. Girard, S. Borg, M. Claypool, and E. Agu. The Effect
of Latency on User Performance in Warcraft III. In Second Workshop
on Network and Systems Support for Games (NetGames). ACM, May
2003.

[12] J. Pellegrino and C. Dovrolis. Bandwidth Requirement and State
Consistency in Three Multiplayer Game Architectures. In Second
Workshop on Network and Systems Support for Games (NetGames).
ACM, May 2003.

[13] Blizzard Entertainment. World of Warcraft. http://www.blizzard.com.
[14] Synthetic Statehood and the Right to Assemble.

http://terranova.blogs.com/2005/02/the right to as.html.
[15] Microsoft IPTV Edition.
[16] Ion Stoica, Dan Adkins, Shelley Zhuang, Scott Shenker, and Sonesh

Surana. Internet Indirection Infrastructure. In Proceedings of
SIGCOMM, August 2002.

[17] Bryan Ford. Unmanaged Internet Protocol: Taming the edge network
management crisis. In HotNets, November 2003.

[18] A. Rowstron, A-M. Kermarrec, M. Castro, and P. Druschel. SCRIBE:
A large-scale and decentralized application-level multicast
infrastructure. In Proceedings of NGC, London, UK, November
2001.

[19] Hui, Chaintreau, Scott, Gass, Crowcroft, and Diot. Pocket switched
networks and the consequences of human mobility in conference
environments. In Workshop on Delay Tolerant Networking, 2005.

[20] Kevin Fall. A Delay Tolerant Networking Architecture for
Challenged Internets. In Proceedings of SIGCOMM, August 2003.

[21] D. Waitzman, C. Partridge, and S. Deering. Distance Vector Multicast
Routing Protocol. ARPANET Working Group Requests for Comment,
DDN Network Information Center, November 1988. RFC-1075.

[22] Tony Ballardie, Paul Francis, and Jon Crowcroft. Core based trees
(CBT) an architecture for scalable inter-domain multicast routing.
Technical report, San Francisco, CA, September 1993.

[23] Bill Fenner, Mark Handley, Hugh Holbrook, and Isidor Kouvelas.
Protocol Independent Multicast – sparse mode (PIM-SM): Protocol
specification, October 2003. Internet Draft.

[24] B. Fenner and D. Meyer. Multicast Source Discovery Protocol
(MSDP). ARPANET Working Group Requests for Comment, DDN
Network Information Center, 2003. RFC-3618.

[25] K. Kumar, P. Radolavov, D. Thaler, D. Alaettinoglu, D. Estrin, and
M. Handley. The MASC/BGMP architecture for inter-domain
multicast routing. In Proceedings of SIGCOMM ’98, Vancouver, BC
CANADA, September 1998.

[26] Dina Katabi. The Use of IP Anycast for Building Efficient Multicast
Trees. In Proceedings of Global Internet, 1999.

[27] T. Bates et al. Multiprotocol Extensions for BGP-4. ARPANET
Working Group Requests for Comment, 2000. RFC-2858.

[28] Radoslavov et al. The Multicast Address-Set Claim Protocol.
RFC-2909.

[29] David Thaler and Mark Handley. On the aggregatability of multicast
forwarding state. In Proceedings IEEE Infocom, Israel, March 2000.

[30] Pavlin Radoslavov, Deborah Estrin, and Ramesh Govindan.
Exploiting the bandwidth-memory tradeoff in multicast state
aggregation. Technical Report TR99-697, University of Southern
California, 1999.

[31] Briscoe and Tatham. End-to-end aggregation of multicast protocols,
1997. Internet Draft.

[32] W. Fenner. Internet Group Management Protocol, Version 2. Internet
Engineering Task Force, Inter-Domain Multicast Routing Working
Group, February 1996. Internet Draft.

[33] Pankaj Gupta. Algorithms for routing lookups and packet
classification. PhD thesis, Stanford University, December 2000.

[34] M. Waldvogel ad G. Varghese, J. Turner, and B. Plattner. Scalable
high speed IP routing lookups. In Proceedings of SIGCOMM ’97,
Cannes, France, September 1997. ACM.

[35] Cisco Systems. Cisco 1200 Series 3GigE Line Card. (linecard with
512MB buffer and 256MB route memory).

[36] Cisco Systems. Cisco 1200 Series One-Port OC-192 Line Card.
(reports 512MB route memory).

[37] Katerina Argyraki and David R. Cheriton. Active Internet Traffic
Filtering: Real-Time Response to Denial-of-Service Attacks. In Proc.
of USENIX Annual Technical Conference, 2005.

[38] S. Keshav and Rosen Sharma. Issues and Trends in Router Design.
IEEE Communications Magazine, May 1998.

[39] H. Ballani, Y. Chawathe, S. Ratnasamy, T. Roscoe, and S.Shenker.
Off by Default! In Fourth Workshop on Hot Topics in Networks,
November 2005.

[40] Content Addressable Memory Cypress Semiconductor.
http://www.cypress.com.

[41] S. Ratnasamy, A. Ermolinskiy, and S.Shenker. Revisiting IP
Multicast. Intel Research Technical Report.

[42] V. Padmanabhan and L. Qiu. The content and access dynamics of a
busy web site: Findings and implications. In Proceedings of
SIGCOMM, Stockholm, Sweden, August 2000.

[43] L. Subramanian, S. Agarwal, J. Rexford, and R. H. Katz.
Characterizing the Internet Hierarchy from Multiple Vantage Points.
In Proc. of IEEE Infocom, 2002.

[44] Route Views Project Page.
[45] Cisco Systems. Access list configuration in Cisco’s Gigabit Ethernet

Interface. (reports GigE module supports up to 256K TCAM entries).
[46] Handley, Kohler, Ghosh, Hodson, and Radoslavov. Designing

Extensible IP Router Software. In Proceedings of NSDI, 2005.
[47] Van Jacobson and Steven McCanne. Visual Audio Tool. Lawrence

Berkeley Laboratory.

26

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

