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Abstract—The growth of the Internet of Things and the
trends to deploy more sensors everywhere has led to search
for cost effective ways to connect the devices to the Internet.
In the most common network architecture for home IoT, the
devices use low-power wireless or WiFi to connect to an AP
and access the Internet backend. We present a study on the
feasibility and efficiency of an alternate network architecture
for home IoT. In the proposed architecture, sensors and devices
are directly attached to WiFi access points and utilize the
computing resources of WiFi APs. We design and implement
several sensing applications based on the proposed architecture
and report on the performance and limitations of the approach.
We find that the proposed architecture allows WiFi APs to
become the computational, networking, and storage host for
sensing applications without degrading the AP’s primary function
of providing Internet access to the home users.

I. INTRODUCTION

Although the economy of scale of the devices that comprise
the Internet of Things in the homes and cities have made the
first generation of smart home and smart city applications
viable, the cost barrier of IoT is still slowing its growth.
Most of these devices have components providing sensing,
computation, memory, and communication capabilities (e.g.,
Intel Edison, Arduino Uno, TI LaunchPad, etc.). Although a
temperature sensor used for indoor climate monitoring may
be simple and inexpensive, by the time we add rest of the
essentials for a sensing node, not only the cost may become
high but also the power and other deployment constraints.
Extreme constraints in the four resources mentioned has led
to a lot of research projects. For example, power constraint
has led to research on energy efficient communication systems
across the layers of the stack [8], [5], [16], [4]. Constraints
on CPU and memory resources has led to a number of
algorithms for data processing. Constraints on communication
has led to work on in-network data aggregation [10], [13] and
compression [18].

Despite this research, it is still challenging to meet all the
resource needs of a sensor application without introducing
tradeoff on one of the resource dimensions. Using a fast CPU
or a large memory on the sensor platform will increase the cost
and power footprint. If the platform requires large amount of
power, the node cannot be powered using a battery and may
need to be line-powered. In most sensor deployment scenarios
providing a power source to the sensor can be very challenging
due to limitations of power infrastructure.

While the quest for universal sensing platform for home
continues, the industry is offering a large number of cus-

tomized sensing and control platforms and applications. Most
of these home sensing and control have two architectures:
(1) the end devices are equipped with 900 MHz radio using
802.15.4. These devices connect to a custom gateway with
these radios and the gateway connects to the WiFi AP using
a cable. (2) the end devices are equipped with 2.4 GHz radio
using 802.11 and they directly communicate with the WiFi
AP. The second architecture is not efficient due to the power
footprint of the sensor nodes when they have WiFi chipset
onboard. The first architecture requires additional gateway
device at home. For a sensing application with a large number
of sensors, especially when we need to deploy sensors certain
locations, these architectures may be the right choice. For
simple sensing application with just one or a few sensor or
control devices, a simpler architecture may be more desirable.

Our solution of a simpler architecture is to use WiFi AP
as a sensing platform. WiFi AP has sufficient computational,
memory, networking, and power resources. Many APs also
have peripheral interconnect interfaces to connect a sensor.
Thus, the WiFi APs can play a more direct role to collect,
process and forward the data. The main advantage of this
approach is we eliminate other intermediate devices or ad-
ditional equipments such as power and computation resources
and this makes the sensor deployment simpler and more
cost effective. Additionally, by scavenging a huge wasted
computation resource, we use WiFi APs to do more than just
a home WiFi AP for users to surf the web.

In order to effectively and safely use WiFi AP as a sensing
platform, we need to find the opportunities and limitations
of the system by studying the sensing application and WiFi
performance. In our study we describe how the proposed archi-
tecture simplifies the design and makes the sensor deployment
cost effective. We implement real-world sensor applications in
our system. We also describe the limitations of the approach
by answering the following questions:

• In which scenarios and applications we can use AP as a
sensor platform?

• Which type of sensors can we integrate with a WiFi AP?
• How many sensors can we integrate with a WiFi AP?
• Can we use a WiFi AP both as a mean to access the

Internet and a sensor platform at the same time?
• How much computation power is wasted on a WiFi AP

and how much can we scavenge?

Although the maker community has integrated devices with



OpenWRT APs, to the best of our knowledge there is no
specific study on WiFi AP to show how specific tasks can
interfere with each other with respect to resource sharing. In
our study, we try to clarify how a WiFi AP may perform its
primary service of Internet connectivity while also offering
secondary service of sensing platform.

Our main contributions are:
• We survey the resources of APs available in the market

to explore the capability of integrating various sensors to
a WiFi AP.

• We explore the scenarios in which using WiFi AP as a
sensing platform is reasonable by studying the limitations
that our solution introduces for sensor deployment.

• We study the performance issues and resource inter-
ference when WiFi APs serve their primary function
of Internet access and secondary function as a sensor
platform.

• We evaluate the idea of WiFi AP as a sensing platform
using real APs and physical prototyping of typical sensor
applications integrated with the AP.

II. RELATED WORK

A. WiFi AP-based Systems and Applications

Most of the previous studies came from hacking and maker
community and proved the feasibility of various applications.
WiFi APs like Fritz!Box [1] and many other similar prod-
ucts have already developed functionalities to re-use the AP
resources for other applications. Chen et al. [6] and Ha et
al. [9] tried to fill the gap between sensor networks and
the Internet by implementing a gateway using OpenWRT,
while others proposed and implemented various applications of
sensor networks on top of OpenWRT. Kciuk [11] implemented
two applications, mobile robot and building automation. Kim
and Kim [12] implemented a home lighting control using an
OpenWRT router and Arduino, then using a mobile phone they
tried to control the home lighting system through the router.
Rettig et al. [17] and Zinas et al. [21] build a bigger scale sys-
tem, a geospatial sensor network and a meteorological sensor
equipped with GPS, using an OpenWRT-installed router.

B. Commonly Used Embedded Computers

BeagleBone Black and Raspberry Pi are popular embedded
computers with several GPIO pins and support different Linux
distributions. Arduino is suitable for real-time applications but
it has limited resources. Intel Edison is a newly introduced
embedded computer with higher benchmark rank compared
to its competitors [3]. LinkSprite pcDuino has the same
capabilities of RPi but it can run Android ICS. Most of the
above platforms are widely used as sensor platforms.

C. Performance Isolation and Resource Sharing

Ouyang et al. [15] presented a co-kernel that provides
performance isolation for multiple OSs. Chiang et al. [7]
proposed a scheduling system consist of three parts to mitigate
the process interference: prediction of interference, scheduling
and resource monitoring. Zhu and Tung [20] evaluated a
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Fig. 1: 60 hours of resource monitoring on a home WiFi AP.
The usage includes video streaming and web browsing. The
results show that the CPU is idle most of the time.

TABLE I: Percentage of APs in the market that provide the
given I/O capability.

USB Serial JTAG Available GPIO
100% 85% 50% 20%

scheduling model for the cloud which has the capability of
predicting the impact of application performance in presence
of resource interferences. Meng et al. [14] talked about a
trustworthy cloud state monitoring which tries to prevent
interference across different nodes.

III. A REALITY CHECK

We do a market survey on WiFi APs to find out if today’s
WiFi APs can run realistic sensing applications. Table II de-
scribes the required resources for a typical sensor deployment
scenario, while Table III shows the requirements for different
sensor applications. One big challenge is to provide all these
resources, especially under different deployment scenarios.
Furthermore, as shown in Fig. 1 we observed that a regular
WiFi AP in home WiFi scenarios, including video streaming,
is idle most of the time, meaning that the system resources are
not completely utilized. According to Strategy Analytics, by
the end of 2015 there were more than 521 million households
using wireless APs to connect to the Internet [19]. We did a
survey on the OpenWRT supported devices using the list of
devices available on OpenWRT website to understand what
capabilities popular WiFi APs have. We summarize the list
of OpenWRT supported devices into 20 devices by choosing
from different vendors. Most of WiFi APs have serial interface
available for users to attach additional devices to the WiFi AP.
According to Fig. 2 and Table I, most of the sensor deployment
needs can be satisfied using a typical WiFi APs available in
the market as we can connect a wide range of sensors directly
to a WiFi AP.



CPU
0

200

400

600

800

1000

1200

1400

1600
M

H
z

Flash
0

50

100

150

200

250

300

M
B

RAM
0

50

100

150

200

250

300

M
B

Fig. 2: Results of a survey on CPU, Flash, and RAM
specification on OpenWRT supported WiFi APs in the market.

TABLE II: Sensor Deployment Requirements

Essential Resource Description
Power Source A power source for the sensor device

Processor A processing unit to run essential
commands and to process the data

Memory A temporary storage for the collected
data and a workspace for the processor

Long-term A place to store the data for a long time
Storage
Network To make the sensor platform accessible

Connectivity remotely and to transfer data to another
server and for storage or processing

IV. SYSTEM DESIGN AND IMPLEMENTATION

In this section, we present an overview of how we design
the sensing platform on WiFi APs.

A. Overview

Designing and implementing a sensing platform on WiFi AP
allows us to attach sensors directly to the WiFi AP without any
other intermediate embedded computers as shown in Fig. 3.
The WiFi AP is equipped with a software platform capable
of running user space programs to communicate with digital
interfaces of the WiFi AP, to collect data from the directly
attached sensors and to send control commands to the sensors.
The WiFi AP is also capable of processing the collected data
and to forward the data to the cloud or a remote server through
WAN interface.

Our experiment platform is a WiFi AP with OpenWRT
installed as the firmware operating system. At least there are
1250 routers listed by the OpenWRT as the supported devices
which shows the wide use of OpenWRT.

The WiFi AP is responsible for network connectivity
(WLAN) and running various data collection, data processing

TABLE III: Requirements for Different Applications

The Intrusion Monitor Indoor Fire
QCN Detection Indoor AQM Alarm

Climate System
Power Low Low Low Low Low
Source

Processor Medium High Low Low Low
Memory Medium Large Small Medium Small

Data Storage V. Large V. Large Small Medium Small
Network

Connectivity Low Medium Low Low Low
(Throughput)

Fig. 3: The diagram illustrates the difference between using a
WiFi AP as the sensing platform with classic method of data
collection, processing and forwarding.

and data forwarding tasks. In multiple applications and exper-
iments we connect multiple sensors to the WiFi AP through
USB port. We monitor system resources on WiFi AP while
doing all these tasks as a part of our experiments. We also
connected a laptop to the WiFi AP through WiFi to initiate
network traffic and to run the measurement scripts.

B. WiFi Access Point

WiFi AP - Buffalo Router: We used Buffalo WZR-
HP-G300NH2 (Atheros AR7242@400MHz processor, 64MB
RAM, 32MB flash) with OpenWRT as our experiment plat-
form. This USB Serial interface on the AP facilitates commu-
nication with sensors.

OpenWRT: OpenWRT is an open source embedded operat-
ing system based on GNU/Linux, supporting more than 1250
different devices and one of the most popular WiFi AP OSs.
In our experiments we used Attitude Adjustment (12.09) and
Chaos Calmer (15.05) versions.

C. Sensors Connected to the WiFi AP

We connect multiple sensors to Arduino Uno using GPIO
pins, running I2C, SPI or Serial protocol depending on the
sensor. Then, we connect the Arduino Uno device to the WiFi
AP. This configuration is an instantiation of the proposed ar-
chitecture and used only as a rapid prototyping platform. From
the perspective of the WiFi AP, Arduino Uno is accessed as
the /dev/ttyX file system, similar to how a directly connected
USB sensor device would appear to the system. In the real-
world scenarios, sensors can be connected directly to the WiFI
AP without Arduino.

Using this approach, we integrated the following sensors
to the AP to demonstrate the feasibility of implementing
real-world applications and to study how they interfere with
primary use of the WiFi AP.

• Accelerometer: We used LSM303 3-axis accelerometer
with 400 Hz sampling rate implement an instance of
the Quake-Catcher Network (QCN) [2], a real-world
application.

• PIR (Motion) Sensor: Using a motion sensor, capable of
detecting motions through interception of the warmth of



the body, we implemented occupancy detection, surveil-
lance, and intrusion detection systems.

• USB Camera: We connected a USB video class camera
to the WiFi AP to implement an application of surveil-
lance and intrusion detection.

• Temperature/Humidity Sensor: We used AM2302, a
temperature and humidity sensor, to implement indoor
climate monitoring application.

• textbfPM2.5 Sensor: We implemented an air quality
monitoring system using PM2.5 Optical Dust Sensor
(GP2Y1010AU0F).

• Gas Sensors: We used CNG (MQ-4), LPG (MQ-6), CO
(MQ-7), and Hydrogen (MQ-8) sensors to implement
indoor climate monitoring and alarm systems.

V. EVALUATION

Next we evaluate the effectiveness of the proposed approach
to use WiFi AP as a sensing platform.

A. Metrics

Feasibility: We measure program size and difficulty of
implementation of sensor applications on the APs.

Network and Device I/O Performance: We measure net-
work throughput, device I/O performance as read/write speed
and round-trip latencies.

System Resources: We use CPU and memory utilization to
characterize the impact of using AP as the sensing platform.

We do not consider energy consumption in this study but
consider how many sensor devices the AP can support.

B. Measurement Tools

Network Performance: We use iPerf 3.0.1 and GNU Wget
1.16.1 for network performance measurements. We configure
Wget to download 50KB files. We configure ping to use 56
bytes of payload for RTT measurement.

System Resources Monitoring: We used ”top”, a tool on
OpenWRT to monitor CPU and memory utilization every
second on OpenWRT. We created Ardunio programs and
Python scripts to measure I/O metrics of our study.

C. Feasibility of Real-world Applications of Sensor Networks

To test the feasibility of running real-world sensor network
applications on WiFI APs, we implemented five applications
on the WiFi APs and monitored their performance. Results
from Table IV indicate that implementation of real-world
sensor applications on a WiFi AP is practical.

The Quake-Catcher Network: By using an accelerometer
connected to Arduino Uno, we implemented an instance of the
USB sensor used by the QCN. This represents how a WiFi AP
can turn into a data collection node for the QCN.

Intrusion Detection and Surveillance: We connected a
USB camera and a motion sensor to the WiFi AP to build
a room surveillance system streaming video continuously
and detecting motions. The WiFI AP processes the video in
real-time. A motion triggers video recording and background
subtraction across the frames.

TABLE IV: Feasibility of Real-world Sensor Applications

Program Size Difficulty of Implementation
Surveillance 1870 bytes Medium

Indoor 1140 bytes Easy
Climate Monitoring

Indoor Climate Monitoring: We connected a temperature
and humidity sensor to Arduino Uno then to the WiFi AP.
The Arduino Uno sends the sensor data to OpenWRT over
serial interface. Another program on OpenWRT, collects and
forwards the data to a remote server.

Indoor Air Quality Monitoring and Occupancy De-
tection: By connecting CO detector, temperature, humidity,
PM2.5 and PIR motion sensors to Arduino Uno, we imple-
mented an indoor climate and occupancy monitoring system.
The AP then forwards sensor data to a remote server.

Fire Alarm System: The CO sensor and a PM2.5 sensor
connected to Arduino Uno sends sensor data to the AP. A
Python script on the AP triggers the alarm when density of
smoke is higher than a threshold.

D. Number of Sensors

One concern about the proposed architecture is scaling in
terms of number of physical sensors supported per AP. In one
experiment, we connected 10 Arduino Uno devices equipped
with AM2302 humidity/temperature sensors to a WiFi AP
using 2 passive USB hubs and collected data from those
sensors, with no external power other than the one powering
the WiFi AP. The AP successfully collected and processed
sensor readings from each Arduino Uno at 1 Hz. We believe
the system can support even more sensors per AP if necessary.

E. Impact of Resource Sharing on Network Performance

We study how the AP’s network handling capability is
impacted as it provides different resources to the sensing
application under these scenarios:

No Data Processing: Baseline, normal operation of AP.
High Memory Usage: We run a user space program that

allocates up to 80% of memory increasingly.
High CPU: We run a program that has an infinite loop

causing 100% CPU utilization.
High CPU and High Memory Usage: This scenario runs

the previous two programs at the same time causing high
memory and CPU load on the AP.

High Volume of I/O Interrupt Requests: We created a
data flow with maximum data rate possible (115200 bps) with
our platform over WiFi AP’s USB serial interface.

Results of our experiments suggest that the network per-
formance is not affected by our sensor data collection and
data processing. Fig. 4 and 5 show no significant transition
between the two cases of not using any resources on the
WiFi AP by user space programs and the other cases of
excessive use of system resources. Figure 6 also supports this
conclusion: use of excessive system resources has no effect on
the network throughput. We observed no impact even when
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Fig. 4: Throughput (data rate) seems not affected by the
excessive use of CPU, memory and I/O
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Fig. 5: Delay (RTT) seems not affected significantly by the
excessive use of CPU, memory and I/O
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Fig. 6: System resources and throughput while utilizing 100%
of CPU and consuming memory with a small linear growth and
limited by a cap. No impact on throughput can be observed.

the AP was doing Full HD video streaming. Thus the network
performance is not affected by sensor data processing, likely
due to performance isolation provided by the operating system.

F. Impact of Network Traffic on Data Processing

We study how AP network traffic impacts sensor data
processing latency on the AP. We ran a simple background
subtraction algorithm on static frames of a video stored on
the AP disk. We measured the execution time of this process
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Fig. 7: Video processing takes longer when the AP handles
network traffic because OpenWRT gives higher priority to the
network operations over a long running process.

in two scenarios, with and without presence of network traffic.
Fig. 7 shows a considerable increase in execution time when
AP is handling network traffic. Thus, the proposed architecture
may not be appropriate for applications that require real-time
CPU-intensive sensor data processing.

G. Impact of Network Traffic on Device I/O Performance

We design an experiment to study if WiFi AP handling
excessive network traffic impacts device (e.g. interface to the
sensors) I/O performance. We compare the I/O performance in
two scenarios, without any network traffic and with excessive
network traffic by downloading large files from a laptop
connected to the AP. We repeated the experiments for two
different types of I/O operations, USB mass storage I/O and
serial interface I/O measuring read and write speed by reading
or writing several bytes from or to the disk/Arduino. To
measure delay (RTT), the AP sends a packet of unit size (1
byte) to Arduino and reply back the same byte to the AP.
Fig. 8a shows that the network traffic degrades the device
I/O performance slightly, but Fig. 8b shows that it is not
true for Serial communication, because of lower throughput
of the Serial interface compared to USB disk. Fig. 8c also
shows that the network performance has no impact on Serial
communication delay.

VI. DISCUSSION OF LIMITATIONS

A WiFi AP at home is not necessarily deployed in places
where the sensors need to be placed for a sensing application.
In such cases, long cables may be necessary to connect the
sensors that are placed in strategic sensing locations to the
WiFi AP. This is often unwieldy. Most consumers do not
have the skill to update AP firmware to support sensing
applications. The AP manufacturers could facilitate by pre-
installing sensing software on the APs. Our performance
measurements were focused on network level metrics. Future
work could also investigate the impact of sensing on latency-
sensitive application performance.
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Fig. 8: Impact of network traffic on I/O performance. Network traffic degrades the USB disk IO performance but it has no
impact on Serial communication performance because the Serial interface has lower throughput compared to USB flash disk.

VII. CONCLUSIONS

A WiFi AP has lower amount of resources compares to the
other sensing platforms such as Raspberry Pi and BeagleBone
Black. This limits the software development on a WiFi AP to
require the developer to use cross- compilation technologies
instead of compiling directly on the AP. Moreover, some
applications may run slower on a WiFi AP compared to
other platforms. We observed the network performance is not
affected by system performance metrics of CPU, memory and
I/O usage; On the other hand, presence of network operations
affects the performance of data processing applications in
which they require excessive use of CPU and memory.
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