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Most sensor network research and software design has been guided by an architectural principle
that permits multinode data fusion on small-form-factor, resource-poor nodes, or motes. While
we were among the earliest promoters of this approach, through experience we found that this
principle leads to fragile and unmanageable systems and explore an alternative. The Tenet archi-

tecture is motivated by the observation that future large-scale sensor network deployments will be
tiered, consisting of motes in the lower tier and masters, relatively unconstrained 32-bit platform
nodes, in the upper tier. Tenet constrains multinode fusion to the master tier while allowing
motes to process locally-generated sensor data. This simplifies application development and al-

lows mote-tier software to be reused. Applications running on masters task motes by composing
task descriptions from a novel tasklet library. Our Tenet implementation also contains a robust
and scalable networking subsystem for disseminating tasks and reliably delivering responses. We

show that a Tenet pursuit-evasion application exhibits performance comparable to a mote-native
implementation while being considerably more compact. We also present two real-world deploy-
ments of Tenet system: a structural vibration monitoring application at Vincent Thomas Bridge
and an imaging-based habitat monitoring application at James Reserve, and show that tiered

architecture scales network capacity and allows reliable delivery of high rate data. 1

Categories and Subject Descriptors: C.2.1 [Computer-Communication Networks]: Network

Architecture and Design—Wireless communication; C.2.4 [Computer-Communication Net-

works]: Distributed Systems; D.2.13 [Software]: Reusable Software

General Terms: Design, Experimentation, Performance

Additional Key Words and Phrases: Sensor networks, network architecture, tiered network, motes

1. INTRODUCTION

Research in sensor networks has implicitly assumed an architectural principle that,
in order to conserve energy, it is necessary to perform application-specific or multin-
ode data fusion on resource-constrained sensor nodes as close to the data sources
as possible. Like active networks [Tennenhouse and Wetherall 1996], this allows
arbitrary application logic to be placed in any network node. As its first proposers
put it:

Application-Specific. Traditional networks are designed to accommodate
a wide variety of applications. We believe it is reasonable to assume that
sensor networks can be tailored to the sensing task at hand. In particular,
this means that intermediate nodes can perform application-specific data ag-
gregation and caching, or informed forwarding of requests for data. This is in
contrast to routers that facilitate node-to-node packet switching in traditional
networks. [Estrin et al. 1999, Section 2]

This principle has governed the design of data-centric routing and storage schemes [In-
tanagonwiwat et al. 2000; Ratnasamy et al. 2002], sensor network databases [Mad-
den et al. 2002], programming environments that promote active sensor networks [Levis
et al. 2005], and a flexible yet narrow-waisted networking stack [Polastre et al. 2005].

The principle can minimize communication overhead, but at what cost? In our
experience, the major costs are increased system complexity and reduced man-
ageability. Systems are hard to develop and debug since application writers are
expected to implement sophisticated application-specific routing schemes, and al-
gorithms for multinode fusion, while contending with mote-tier resource constraints.

ACM Transactions on Sensor Networks, Vol. 6, No. 4, 202010.



The Tenet Architecture for Tiered Sensor Networks · 3

Adherence to this principle is the main reason why there is currently a significant
dichotomy between sensor network deployments and research systems: many of our
existing long-lived deployments are relatively simple data collection systems that
incorporate no multinode data fusion.

We examine here a different point in the space of possible architectures, moti-
vated by a property common to many recent sensor network deployments [Guy et al.
2006; Szewczyk et al. 2004; Arora et al. 2005]. These deployments have two tiers:
a lower tier consisting of motes2 , which enable flexible deployment of dense instru-
mentation, and an upper tier containing fewer, relatively less constrained 32-bit
nodes with higher-bandwidth radios, which we call masters. Tiers are fundamental
to scaling sensor network size and spatial extent, since the masters collectively have
greater network capacity and larger spatial reach than a flat (non-tiered) field of
motes. Furthermore, masters can be and usually are engineered to have significant
sources of energy (a solar panel and/or heavy-duty rechargeable batteries). For
these reasons, most future large-scale sensor network deployments will be tiered. 3

Future systems could take advantage of the master tier to increase system man-
ageability and reduce complexity, but simply porting existing software to a tiered
network would only partially realize these gains. We seek instead to aggressively
define a software architecture for tiered embedded networks, one that prevents
practices that we believe reduce manageability, even at the cost of increased com-
munication overhead.

We therefore constrain the placement of application functionality according to
the following Tenet Principle: Multi-node data fusion functionality and multin-
ode application logic should be implemented only in the master tier. The cost and
complexity of implementing this functionality in a fully distributed fashion on motes
outweighs the performance benefits of doing so. Since the computation and storage
capabilities of masters are likely to be at least an order of magnitude higher than
the motes at any point in the technology curve, masters are the more natural can-
didates for data fusion. The principle does allow motes to process locally-generated
sensor data, since this avoids complexity and can result in significant communi-
cation energy savings. This architectural constraint could be relaxed if required,
of course, but aggressively enforcing it most clearly demonstrates the costs and
benefits of our approach.

The central thesis of this article is that the Tenet architectural principle simplifies
application development and results in a generic mote-tier networking subsystem
that can be reused for a variety of applications, all without significant loss of overall
system efficiency. Our primary intellectual contribution is the design, implementa-
tion, and evaluation of a Tenet architecture that validates this thesis.

In Tenet, applications run on one or more master nodes and task motes to sense
and locally process data. Conceptually, a task is a small program written in a

2In this article, we use the term mote broadly to denote a class of sensing devices that for reasons of
power, form factor, or price have constrained processing, memory, and communication resources.

Such devices are thus incapable of efficiently providing the flexibility, visibility, and robustness of
PC-class embedded devices.
3Tiering does not imply physical clustering. In the most general definition of a tiered network, a
mote can communicate with more than one master, possibly over multiple mote-hops. However,

a mote may not have multihop connectivity to all masters in the network.
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constrained language. The results of tasks are delivered by the Tenet system to
the application program. This program can then fuse the returned results and re-
task the motes or trigger other sensing modalities. More than one application can
run concurrently on Tenet. Our Tenet system adheres to the Tenet architectural
principle by constraining mote functionality. All communication to the mote-tier
consists of tasks, and all communication from the mote-tier consists of task re-
sponses (such as sensor data) destined for a master, so applications simply cannot
express mote-tier multinode fusion computation.

Tenet has several novel components. Using our simple yet expressive tasking
language, applications specify a task as a linear dataflow program consisting of a
sequence of tasklets. For example, an application that wants to be notified when
the temperature at any mote exceeds 50◦F would write a task of the following form.

Sample(1000ms, 1, REPEAT, ADC10, TEMP) -> LEQ(A, TEMP, 50)

-> DeleteActiveTaskIf(A) -> Send()

A task library implements a collection of composable tasklets. A reliable multitier
task dissemination protocol ensures highly robust, rapid delivery of tasks from the
master tier to the motes. Since different applications may need different levels of
reliability for transmitting data back to the application, Tenet implements three
qualitatively different data transport mechanisms. Finally, a routing subsystem
ensures robust connectivity between the tiers; it creates routing table entries in a
data-driven fashion in order to reduce overhead.

Tenet has been implemented for networks with MicaZ or TelosB in the mote-
tier4 and 32-bit devices such as Stargates or PCs in the master tier. We have
implemented a suite of qualitatively different applications on Tenet, ranging from
tracking and vibration monitoring to imaging and network management. Each of
these applications is tens of lines of code, and requires no modifications to the rest
of the Tenet system.

We have extensively experimented with pursuit-evasion, a particularly challeng-
ing application for Tenet since existing implementations deeply rely on multinode
data fusion for efficiency [Sharp et al. 2005]. In pursuit-evasion, one or more mobile
pursuer robots track and attempt to “capture” one or more evaders with the help
of a sensor network. We compared a Tenet implementation with a more traditional
one which incorporates mote-tier multinode fusion to reduce redundant evader re-
ports [Sharp et al. 2005]; our Tenet implementation exhibits higher accuracy and
lower overhead than mote-PEG at the cost of marginally higher evader detection
latency.

We have also successfully deployed two qualitatively different Tenet applications
in the real world; structural vibration monitoring at Vincent Thomas Bridge, and
image-based habitat monitoring at James Reserve. On the Vincent Thomas Bridge,
a tiered sensor network running Tenet reliably collected ambient vibration of the
structure at a rate which would have been difficult to achieve on a flat network of
motes. At James Reserve, image-sensors (Cyclops cameras [Rahimi et al. 2005])
were used to monitor and deliver images of animal trap occupancy, simplifying the

4Tenet also supports Mica2 and Mica2dot in the mote-tier although less evaluation has been done

on those platforms.
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lives of biologists. These deployments suggest Tenet is flexible enough to implement
a variety of real applications.

Our evaluation of the individual components of Tenet reveals that Tenet’s task
library can support high task throughput and that its reliable dissemination mech-
anism is fast. More generally, our evaluation supports the thesis that the Tenet ar-
chitectural principle can simplify application development and promote code reuse
without much loss of efficiency.

2. THE TENET PRINCIPLE

The Tenet architectural principle moves aggressively away from prevailing practice
and prohibits in-mote multinode sensor data fusion. It constrains the processing
of data received from multiple sensors to be placed at the master tier, regardless
of whether this processing is specific to an application or can be expressed as a
generic fusion service. (It might, for example, be possible to cast beamforming or
tracking as a generic service that can be used by many applications.) This has
two advantages. First, since masters have more processing and storage resources,
applications can perform more sophisticated fusion than is possible with the motes.
Second, masters can use their high-capacity network to exchange data spanning a
large spatial extent, giving fusion algorithms more context into sensed phenomena
and resulting in more accurate decisions.

The trade-off is, of course, a potential loss of efficiency which comes in three forms.
The first is the opportunity cost of in-mote multinode fusion. For most applica-
tions that we have encountered, there is significant temporal redundancy, but little
spatial redundancy (in almost all deployments, we undersample spatially). Since
Tenet allows motes to process locally-generated sensor data (this local processing is
crucial, since it is clearly infeasible to collect time-series data from every sensor in
a large sensor network), applications can remove temporal redundancy and recover
most of the gains from in-mote multinode fusion. Another, smaller, cost is that
processed sensor data needs to be routed over multiple hops from a mote to the
nearest master. We argue that even this cost is negligible, since the network diam-
eter in a well-designed sensor network will be small; wireless loss rates being what
they are, large diameter sensor networks will be inefficient [Gupta 2000]. The third
cost is that in-mote fusion can reduce congestion inside the network. For instance,
in pursuit-evasion, leader election within a one-hop neighborhood results in a single
evader detection being transmitted; since Tenet does not permit such fusion, it can
potentially incur the bandwidth cost of transmitting multiple detections to mas-
ters. However, as we show in Section 5, Tenet can avoid this by adaptively setting
task parameters so that only nodes having a high-confidence evader detection need
transmit their values to a master.

Will the Tenet principle hold when mote processing power, memory, and commu-
nication capabilities evolve significantly? The principle simplifies the management
and control of constrained motes, and we expect that, for reasons of price, form
factor, or battery capacity, motes will continue to be impoverished, relative to mas-
ters, for the foreseeable future. In absolute terms, motes will become more capable
computationally, and possibly with respect to memory. However, in absolute terms,
at least in the last few years, we have not seen concomitant growth in battery life
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or wireless communication capability. Thus, we contend that this architectural
separation will continue to make sense, since otherwise programmers will have to
deal with communication and battery life constraints. Moreover, as technology
evolves, we will also want to do more with sensor networks (e.g., sense more com-
plex signals, etc.), and we see these relative constraints as continuing to dictate
the architectural separation. Even if the technology were to evolve to the point
where mote constraints did not matter, our Tenet implementation would still be
a viable, flexible programming system for a distributed system of sensors, as our
implementations of different applications show.

3. RELATED WORK

In the earliest work on sensor network architecture, Estrin et al. [1999] motivate
the need for application-specific multinode aggregation within the network. More
recently, Culler et al. [2005] describe SNA, a software architecture that describes
the principles by which mote software and services are arranged. They also define
the “narrow waist” of the architecture to be a translucent Sensor Protocol layer
that exports neighbor management and a message pool, on top of which several
network protocols can be built [Polastre et al. 2005]. Chameleon [Dunkels et al.
2007] goes a step further and provides a set of communication primitives that
can accommodate variety of underlying protocols and mechanisms. Recently, Es-
sentia [He et al. 2008] proposed “asymmetric function placement”, similar in spirit
with Tenet, as a guiding principle to architect sensor network systems. It advocates
that any nonessential functions should be implemented outside the sensor network
to overcome the resource constraints of sensor nodes. Tenet is complementary to
this body of work, since Tenet constrains the placement of application function-
ality in a tiered system and does not address the modularization of software, the
lower-layer communication primitives, or the placement of application-independent
functionality. The mote-tier in Tenet can be implemented using SP or Chameleon.

The Tenet principle shares some similarities with the Internet’s end-to-end prin-
ciple [Saltzer et al. 1984]. Both principles discuss the placement of functionality
within a network, and in both cases the rationale for the principle lies in the trade-
off between the performance advantages obtained by embedding application-specific
functionality and the cost and complexity of doing so. However, the Tenet principle
is not subsumed by, nor a corollary of, the end-to-end principle, since it is based
on a specific technological trend (tiered networks).

The Tenet principle shares some similarities with Active Networks [Tennenhouse
and Wetherall 1996]. Specifically, they are similar in that packets (called “capsules”
in Active Networks) contain code that are distributed and executed in the network
to process application-specific data. However, they differ because Active Networks
do not limit application data fusion, and places few, if any, constraints on what can
be executed within the network.

Many sensor network deployments in the recent past have been tiered. Exam-
ples include the Great Duck Island deployment [Szewczyk et al. 2004], the James
Reserve Extensible Sensing System [Guy et al. 2006], and the Extreme Scaling Net-
work [Arora et al. 2005]. In these deployments, tiering provides greater spatial scale
and increased network capacity. Other systems have been built upon tiered net-
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works. SONGS [Liu and Zhao 2005] focuses on a set of high-level services designed
to extract semantic information from a tiered network. Lynch et al. [2003] discuss
tiered networks for structural monitoring since upper-tier nodes can perform the
sophisticated signal processing functions required for the application. Rhee et al.
[2004] describe the design of a tiered network for increasing sensor network life-
time. Tenet, however, is an architecture for building applications for such networks
quickly and effectively.

Several pieces of work and have analytically examined the benefits of tiered sys-
tems. Liu and Towsley [2003] show that if the number of masters exceeds the square
root of the number of motes, a tiered network exhibits no capacity constraint. Mha-
tre et al. [2005] describe a similar result for the lifetime of a tiered network. Finally,
Yarvis et al. [2005] explore how the geometry of tiered deployments affects their
lifetime and capacity. This line of research sheds some light on tiered network
placement and provisioning.

Many of Tenet’s components are inspired by sensor network research over the
last seven years. We now discuss these.

Mate [Levis and Culler 2002; Levis et al. 2005] provides a framework for im-
plementing high-level application-specific virtual machines on motes and for dis-
seminating bytecode. A key observation of this work is that a fairly complicated
action, such as transmitting a message over the radio, can be represented as a sin-
gle bytecode instruction provided by an application-specific instruction set. Such
an approach can greatly reduce the overhead in disseminating new applications
and can simplify application construction. The trade off—as in Tenet—is expres-
siveness. To the extent that it disseminates and executes task instructions, Tenet
defines a virtual machine. However, our focus has been less on the mechanics of
bytecode dissemination and execution, and more on defining the right high-level
instructions for sensor networks to carry out. ASVMs execute one high-level pro-
gram at a time, although this program can contain multiple threads. Tenet motes
explicitly support concurrent and independent application-level tasks. In this re-
spect, Tenet also differs from tasks in SHARE [Liu et al. 2005], a system that
allows applications on a wireless mesh network to express computation in the form
of tasks, and optimizes task execution to eliminate or reduce repeated execution of
overlapping task elements.

Tenet’s mote software runs with the TinyOS [Hill et al. 2000] operating system
and is written in nesC [Gay et al. 2003]. TinyOS’ design choices (pushing as many
decisions as possible to compile-time) have led to the development of an impres-
sively stable and flexible runtime and library of drivers. However, static allocation
is not the right model for dynamically invoked application-level tasks. Although
our software runs on TinyOS, it makes widespread use of dynamic memory and
function pointers. Tenet’s attribute-based data structures and processing chains
are similar to Snack [Greenstein et al. 2004]. Also, Tenet’s tasking language has
some resemblance to that of DSN [Chu et al. 2007]. However, DSN is intended
for programming the lowlevel behavior of individual motes whereas Tenet’s task-
ing language is used to express application-level tasks that can be dynamically
disseminated and executed at runtime.

Tenet, like many proposed macroprogramming techniques such as MacroLab [Hnat
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et al. 2008], Pleiades [Kothari et al. 2007], and Regiment [Newton et al. 2007],
attempts to provide a general-purpose programming framework that relieves the
complexity of distributed programming. However, Tenet achieves this goal by con-
straining mote-tier functionality, while macroprogramming approaches, in general,
rely on compiler and runtime technology to provide higher-level programming ab-
stractions.

To our knowledge, no prior work has proposed or implemented a complete net-
working subsystem for a tiered network, as we have. The components of the net-
working subsystem bear some resemblance to prior work, but are uniquely influ-
enced by Tenet’s communication patterns and generality.

TRD (Tiered Reliable Dissemination, Section 4.3.2) employs similar techniques
(exponential timers and suppression) as prior code dissemination protocols [Levis
et al. 2004; Stathopoulos et al. 2003; Hui and Culler 2004]. However, although all
reliable dissemination mechanisms employed for code dissemination assume a single
sender (for obvious reasons), TRD supports multiple masters sending different tasks
concurrently to all motes, and employs reliable flooding both on the master and
the mote-tiers. Second, reliable code dissemination designs are optimized for the
particular application; unlike TRD’s summaries, the metadata summaries used for
loss recovery are specific to code pages.

Reliable data transport has received some attention in the literature. RMST
[Stann and Heidemann 2003] (Reliable Multi-Segment Transport) adds reliable
transport on top of Directed Diffusion. RMST is a NACK-based protocol in which
loss is repaired hop-by-hop. However, unlike Tenet’s transport, it is tightly inte-
grated with Diffusion, designed for larger and more capable platforms, and opti-
mized for recovering losses of image fragments. PSFQ [Wan et al. 2002] (Pump
Slowly, Fetch Quickly) is a hop-by-hop reliable transport protocol designed for
sensor network reprogramming, Wisden [Xu et al. 2004] is a system for reliably
transporting structural vibration data from a collection of sensors to a base sta-
tion, and DataRel [Stathopoulos et al. 2005] provides a TCP-like abstraction for
transporting data from a mote to a border master in a tiered network. Finally,
Flush [Kim et al. 2007] is a reliable bulk transport protocol that reduces transfer
time by carefully controlling the rate at each hop along a flow, assuming that data
collection is coordinated to allow only one flow in the network at a time. In con-
trast to these systems, Tenet’s reliable transport ensures point-to-point delivery of
processed sensor data from a mote to any master in a tiered network.

Most prior routing protocols either support data delivery to a base station [Po-
lastre et al. 2005; Woo and Culler 2003] or to multiple sinks [Guy et al. 2006].
Some, such as Centroute [Stathopoulos et al. 2005], also centrally compute efficient
source routes to individual motes on demand, supporting unicast traffic from a base
station to a mote. Tenet’s routing system, in contrast, supports unicast traffic from
a mote to any master in the tiered network, and builds routing entries for traffic in
the reverse direction in a data-driven fashion.

4. THE TENET SYSTEM

In this section, we first describe a set of design principles that guided the devel-
opment of the Tenet implementation. We then describe, in some detail, the two
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main components of Tenet, its tasking subsystem and its networking subsystem.
We conclude with a discussion of the limitations of our current Tenet prototype,
motivating directions for future work.

4.1 Design Principles

The Tenet architectural principle constrains the design space for sensor network
architectures, but is not itself an architecture. Our Tenet system is based on the
Tenet principle and the five additional design principles described here. Again, we
define these principles aggressively, since this will show when violating the principles
is necessary for network performance or functionality.

The Tenet principle prohibits multinode fusion in the mote-tier. The precise form
of this prohibition is expressed as restriction on sensor network communication,
which must take the form of Asymmetric Task Communication: Any and all
communication from a master to a mote takes the form of a task. Any and all
communication from a mote is a response to a task; motes cannot initiate tasks
themselves. Here, a “task” is a request to perform some activity, perhaps based
on local sensor values; tasks and responses are semantically disjoint. Thus, motes
never communicate with (send sensor data explicitly directed to) another mote.
Rather, masters communicate with (send tasks to and receive data from) motes,
and vice versa.

The second principle expresses the Addressability properties of a Tenet net-
work: Any master can communicate with any other master as long as there is
(possibly multihop) physical-layer connectivity between them; any master can task
any mote as long as there is (possibly multihop) physical-layer connectivity between
them; and any mote should always be able to send a task response to the tasking
master. This principle helps enforce high network robustness and a relatively sim-
ple programming model. For example, imagine that a mote A is connected one-hop
to a master M , but could be connected to a different master, M ′, via three hops.
The addressability principle requires that, if M fails, A will learn about M ′ and
be able to send responses via M ′, and vice versa. The requirement to support
master-to-master communication allows, but does not require, the construction of
distributed applications on the masters. Addressability requires much less of motes,
however; a mote must be able to communicate with at least one master (assuming
the network is not partitioned), not all masters, and mote-to-mote connectivity is
not required. This is by design, and greatly simplifies mote implementations.

The third Task Library principle further defines what tasks may request of
a mote: Motes provide a limited library of generic functionality, such as timers,
sensors, thresholding, data compression, and other forms of simple signal process-
ing. Each task activates a simple subset of these functionality. A task library that
simultaneously simplifies mote, master, and application programming while provid-
ing good efficiency is a key piece of the Tenet architecture. We discuss the design
of the task library shortly.

Finally, Robustness and Manageability are primary design goals. Robust
networking mechanisms, which permit application operation even in the face of
extensive failures and unexpected failure modes, are particularly important for the
challenging environments in which sensor networks are deployed. Manageability
implies, for example, that tools in the task library must provide useful insight
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into network problems (such as why a particular sensor or group of sensors is not
responding, or why node energy resources have been depleted far faster than one
would have expected) and allow automated response to such problems.

Three important advantages arise from these design principles. First, applications
execute on the master tier, where programmers can use familiar programming inter-
faces (compiled, interpreted, visual) and different programming paradigms (func-
tional, declarative, procedural) since this tier is relatively less constrained. Second,
the mote-tier networking functionality is generic, since Tenet’s networking subsys-
tem merely needs to robustly disseminate task descriptions to motes and reliably
return results to masters. This enables significant code reuse across applications.
Finally, mote functionality is limited to executing tasks and returning responses,
enabling energy-efficient operation.

4.2 Tasks and the Task Library

When developing a language for describing tasks, the key trade-off faced is between
expressiveness and simplicity. Conventional Turing-complete languages place few
or no restrictions on what a programmer may request a mote to do, but make tasks
error prone, hard to understand, and hard to reuse.

Tenet chooses simplicity instead. A Tenet task is composed of arbitrarily many
tasklets linked together in a linear chain. Each tasklet may be thought of as a
service to be carried out as part of the task; tasklets expose parameters to control
this service. For example, to construct a task that samples a particular ADC
channel every 500 ms and sends groups of twenty samples to its master with the
tag LIGHT, we write

Sample(500ms, 20, REPEAT, ADC0, LIGHT) -> -> Send()

or equivalently,

Repeat(500ms) -> Sample(ADC0, LIGHT) -> Pack(LIGHT, 20) -> Send()

Tenet restricts tasks to linear compositions of tasklets for simplicity and ease of
construction and analysis, another example of an aggressive constraint. Tasks have
no conditional branches or loops, although certain tasklets provide limited versions
of this functionality. For example, a tasklet within a task may repeat its operation.
Also, a tasklet may, depending on its parameters, ignore or delete certain inputs or
terminate its execution, implementing a constrained conditional.

Tenet’s task library was inspired by our own prior work on SNACK [Greenstein
et al. 2004] and VanGo [Greenstein et al. 2006], and somewhat resembles other
sensor network tasking architectures [Liu et al. 2005]. It can also be seen as a par-
ticular instantiation of a virtual machine [Levis and Culler 2002]. However, rather
than allow application-specific VMs, we have worked to make this VM flexible,
general, high level, and efficient enough to support easy programming and tasking
from masters.

4.2.1 Task Building Blocks. The tasklets in the Tenet task library provide the
building blocks for a wide array of data acquisition, processing, filtering, measure-
ment, classification, diagnostic, and management tasks. For example, the Get()

tasklet collects a variety of information from the system such as routing state or
statistics on dynamic memory usage, while the Issue() tasklet controls when a
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Fig. 1. Mote data structures for a typical task.

task should be initiated either by delaying the subsequent tasklets on a task chain
until a specified time or by initiating a task periodically at a given interval.

The difficulty in constructing such a library is in determining what the right
building blocks should be. The Reboot() tasklet should, of course, reboot the
node. But what should Sample() do? Should it know how to be periodic? Should
it know how to pack several samples into a packet? Also, should we make one
Arith() tasklet? or should we separate Add() and Subtract() tasklets?

Our guiding principle is that tasklets should provide as much functionality as
possible, while still being easy to use and reuse. So, Sample() knows how to repeat
and collect blocks of samples because this level of functionality is still easy to control
(the parameters to Sample() are intuitive) and it is still fairly efficient. (A Tmote
mote can manage the state of roughly 100 Sample() tasklets even with its limited
RAM.) Also, Arith() can perform add, subtract, multiply, etc., because it only
requires one extra parameter, OP TYPE, while avoiding replication of code.

Our guiding principle can result in tasklets with many parameters. To simplify
programming these tasklets, Tenet provides the user with a rich set of easy-to-use
master-side tasklet APIs (Appendix A.1). These APIs are translated at the Tenet
master into the appropriate tasklets supported at the mote. For example, the Add()
and Sub() master-side tasklets are equivalent to Arith(ADD) and Arith(SUBTRACT)

respectively, and NextHop() is identical to Get(NEXT HOP). This approach incurs
no overhead on the motes, since the translation is performed at the task parser on
the master. Furthermore, it enables a simpler, more user-friendly, and less error-
prone API, and makes it easier to statically analyze tasks on the master-side for
parameter validity and usage.

4.2.2 The Task Data Structure. Figure 1 presents the task data structures from
the perspective of a mote. A task executing on a mote has two parts: a task object
maintains the tasklet chain, and one or more active containers hold intermediate
and final results of task processing.

The task object includes a task ID and a list of tasklets with their corresponding
parameters. During installation each tasklet’s constructor is called, passing any
parameters specified by the master; the constructor returns to the task object these
parameters, pointers to methods to run and delete the tasklet, and any needed
tasklet state. Finally, a new active container is created that points at the first
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tasklet in the chain. The underlying scheduler will soon start task processing by
passing this active container to the first tasklet.

An active container corresponds to an instance of a task whose processing is in
progress. The active container moves from tasklet to tasklet, being processed by
each in turn. Once it reaches the end of the chain of tasklets, it is deleted. An active
container maintains a pointer to its task object and an index specifying where it
is currently in the task object’s linear chain of tasklets. A repeating tasklet clones
the active container after each iteration. For example, while executing the task

Repeat(1000ms) -> LocalTime(X) -> Send()

an active container is cloned and emitted from the Repeat() tasklet every 1000 ms.
Thus, there may be several active containers associated with the same task in the
system at the same time.

An active container also holds a bag of attributes, containing all data resulting
from task execution. Each attribute is simply the tuple 〈tag, length, value〉. For
example, in the preceding task, the LocalTime() tasklet adds an attribute with
the tag X to the bag.

In general, tasklets name their input and output data types explicitly using these
tags. Thus

Sample(10000ms, 1, REPEAT, ADC_LIGHT, X) -> LEQ(Y, X, 39)

-> DeleteActiveTaskIf(Y) -> LocalTime(Z) -> Send()

will send timestamped light values only when their values are greater than 39. (The
actual implementation is done by deleting the execution of current instance if the
light value is less than or equal to 39). It is up to the task composer to verify that
the data type specified as input to an tasklet is compatible with that tasklet.

All state associated with a task is maintained by that task. Tasks and tasklets
are dynamically allocated. Since tasks arrive unpredictably, it is impractical to
statically plan memory allocation for them; dynamic allocation improves system
efficiency by providing a way to allocate memory resources only where needed.

4.2.3 Mote Runtime. The Tenet mote runtime provides a set of task-aware
queues for waiting on hardware resources. Each queue is owned by a service
corresponding to a particular tasklet. For example, the Issue() tasklet, which
implements the Wait() and Repeat() API’s, delays a task for a period of time.
Its corresponding time service maintains a queue where tasks may reside until it
is time for them to proceed. Likewise, the Sample() service maintains a queue of
tasks waiting for the ADC resource.5

At the heart of the system is the Tenet scheduler. It maintains a queue of tasks
waiting to use the mote’s microcontroller. The scheduler operates at the level of
tasklets, and knows how to execute the task’s tasklets in order. Since it operates at
this level of granularity (as opposed to executing each complete task one at a time),
several concurrently executing tasks may get fair access to a mote’s resources.

5Arbitration between tasklets that use the same resource is important. We expect the underlying

system (e.g., TinyOS) to provide this functionality.
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Tasklets Description ROM RAM

Actuate Actuate specified actuation channel 272 0
Arith Arithmetic operation on attribute data 592 0
Attribute Check existence/non-existence of an attribute 202 0
Bit Bitwise operation on attribute data 496 0
Comparison Comparison operation on attribute data 558 0
Count Increments a counter 122 0
DeleteActiveTaskIf Deletes an active task, possibly conditional 152 0
DeleteAttributeIf Deletes attribute(s), possibly conditional 226 0
DeleteTaskIf Deletes the task, possibly conditional 156 0
Get Get system state information (GlobalTime, NextHop, etc.) 850 0
Image Control Cyclops camera and take image 2098 243
Issue Issue a task after delay (periodic or specified time) 1582 28
Logical Logical operation on attribute data 402 0
OnsetDetector Filter data by detecting onset of significant event 1996 0
Pack Pack consecutive scalars into a vector attribute 292 0
Reboot Reboots the mote 56 0
SendPkt Send using packet-based or best-effort transport 3742 398
SendStr Send using stream-based transport 4442 560
SendRcrt Send using RCRT protocol 6198 866
Sample Samples specified ADC channel 7224 146
SampleRssi Uses radio RSSI as a virtual sensor 226 18
SampleMda400 Samples specialized vibration board 2324 18
Statistics Statistics of an attribute data 462 0
Storage Store/Retrieve an attribute, valid across executions of task 544 6
Voltage Samples battery voltage (code partly overlaps with Sample) 3444 66
UserButton Trigger/block task execution using user button (Telosb) 360 16

Fig. 2. Tasklets in the Tenet task library, with ROM and RAM bytes saved by removing each
tasklet from our mote application.

4.2.4 Task Operations. The task description disseminated from a master to its
motes contains, in serialized form, a task identifier and the list of tasklets that
comprise this task. Each tasklet encodes its name (from a well-known enum) and
its parameters as a tag-length-value attribute.

Motes accept two operations on tasks: installation and deletion. When a mote
receives a task description from a master containing a task ID that is not currently
installed, the mote concludes that this task should be installed. An empty de-
scription with currently installed task ID is interpreted as a request to destroy a
running task. To delete a task, all active containers corresponding to that task are
found and destroyed (they may be hiding in any tasklet’s associated service or in
the scheduler), followed by the task object itself.

4.2.5 OS Dependencies. The Tenet task library was implemented on top of
TinyOS, but we follow very few of the programming patterns of that operating
system. The advantage to using TinyOS is in the robustness and availability of its
drivers. The chief drawback is that we cannot dynamically load software libraries
at runtime; thus, all tasklets an application might require must be compiled into a
single binary. In the future, we may consider OSes that relax this restriction [Han
et al. 2005], allowing required tasklets to be fetched from a master dynamically.

4.2.6 Examples of Tasks. Figure 2 describes Tenet’s current tasklets and their
contributions to program size and static memory allocation. Also, Appendix A.1
lists all of Tenet’s tasklet APIs provided by current set of tasklets. We may link
together these building blocks to compose a wide array of sensing, maintenance,
and diagnostic tasks.
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For instance, we have composed several tasks that assess and maintain the health
of a sensor network. To verify by visual inspection that a mote is running properly,
we may inject the Blink task.

Repeat(1000ms) -> Count(A, 0, 4) -> SetLeds(A)

Every second, this task adds 4 to a counter whose initial value is 0, places the value
of this counter into an attribute called A, and displays A as a pattern of LEDs.
CntToLedsAndRoutedRfm is a more complicated task to help verify that there is
end-to-end connectivity from a master to a mote.

Repeat(1000ms) -> Count(A, 0, 1) -> SetLeds(A) -> Send()

In addition to blinking, this task transmits the value of A back to the master node.
To further diagnose our motes, we may monitor routing table information and

the memory usage by issuing Ping and MeasureHeap tasks.

Repeat(1000ms) -> NextHop(A) -> Send()

Repeat(1000ms) -> MemoryStats(B) -> Send()

Ping reports the routing table’s next hop information every second. MeasureHeap
reports a mote’s statistics on current and peak dynamic memory allocations on
the heap. Such tasks, as well as data acquisition and processing tasks, may run
concurrently.

If mote software seems to be behaving poorly, the Reboot() tasklet may be used
to reset a mote. This is often the most prudent recourse. Of course, some mote
software failures within the routing, transport, and task installation software may
prevent the proper reception, installation, and execution of the Reboot task.

The tasklet Sample() serves as the data source for acquisition and processing
chains. A Send()-style tasklet is usually the chain’s tail; the particular tasklet
depends on the type of transport desired (see the following). For example,

Sample(1000ms, 1, REPEAT, 1, ADC0, A) -> Send()

provides the most basic sampling and transmission support one might expect from a
mote. Every second, this task takes a sample from the ADC’s channel 0, gives it the
name A, and transmits it. It is similar to the TinyOS SenseToRfm application in
that it periodically collects a single sensor value, and to TinyOS’s Surge application
in that it delivers data using multihop transport.

Tasklet parameters and their linear composition make it fairly flexible. The
following configuration, for example, samples both channels 0 and 1 and stores five
samples of each before sending them.

Repeat(1000ms) -> Sample(ADC0, A) -> Sample(ADC1, B)

-> Pack(A, 5) -> Pack(B, 5) -> Send()

To instruct a mote to process the samples it collects, a master may specify tasklets
between Sample() and Send(). A rather complicated example is as follows.

Sample(1000ms, 10, REPEAT, ADC0, A)

-> MeanDev(B, A) -> SetLeds(A)

-> CountGEQ(C, A, 45) -> GEQ(C, C, 3)

-> DeleteAttributeIf(C, A) -> DeleteAttribute(C)

-> GlobalTime(D) -> Count(C, 0, 1)

-> Send()
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Every second, this task takes a sample from the ADC, waits until 10 samples are
collected, and passes this set of ten samples at a time through the task chain. On
each pass through the chain, the task measures the mean deviation of the sample
set, and displays on the LEDs a pattern representative of the values of the samples.
The task also classifies the sample set as interesting if at least three of them have
an amplitude of at least 45 (by counting how many of them have an amplitude of
at least 45 and checking whether there are at least three of them). It then records
the global timestamp and a sequence number, and transmits the sample set along
with the measured mean deviation. The sample itself is transmitted as well, but
only if it happens to be interesting. Notice that the tasking language allows re-
use of attributes. For example, GEQ(C, C, ’3’) uses attribute C as both input
and output where the creation of an output attribute will automatically delete any
attribute with the same name.

4.2.7 An Example of a Data Collection Application. How can a Tenet applica-
tion make use of this tasking library? Shown shortly is the code for a complete
application which collects voltage level, next routing hop, and global time informa-
tion every 5 seconds. We support Tenet application development in C or Python;
the pseudocode that follows is slightly abstracted from a C program.

int main()

{

task_string = "Sample(5000ms, 1, REPEAT, 2, VOLTAGE) \\

->NextHop(3)->GlobalTime(4)->Send()";

task_packet = construct_task(task_string);

task_id = send_task(task_packet);

while (1) {

(response, mode_id) = read_response();

voltage = response_find(2, response);

nexthop = response_find(3, response);

globaltime = response_find(4, response);

store_data_to_file(mote_id, voltage, nexthop, globaltime);

}

}

The Tenet master-side API enables a programmer to construct a tasking packet
from a task description (construct task()), disseminate the task (send task()),
receive task responses from the motes (read response()), and find the attribute
of interest from this response (response find()). The programmer only needs to
write down the task description, extract data from the response, and process the
data. In the previous application, the data is stored in a file, but a more realistic
application might process the data as it is received.

4.3 The Networking Subsystem

Tenet’s networking subsystem has two simple functions: to disseminate tasks to
motes and to transport task responses back to masters. The design of the network-
ing subsystem is governed by four requirements.

The subsystem should support different applications on tiered networks. Routing
and dissemination mechanisms in the prior sensor network literature do not support
tiered networks (Section 3). As a result, we had to build a complete networking
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Function Mechanism

Disseminating tasks from a master to a
mote

Tiered reliable flooding of a sequence of packets from any
master to all motes

Routing task responses from a mote to
a master

Tiered routing, with nearest master selection on the
mote-tier, and overlay routing on the master tier

Routing transport acknowledgments
from master to mote

Data-driven reverse-path establishment

End-to-end reliable transport of events Transactional reliable transmission protocol

End-to-end reliable transport of time
series

Stream reliable transmission with negative acknowledgments

Fig. 3. Tenet networking mechanism summary.

subsystem from the ground up while leveraging existing mature implementations
where possible. An important design goal was to support many application classes,
rather than tailoring the networking subsystem to a single class.

Routing must be robust and scalable. The routing system must find a path be-
tween a mote and a master if there exists physical multihop connectivity between
them. In Tenet, the routing system needs to maintain state for motes since masters
may need to transmit packets to motes; the routing state on the motes must, in the
worst case, be proportional to the number of actively communicating motes. For
routing data back to the masters, the system will need to maintain state for mas-
ters. We require that this state be constant, independent of the number of masters.
Intuitively, this is the best a tree-based mote routing system can do, without in-
creasing packet header size. By using source routing, as in Centroute [Stathopoulos
et al. 2005], it is possible to remove routing state at the motes entirely, and Tenet
can support this form of routing as well.

Tasks should be disseminated reliably from any master to all motes. Any master
should be able to task motes, so task dissemination must work across tiers. Fur-
thermore, tasks must be disseminated reliably, and a mote must be able to retrieve
recently disseminated tasks after recovery from a transient communication or node
failure.

Task responses should be transported with end-to-end reliability, if applications so
choose. Some applications, such as structural monitoring or imaging, are loss intol-
erant. Furthermore, as applications push more data processing onto the motes, this
processed data will likely be loss intolerant. This makes end-to-end reliable trans-
mission a valuable service Tenet should support. While many existing systems use
a limited number of hop-by-hop retransmissions or hop-by-hop custodial transfer
(retransmit until the next hop receives the packet), neither of these mechanisms en-
sures end-to-end reliable delivery; for example, if the receiver of a custodial transfer
fails immediately after the transfer is complete, data may be irretrievably lost.

The following sections describe the design of Tenet’s networking subsystem and
how the design achieves these goals; Figure 3 summarizes its novel mechanisms.

4.3.1 Tiered Routing. In Tenet, all nodes (masters and motes) are assigned
globally unique 16-bit identifiers. The identifier size is determined by the TinyOS
networking stack, and motes use the 16-bit TinyOS node identifier. Masters run
IP, and use the lower 16 bits of their IP address as their globally unique identifier
for master-to-mote communication. This requires coordinated address assignment
between the master and the mote-tiers, but this coordination does not impose
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significant overhead during deployment.
Tenet’s routing system has several components: one component (master tier rout-

ing) leverages existing technology; another component (mote-to-master routing) is
adapted from existing tree-routing implementations; and two other components
(data-driven route establishment for master-to-mote routing, and overlay routing
on the master tier) are novel.

Our addressability principle requires masters to be able to communicate with each
other. Tenet simply uses IP routing in the master tier. This has two advantages.
First, distributed Tenet applications can use the well-understood socket interface for
communicating between distributed application instances. Second, Tenet can lever-
age routing software developed for wireless IP meshes. Our current implementation
allows multiple IP routing mechanisms within the master tier; our experiments used
static routing, but Tenet can easily accommodate other wireless routing protocol
implementations such as Roofnet [Aguayo et al. ] and OLSR [Clausen and Jacquet
2003].

Tenet’s addressability also calls for any mote to be able to return a response to the
tasking master. Standard tree-routing protocols are inadequate since they assume
a single base station. Tenet uses a novel tiered routing mechanism, where a mote’s
response is first routed to its nearest master, and is then routed on the master
tier using an overlay. In order to enable motes to discover the nearest master,
each master periodically transmits beacons. When a mote receives a beacon, it
relays this to its neighbors after updating a path metric reflecting the quality of
the path from itself to the corresponding master. Then, the mote selects as its
“parent” that neighbor which advertised the best path to a master. Over time,
a mote’s parent may change if the path quality to its nearest master degrades,
or if the nearest master fails, conditions detected by the periodic beacons. This
only requires a mote to maintain state for a one master plus a fixed number of
potential alternate masters, and as long as a mote can hear at least one master, it
can send traffic to the master tier. We have modified three well-known tree routing
protocols (MultiHopLQI, MultiHopRssi, and MintRoute)6 to support this nearest
master selection. When a mote receives a packet from any neighbor that is not its
parent, it forwards the packet to the parent.

Once the packet reaches the master tier, an IP overlay is used to forward the
packet to the destination master. A master node that gets a packet from the mote-
tier examines the 16-bit destination address on the packet. It translates this to
an IP address (by prepending its own 16-bit subnet mask to that address), then
determines the next hop towards this IP address using the IP routing table. It
then encapsulates the packet in a UDP packet, and sends this to the next hop.
The next hop master node repeats these actions, ensuring that the packet reaches
the destination. This IP overlay is implemented as a user-space daemon. Together
with nearest master selection, IP overlay routing ensures that if there exists a path
between a mote and the master to which it should send its task response, that path

6We use MultiHopLQI in our PEG experiments (Section 5.2) and VTB deployment (Section
5.4), and MultiHopRssi in our JR deployment (Section 5.5). MultiHopLQI, MultiHopRssi and
MintRoute are implemented in TinyOs-1.x. Our TinyOs-2.x port uses modified versions of MLQI

and CTP [Gnawali et al. 2009].
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will be taken.
The routing system also enables point-to-point routing between masters and

motes. This is necessary in two cases. First, our reliable transport mechanisms (de-
scribed shortly) require connection establishment and acknowledgment messages to
be transmitted from a master to a mote. Second, in certain circumstances, it may
be necessary to adaptively retask an individual mote; for efficiency, a master can
directly send the task description to the corresponding mote instead of using our
task dissemination mechanism described soon. In either case, a master needs to
be able to unicast a packet to a mote only after it has received at least one packet
from the mote.

Tenet’s scalable data-driven route establishment mechanism works as follows.
When a mote gets a task response data packet from a nonparent, it establishes a
route entry to the source address (say S) in the packet, with the next hop set to
the sender. It also implements an aging mechanism; the age of a new route entry
is set to zero, and when the age exceeds a certain limit (in our implementation,
2 minutes), this entry is removed. If the entry existed previously, the mote resets
the associated age. Only after updating the state does it forward the packet to the
parent. Subsequently, when the parent sends a packet destined to S (say a transport
acknowledgment from a master), the node uses this routing entry to forward the
packet to S, and resets the associated age. Thus, the routing entry is active as long
as a mote has recently communicated with its master. Masters also implement a
similar algorithm that sets up these data-driven routes so packets on the master
tier are correctly routed towards S.

Thus, data-driven route establishment maintains one routing entry per actively
communicating mote. More precisely, each mote maintains one routing entry for
each active mote in its own subtree. Data-driven route establishment can have
degraded data delivery performance in the presence of link asymmetry. For this
reason, we have recently added support for the CTP routing protocol, to TinyOs-2.x
implementation of Tenet, which has larger memory footprint but uses bidirectional
ETX as its routing metric. More generally, the Tenet architecture does not restrict
the choice of mote-tier tree routing protocol. Hence, asymmetric links are not
a challenge specific to Tenet, and any routing solution developed to address this
problem can be incorporated into Tenet.

4.3.2 Tiered Task Dissemination. A central component of Tenet’s networking
subsystem is one that disseminates tasks from masters to motes. Tenet’s task
dissemination subsystem reliably floods task descriptions to all motes. This choice
is based on the observation that in most of the applications we describe in this
article, and those we can foresee, tasking a network is a relatively infrequent event,
and applications usually task most if not all the motes. When applications need to
select a subset of the motes to task, they can indicate this by prepending a predicate
tasklet to the task description. A predicate is a function of static attributes of a
node (such as the sensors it has, its current location, and so on). All motes begin
executing the task, but task execution is completed only on motes whose attributes
satisfy the predicate. For example, to execute a task only on motes whose ID is
less than 10, the following tasklet chain can be prepended to the task.

NodeId(A) -> GT(B, A, 10) -> DeleteTaskIf(B) -> ...
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Tenet’s reliable task dissemination mechanism is built upon a generic reliable
flooding protocol for tiered networks called TRD (Tiered Reliable Dissemination).
TRD provides the abstraction of reliably flooding a sequence of packets from any
master to all motes in the network. TRD’s abstraction is different from that consid-
ered in the literature (Section 3). Disseminating a task using TRD is conceptually
straightforward. Applications send the task to TRD; if the task description fits
within a packet, TRD sends the packet directly, otherwise it fragments the task
description into multiple packets which are then reassembled at each mote.

TRD works as follows. Suppose a master M wishes to transmit a task packet.
TRD locally caches a copy of the packet on M , assigns a sequence number to the
packet, and broadcasts the packet to its neighbors as well as to any nearby motes
(in case M happens to have motes nearby). Motes also cache received packets,
and rebroadcast previously unseen packets to their neighbors, and so forth. Each
cache entry contains <master id, sequence number> tuple along with a copy of the
packet and its age since creation. In our implementation, both master and mote
caches are of fixed size (25 entries), and cache entries are replaced using an LRU
policy.

Of course, some motes or masters may not receive copies of the packet as a result
of wireless transmission errors. To recover from these losses, each node (master or
mote) occasionally transmits a concise summary of all the packets it has in its cache.
These transmissions are governed by an exponentially backed off timer [Levis et al.
2004], so that when the network quiesces, the overhead is minimal. The summaries
contain the last k (where k is a parameter determined by the memory available
on the motes) <master id, sequence number> tuples, one tuple from each active
master id in the cache with the latest sequence number for that master. If the node
detects that a neighbor has a newer packet (identified by <master id, sequence
number> tuples) than what it has in its own cache, it immediately requests the
missing packet using a unicast request. If a node detects that a neighbor has
some missing packets, it immediately broadcasts a summary so the neighbor can
rapidly repair the missing sequence packets, and so other nodes can suppress their
own rebroadcast. Lastly, when a node boots up, it broadcasts an empty summary
prompting neighbors to send their summaries.

This protocol has several interesting features. It uses the master tier for dissem-
ination; as we show in our experiments, this results in lower task dissemination
latencies than if a single master were used to inject tasks into the mote cloud. It is
extremely robust: all the nodes in the network would have to simultaneously fail for
a packet to be lost. It periodically transmits small generic summaries, proportional
in size to the number of active masters.

On the master side, TRD is implemented within a separate transport layer dae-
mon that also implements the transport protocols described next. Applications
connect to this daemon through sockets and transmit a task description to TRD
(our implementation has a procedural interface send task() that hides this detail
from the programmer). Before transmitting a new task, the daemon assigns it a
unique task ID and maintains a binding between a task ID and the application.
Applications can use this task ID to delete tasks, or to associate task responses to
tasks. This ID is also included in task responses so that the transport layer knows
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which application to forward the response to. Our TRD implementation check-
points assigned task IDs to avoid conflicting task ID assignments after a crash.

An interesting side effect of TRD’s robustness is that a node which recovers after
a crash may receive a copy of a task it had previously received or sent out recently
in the past. This may cause problems; for example, if a Reboot() task was sent
to reset the motes, a mote might repeatedly reboot. To avoid this undesirable
situation, every TRD message has an age field which is incremented using a timer
and synchronized through summary exchanges. TRD checks the age of the received
task message and deletes this task if it is older than the node’s lifetime. Hence,
only the tasks that are generated after a node boots up will be executed on that
node.

Our mote implementation of TRD is engineered to satisfy mote resource con-
straints and to support multiple platforms. TRD stores its packet cache in Flash
memory in order to conserve RAM and only maintains a small index of the Flash
contents in RAM. Furthermore, TRD currently only supports a fixed number of
masters (currently 5) to limit the size of the index. It implements a consistent
aging strategy by which master entries in the summary are individually timed out
to accommodate new active masters.

Finally, Tenet applications might also wish to adaptively retask a subset of the
motes; for example, an application might choose to adjust the sampling rate on
some sensors based on observed activity. Applications can use TRD to delete the
previous task and disseminate a modified task description with an appropriate
predicate or, if it is more efficient, send the updated task descriptions directly to
the motes using one of Tenet’s reliable transport protocols described in the next
section.

4.3.3 Reliable Transport. Tenet needs a mechanism for transmitting task re-
sponses from a mote to the master that originated the task, possibly with end-
to-end reliability. Tenet currently supports four types of delivery mechanisms: a
best-effort transport useful for loss-tolerant periodic low rate applications, a trans-
actional reliable transport for events, a stream transport for high-data rate appli-
cations (imaging, acoustics, vibration data), and the RCRT [Paek and Govindan
2007] protocol for congestion-controlled reliable data collection. All four delivery
mechanisms use a limited number of hop-by-hop retransmissions to counter the high
wireless packet loss rates encountered in practice. Applications select a transport
mechanism by using the corresponding tasklet in their task description (respec-
tively, Send(), Send(E2E ACK), SendStr(), or SendRcrt()). The implementation
of best-effort transport is conventional, and that of RCRT protocol is detailed
in Paek and Govindan [2007]; the rest of this section discusses the transactional
and stream transport mechanisms.

Transactional reliable transport allows a mote to reliably send a single packet
(containing an event, for example) to a master. In Tenet, transactional transport is
implemented as a special case of stream transport: the data packet is piggybacked
on stream connection establishment.

The stream transport abstraction allows a mote to reliably send a stream of
packets to a master. When a task invokes the SendStr() tasklet, the stream
transport module first establishes an end-to-end connection with the corresponding
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master. Stream delivery uses a connection establishment mechanism similar to
the three-way handshake mechanism of TCP. However, because stream delivery
is fundamentally simplex, the connection establishment state machine is not as
complex as TCP’s and requires fewer handshakes for connection establishment and
teardown. Once a connection has been established, the module transmits packets
on this connection. Packets contain sequence numbers as well as the task ID of
the corresponding task. The remote master uses the sequence numbers to detect
lost packets and sends negative acknowledgments for the missing packets to the
mote, which then retransmits the missing packets. End-to-end repair is invoked
infrequently because of our hop-by-hop retransmissions (Section 5).

On masters, transport protocols are implemented at user level. Transport and
TRD execute in one daemon so that they can share task ID state. On motes, our
implementation is engineered to respect mote memory constraints. Retransmission
buffers at the sending mote are stored in Flash in order to conserve RAM.7 Fur-
thermore, our implementation has a configured limit (currently 4) on the number
of open connections a mote may have for reliable transport. (Best-effort transport
does not have this limit.) All transport protocols work transparently across the
two tiers in Tenet. All types of reliable delivery can traverse multiple hops on
both tiers of the network and there is almost no functional difference between our
implementations for the two tiers.

4.4 Limitations

We view our current work on Tenet as the first step towards a general-purpose
architecture for sensor networks. As such, our current prototype lacks functionality
required to support some sensor network applications.

Infrastructural components can be easily incorporated into the Tenet system.
Our current prototype already includes time synchronization. Once a mature im-
plementation of localization is available, it will be conceptually easy to incorporate
this into Tenet. Information from these components (such as location and time)
can be exported to applications through tasklets; indeed, we have already developed
tasklets that export system information (such as routing state, task concurrency,
dynamic memory usage, etc.) and allow applications to read global time and syn-
chronize task execution.

At the moment, the Tenet system does not support delay-tolerant applications,
those that require (statistical) delay bounds, or low latency messaging (e.g, Simon
et al. [2004]). Whether these can be achieved within the context of this architecture
or not remains an open question, one that can only be answered after we have
attempted to add support for these in the system. As we state in Section 1, the
architectural constraint of Tenet could be relaxed if required, of course, but we
aggressively enforce it to most clearly demonstrate the costs and benefits of our
approach.

In this article, we have not discussed energy management. Recently, we have been
able to retrofit radio duty-cycling into Tenet, without compromising the Tenet prin-

7Every new packet sent using stream transport is stored to a circular Flash buffer, which can hold
200 packets in our current implementation. This design trades off energy against RAM. We plan

also to explore alternate retransmission strategies.
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Max Memory Usage (bytes) Data Transmitted (bytes/pkt)
Task Concurrency Application Overhead Tasking Output Overhead

Diagnostics — 94 22 46 26 46%

Sample[1]→Send 64 64 18 30 6 67%
+ LocalTime 55 76 20 38 14 57%
+ Count 47 90 22 48 20 60%
+ MeanDev 41 104 24 58 26 61%
+ Comparison + DeleteAttr 32 134 28 80 26 61%

Sample[40]→Send — 142 18 40 84 5%

Fig. 4. Statistics for example tasks. Max Concurrency shows the number of concurrent tasks a
single Tmote mode can support. Memory Usage shows the number of bytes used per task for

application data and malloc overhead. Data Transmitted shows the number of bytes needed to
specify a task in a task dissemination packet, and the number of bytes sent per task execution.
The % Overhead column shows how much of that load is taken up by attribute overhead (type

and length bytes); when the Sample task is instructed to include 40 samples per attribute instead
of one, this overhead drops significantly.

ciple [Gnawali et al. 2009]. Several other extensions to the Tenet system remain
open, and we believe these are conceptually easy to achieve. Support for actua-
tion can be naturally expressed as a task. Similarly, mote-tier storage can also be
realized by adding appropriate abstractions (reading and writing to named per-
sistent storage) and associated tasklet implementations. Finally, mechanisms for
ensuring the authenticity and integrity of data, and methods for multi-user access
control and resource management, can borrow from similar mechanisms in other
general-purpose systems.

5. TENET EVALUATION

This section evaluates Tenet through microbenchmarks of its tasking and network-
ing subsystems and reliable stream transport, and through four application studies,
including a pursuer-evader game (PEG), an application believed to be particularly
challenging to implement efficiently without in-network data fusion. We find that
Tenet’s core mechanisms, such as tasking, scale well; that Tenets are robust and
manageable; that its tasking language is flexible enough to accommodate a variety
of applications; and that even challenging applications may be implemented with
little efficiency loss.

5.1 Tasks and Tasklets

Tenet tasklets and the base Tenet implementation, particularly its tasking and
memory subsystems, should be lightweight enough to allow many tasks to execute
concurrently on a mote; for instance, to run diagnostics tasks concurrently with
sensing tasks. Thus, as an end-to-end evaluation of the Tenet tasking software stack,
we find the maximum number of copies of a task that a mote can support. A Tmote
can run 32 concurrent versions of a nontrivial task; this maximum concurrency
rises for simpler tasks. We also measure other basic aspects of the system, such as
memory and packet overhead.

Concurrency. We begin the concurrency study with a simple sample-and-send
task.

Sample(60000ms, 1, REPEAT, ADC0, A) -> Send()
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We increase the sampling period to 60 seconds to prevent the radio from being
the concurrency bottleneck. The fact that the radio cannot support very much
traffic, particularly when communicating over multiple hops, is a well-known issue
with sensor networks in general. Varying numbers of copies of this task are run
alongside the following single diagnostics task, which sends, from each mote, a
timestamp, the next hop, and statistics of memory usage.

Repeat(1000ms) -> LocalTime(A)

-> MemoryStats(B) -> NextHop(C) -> Send()

A single Tmote mote can concurrently execute the diagnostics task plus up to 64
sample-and-send tasks. Naturally, tasks that contain more tasklets consume more
resources, so the mote can execute fewer of them at once. We measure this effect
by adding tasklets to the sample-and-send task, thus making it more complex. For
each incremental addition to the task, we measure how many of that intermediate
task can execute on a mote at the same time. The more complicated task is as
follows.

Sample(20000ms, 1, REPEAT, 1, ADC0, A)

-> LocalTime(B) -> Count(C, 0, 1) -> MeanDev(D, A)

-> GT(E, A, 0) -> DeleteAttribute(A) -> Send()

This task is similar to the data acquisition and processing example in the previous
section, except that we additionally delete the sample for good measure. Figure 4
shows the results: a Tmote can concurrently execute 32 instances of this compli-
cated task.

Memory. We now turn our attention to identifying the resource bottleneck that
prevents higher task concurrency. There are two candidates: available MCU cycles
and RAM. Radio bandwidth cannot be the bottleneck as our tasks sent sufficiently
little data.

Our results indicate that memory is the tasking bottleneck on our motes. Figure 4
shows the total bytes allocated from the heap per task in steady state, and the total
number of bytes allocated to manage these heap blocks (two bytes per block). Our
Tenet Tmotes have around 5540 bytes available in RAM for the heap and call stack.
In the steady state, a sample-and-send task uses 82 (64 + 18) bytes allocated from
the heap and the diagnostics task uses 116 (94+22) bytes. Thus, even ignoring the
call stack, a Tmote wouldn’t be able to support more than ⌊(5540− 116)/82⌋ = 66
concurrently executing sample-and-send tasks while a diagnostics task is running.
In actuality, a Tmote supports 64. On more RAM-constrained motes, this number
can be much lower; a Tenet MicaZ, for example, supports only 12 sample-and-send
tasks.

Even tasks that use our most CPU-intensive tasklet, MeanDev() (or equiva-
lently Statistics(MEAN DEV)), experience memory constraints before processor
constraints. The following task demonstrates this.

Sample(1000ms, 1, REPEAT, ADC0, A)

-> LocalTime(B) -> MeanDev(C, A) -> LocalTime(D)

-> DeleteAttribute(A) -> Send()

This task measures and reports the mean deviation from the mean of a collected
sensor value. We record the time before and after running this tasklet to measure
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Input Samples Execution Time (ms)

1 1.8
40 2.3

400 6.8
800 11.9

1200 16.9

Fig. 5. Execution time of measuring the mean deviation from the mean as a function of the

number of input samples. Averaged over five runs.

(a) six master topology (b) single master topology

Fig. 6. Testbed topology as gathered by NextHop() → Send(). Masters are stars, motes are dots.
PEG experiments use only the central master.

its execution speed. Our hypothesis is that for the tasklets we have written, none
consumes enough MCU cycles such that concurrency will be bounded by the micro-
controller. Figure 5 lists the execution times of calculating the mean deviation from
the mean as a function of the number of input samples. Even when processing 1200
samples at a time, which consumes about half the application’s available RAM,
the execution time is a mere 16.9 milliseconds. Thus, a mote running several tasks
that gather statistics will only be CPU-bound when the aggregate sampling rate is
approximately 71,000 samples per second.

Data Transmitted and Packet Overhead. The task library’s processing flexibility
results from the use of flexible attribute-based packets and data structures. How-
ever, nothing is for free: this flexibility comes at the cost of increased overhead.
Figure 4 shows the packet overhead associated with adding type and length fields
to each of our data attributes. It requires 30 bytes to specify a task as simple as
sample-and-send. Each packet generated by this task contains only six bytes of
application data, four of which are the name and length of the attribute containing
the sample. When sampling is periodic, the ratio of task specification bytes to
output bytes becomes insignificant, but for tasks that put a single sample in each
packet the overhead of describing the response in TLV format is still large.

To compensate for this overhead, the Sample tasklet can pack more than one
sample in an attribute. When the master specifies that 40 samples be packed and
sent in each packet (the Sample[40] → Send task), this overhead drops to 5%.

5.2 Application Case Study: Pursuit-Evasion

How much, if at all, does Tenet degrade application performance relative to a mote-
native implementation that performs in-mote multinode fusion? In this section, we
examine this question by comparing mote-native and Tenet implementations of a
pursuit-evasion application.
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Pursuit-Evasion Games. Pursuit-Evasion Games (PEGs) have been explored ex-
tensively in robotics research. In a PEG, multiple robots (the pursuers) collectively
determine the location of one or more evaders, and try to corral them. The game
terminates when every evader has been corralled by one or more robots. PEGs have
motivated interesting research directions in multirobot coordination. In this article,
however, our interest in PEGs comes from the following observation: in obstructed
environments such as buildings, pursuers may not have line-of-sight visibility to
evaders, and a sensor network can help detect and track evaders. Indeed, Sharp
et al. [2005] describe a mote-level implementation of the mechanisms required for
evader detection and tracking in PEGs. In their implementation, the mote net-
work senses evaders using a magnetometer, and transmits a location estimate to
one or more pursuers. The network continuously tracks evaders, so that pursuers
have an almost up-to-date, if approximate, estimate of where the evaders are. The
pursuers can then employ collaborative path planning algorithms to move towards
the evaders.

We have reimplemented a version of Sharp et al.’s system, including their leader
election, landmark routing, and landmark-to-pursuer routing mechanisms. (We
could not use their implementation since it was developed on a previous gener-
ation sensor platform, the mica2dot.) Leader election performs in-mote multinode
data fusion to determine the centroid of all sensors that detect an evader; the other
mechanisms route leader reports to pursuers. Our reimplementation, which we call
mote-PEG, uses Sharp et al.’s algorithms, but a more mature routing technology,
namely MultihopLQI. This allows for a more meaningful comparison with our Tenet
implementation.

Tenet and PEGs. PEGs represent a stress test for Tenet. In a dense deployment,
it is highly likely that multiple motes will sense the evader. Pushing the application-
specific processing into the motes, as mote-PEG does in its leader election code, can
conserve energy and reduce congestion. Because Tenet explicitly forbids in-mote
multinode fusion, it cannot achieve similar efficiencies.

We have implemented a single pursuer, single evader PEG application for Tenet.
In Tenet-PEG, the pursuer is a mobile robot that is part of the master network. The
Tenet-PEG application runs on the pursuer, which tasks all the motes to report
evader detections whose intensity is above a certain threshold T . The pursuer
receives the task responses and computes the evader positions as the centroid of
all reports received within a window P , where P is the sampling period at the
motes. Extending this implementation to multiple pursuers involves distributing
the application across the master tier, which we have left to future work.

Although Tenet-PEG cannot reduce network traffic by multinode data fusion
on the motes, it can control overhead by dynamically adjusting the threshold. In
our Tenet-PEG implementation, we have implemented a very simple adaptive al-
gorithm. K, the target number of reports, is an input parameter to this algorithm.
Initially, our Tenet-PEG implementation sets a low threshold. When it has received
at least P (10, in our current implementation) distinct sensor values, it picks the
K-th highest sensor value (K is 3 in our experiments), and retasks the motes to
report at this threshold. A more sophisticated algorithm would continuously adjust
the threshold based on the number of received reports, and is left for future work;
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however, even this simple algorithm works well in practice.

Experimental Methodology and Metrics. We now compare the performance of
Tenet-PEG and mote-PEG. Our experiments are conducted on the testbed shown
in Figure 6(a). This testbed consists of 56 Tmotes and 6 Stargates deployed above
the false ceiling of a single floor of a large office building. The Stargate and mote
radios are assigned noninterfering channels. The mote radio power is configured
such that the maximum network diameter is 5 ∼ 7 hops. This testbed represents a
realistic setting for examining network performance as well as for evaluating PEGs.
The false ceiling is heavily obstructed, so the wireless communication that we see is
representative of harsh environments. The environment is also visually obstructed,
and thus resembles, say, a building after a disaster, in which a pursuit-evasion sensor
network might aid the robotic search for survivors.

We make two simplifications for our experiments which affect both implementa-
tions equally and therefore do not skew the results. First, lacking a magnetometer
sensor, we use an “RSSI” sensor. The evader periodically sends radio beacons and
sensors detect the existence of the evader by the receipt of the beacons. The bea-
con’s RSSI value is used as an indication of the intensity of the sensed data. Since
multiple nodes can detect the evader beacon, its effect is similar to that of having
a real magnetometer. The RSSI is also used to implicitly localize the evader; RSSI
has been used before for node localization [Bulusu et al. 2000], and since we only
require coarse-grained localization (see the following), it is a reasonable choice for
our experiments as well. Second, to create a realistic multihop topology, we limit
the transmit power of each mote. This results in a topology with a 9-hop diameter,
and is comparable to the diameter of the network used in Sharp et al. [2005]. This
also results in a realistic tiered network, with the largest distance from a master to
a mote being about four hops.

In this setting, since we are interested in how the network affects application
performance, we conduct the following experiment. We place one stationary pur-
suer. An evader tours the floor, carrying a laptop attached to a mote that emits the
evader beacon. The frequency of evader beaconing, as well as that of RSSI sampling,
is 2 Hz. The laptop receives user input about its current location, and maintains
a timestamped log of the evader position. This log represents the ground truth.
For Tenet-PEG, we use a network with a single master; this enables a more even
comparison with mote-PEG, since using a tiered network could skew performance
results in Tenet’s favor.

In comparing the two implementations, we use the following metrics. Our first
metric measures application-perceived performance, the error in position estimate.
Many robotic navigation techniques reduce the map of an environment to a topo-
logical map [Kuipers and Byun 1988]. This topological map is a collection of nodes
and links that represents important positions in the environments. Using such a
topological map, path planning can be reduced to graph search [Brooks 1983]. Our
Tenet-PEG implementation actually implements a simple graph search technique.
In PEG implementations that use such a topological map, the goal is to narrow
the evader’s location down to the nearest node on the topological map. Thus, our
definition of position error at a given instant is the distance on the topological map
between the pursuer’s estimate of the evader’s position, and ground truth. We
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Overhead (msg/min)
Min Max Average

Mote-PEG 191 384 272
Tenet-PEG 181 255 217

Fig. 7. PEG application overhead
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Fig. 8. PEG application error.
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Fig. 9. PEG detection latency.

study the variation of position error over time. In our implementation, we divide
our floor into 14 topological nodes, each approximately 22 feet apart.

Our two other metrics measure network performance. The first is the latency
between when a mote detects an evader and when this detection reaches the pur-
suer. We measure this using FTSP [Maroti et al. 2004] timestamps. The second is
the application overhead, the total number of messages received per minute at the
pursuer. This measure, while unconventional, indicates the how well the filtering
algorithms work. If we get more than the expected 120 reports (at 2 Hz sam-
pling rate) per minute, duplicate information is being received. For Tenet-PEG,
this means the RSSI-threshold is too low; for mote-PEG it means that sometimes
multiple nodes get elected as leaders.

Results. Figure 8 shows that Tenet-PEG estimates the evader position slightly
more accurately than mote-PEG. There are two reasons for this. First, our Tenet-

ACM Transactions on Sensor Networks, Vol. 6, No. 4, 202010.



28 · Jeongyeup Paek and Ben Greenstein et al.

Fig. 10. Vibration sensing with onset detector.

PEG implementation adaptively sets the reporting threshold using information from
many nodes across the network. By contrast, mote-PEG’s reporting decisions are
based on a local leader election, which can sometimes result in spurious local max-
ima. Second, while mote-PEG computes evader position as the centroid of all the
reporting nodes, Tenet-PEG simply uses the position of the reporting node. In
mote-PEG, the reporting nodes may sometimes span our floor, resulting in cases
where mote-PEG error is several hops.

Figure 9 shows that Tenet-PEG’s latency is only marginally higher than that of
mote-PEG. This small difference is attributable to the latency across the serial link
between the master and its attached mote, as well as processing overheads in the
Tenet stack.

Finally, Figure 7 shows that Tenet-PEG incurs slightly lower overhead than mote-
PEG. This can also be attributed to Tenet-PEG’s adaptive threshold selection
algorithm which reduces the number of reporting nodes.

Overall, our results are extremely encouraging. In the case of medium-scale
pursuit-evasion, an application previously thought to demand in-mote multinode
data fusion for performance, Tenet implementations can perform comparably with
mote-native implementations in the experiments conducted on our testbed. Al-
though some applications may use in-mote multinode data fusion, our Tenet-PEG
experience suggests that it might be possible to achieve similar performance gains
by careful local processing.

5.3 Application Case Study: Event-Based Vibration Monitoring

In Section 5.1, we show several examples of debugging and maintenance tasks that
are trivial to express in Tenet. It is difficult to measure quantitatively whether Tenet
simplifies the programming of more realistic applications. In this, and subsequent
sections, we discuss a few application case studies in which we have implemented
realistic (and qualitatively different) applications using Tenet. Two of these appli-
cations have been deployed for up to several days in realistic environments. Our
first example is a Tenet implementation of a mature structural monitoring system,
Wisden [Paek et al. 2005; Xu et al. 2004], an event-based vibration data acquisition
system that reliably transmits vibration samples from a network of motes to a base
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station. Each mote transmits only interesting events using a simple onset detec-
tor [Paek et al. 2005], greatly reducing communication requirements. An onset is
defined to be a part of a signal waveform that exceeds the mean amplitude by more
than a few standard deviations. Wisden implements specialized mechanisms for
time synchronization, as well as for reliably transmitting data to a base station.

To port Wisden to Tenet, we implemented an OnsetDetector tasklet and used
it to build a task functionally equivalent to Wisden’s mote code. Specifically, the
application tasks motes using a task description of the following form.

SampleMDA400(20ms, 40, CONT, Z_AXIS, A) -> OnsetDetector(A) -> SendStr()

Here, SampleMDA400() controls a vibration sensorboard and SendStr() invokes our
stream transport protocol.

Figure 10 shows the vibration time-series on two MicaZ motes using a sin-
gle master. One mote was programmed with the preceding task, but without
OnsetDetector() (the lower timeseries). The other was programmed with the
preceding task (the upper timeseries). We then put the two motes on a table, and
hit the table. The mote without OnsetDetector() sends vibration data even before
the onset; this vibration is induced by human activity (movement, typing). The
other task does not send spurious vibrations, resulting, in our small experiment, in
a 90% traffic reduction.

This Tenet implementation of Wisden is not only functionally equivalent to Wis-
den but improves over Wisden in several aspects. First, a Tenet deployment is more
scalable since the bandwidth capacity limit which bounded the number of nodes
in Wisden is circumvented in Tenet by using masters. Second, the Tenet imple-
mentation of Wisden can alter application parameters (such as sampling frequency,
channels, etc.) at runtime by retasking the motes whenever the application wishes
to; by contrast, Wisden required reprogramming of the motes. Finally, in Tenet,
other application tasks can run concurrently while running the Wisden application.
This not only promotes reusability within the network, but it can also provide use-
ful information about the state of network (routing topology, time-sync state, and
memory usage) while an application executes, thereby improving the manageability
and the robustness of the sensor network.

The Tenet version of Wisden’s mote code reduces in the end to three simple
tasklets. Tenet integrates support for tasking and stream transport, making the
Wisden application itself both smaller and simpler. Our qualitative judgment is
that, even for these reasons alone, Tenet significantly simplifies application devel-
opment.

5.4 Real-World Deployment: Vibration Monitoring at Vincent Thomas Bridge

In this section, we discuss our experiences from a real-world deployment of Tenet
on a large suspension bridge. This Tenet deployment ran an application designed to
continuously monitor the bridge’s vibrations, and reliably transmit the data back
to a base station.

Deployment Methodology and Experiences. We deployed a Tenet system, running
a simple structural data acquisition application, on Vincent Thomas Bridge, a 6,000
ft long suspension bridge with a main suspension span of 1,500 ft, and a height of
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Fig. 11. Deployment topology on the bridge.

185 ft above water. We instrumented 600 ft of the bridge using a Tenet network
consisting of 5 master nodes and 20 motes, and collected data for 24 hours. Masters
and motes were equipped with batteries capable of lasting the entire duration of
the experiment.

The communication environment on the bridge was relatively harsh. Masters
were able to communicate at distances of only 100 ft with less than 1% packet
loss rate. Beyond 140 ft, they were unable to communicate. Motes were able to
communicate only 80 ft reliably, and there was a sharp drop off of connectivity
at 90 ft. These results were surprisingly worse than what we could achieve in a
ground-level open space, and dictated our deployment topology.

The deployment spanned 600 ft starting from the east tower towards the center
of the bridge (Figure 11). The network was configured as a linear topology of 20
motes and 5 masters. Each mote was placed 30 ft apart from each other resulting
in a maximum distance of 45 ft from any mote to its nearest master. Every pair of
neighboring masters was separated by about 120 ft.

Vibration Monitoring Application. On this network, we ran a Tenet application
which tasks all the motes to sample at 20 Hz along three axes (x,y,z), retrieves the
data, and stores the responses into a log file at a master. Although our hardware
and the Tenet system permit a sampling frequency of up to 1 kHz, it is not possible
to stream data continuously at such a high rate given the capacity limits on the
motes. Based on prior experiences with hardware limitations [Paek et al. 2005],
we concluded that our system would be able to support continuous-sampling and
real-time transmission without any compression at 80 Hz for a single channel, or
one-third of that for three channels. To be conservative, we selected 20 Hz tri-axis
for our experiment, and used the following Tenet task.

SampleMda400(50ms, 20, CONT, AX, A, AY, B, AZ, C) -> SendStr()

This task is similar to that of the Wisden application (Section 5.3) except that here
we do not perform OnsetDetector() processing. Recall that SendStr() invokes
reliable stream transport protocol. Hence every node continuously generates 3
packets per second (where each packet contains 20 samples and each sample is
16 bits), which adds up to total of 60 packets per second being received at the
application. This corresponds to a data rate of 35.52 kbps (including a timestamp
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Fig. 12. Time-series plot of the acceleration data from two different nodes: measured in perpen-

dicular direction to the bridge, at around 5:00pm.

Fig. 13. Vertical vibration modal frequencies (Hz).

and packet headers), a challenging rate for a flat multihop network of 20 motes
especially when reliable data transfer is a requirement [Kim et al. 2007; Paek and
Govindan 2007].

Data Validation. Figure 12 shows that the time-series plot of the ambient vibra-
tion data from two different nodes on the bridge are consistent with each other.
Figure 13 depicts the spectral density plots for data from several sensors, taken at
about the same time. FFT profiles of the data have all been bandpass filtered for
frequencies between 0.15 and 5.0 Hz, using a two-pass, two-pole Butterworth filter.
The spectral density plots show two interesting features. First, they are internally
consistent: many peaks (modes) are observed at several sensors. That some modes
are not visible at some sensors is expected; such sensors are placed at nulls of
the corresponding vibration mode shapes. Second, the location of the modes is
also consistent with published results obtained from wired instrumentation [Smyth
et al. 2003].
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Fig. 14. Number of packet retransmissions due to master links and mote links

System Evaluation. Our experiment ran for 26 hours, comprising 22 rounds: in
each round the system collects data for 60 minutes, backs up the data, and resets
the motes during the next 10 minutes. This experiment design was an artifact of
the fact that we had observed rare software crashes on the motes. Rebooting the
entire network every hour enabled us to recover from these crashes reliably. Out
of 22 rounds, 19 rounds had data from all 20 nodes, and the other 3 rounds had
data from 19 nodes, which results in a node-round yield of 99.32% (437 out of 440
node-rounds). In each of those three incomplete rounds, one node was not able to
start the task as a result of the software bug.

We collected a total of 6,430,792 data packets during the experiment which
amounts to approximately 323,745 packets from each sensor node. Each of the
19 complete datasets have approximately 294,500 packets and 4,386,000 samples
per round.

For all 437 node-rounds in which we were able to collect data, our system achieved
100% end-to-end reliability with no lost packets. To achieve this, the end-to-end re-
liable transport protocol was required to retransmit 26,965 packets, which is 0.42%
of the total number of data packets received (Figure 14). Nodes farther away from
center of the network required more retransmissions because their packets traversed
longer paths (more hops) to get to the collection point. Among these retransmis-
sions, approximately 2.92% were due to packet loss on the IEEE 802.11b master
wireless links and 97.08% were due to loss on the IEEE 802.15.4 mote wireless links
(Figure 14). Despite losses on the mote as well as master wireless links, our system
was able to reliably collect all the transmitted samples.

Overall, the results show that Tenet performs well in real-world deployment. Its
tiered architecture scales network capacity and allows reliable delivery of high rate
data that would otherwise have been difficult to achieve on a flat multihop network
of motes.

5.5 Real World Deployment: Pitfall Trap Monitoring at James Reserve

In this section, we discuss a qualitatively different real-world deployment of Tenet:
an imaging application for pitfall trap monitoring, deployed at the James Reserve8.

8http://www.jamesreserve.edu/+
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Fig. 15. Deployment topology at the James Reserve.

This application uses image-sensors (Cyclops cameras [Rahimi et al. 2005]) and
leverages the Cyclops’ on-board processing capabilities. It is also the most com-
plicated Tenet application we have explored to date, and demonstrates the expres-
siveness and reusability of Tenet’s tasking library.

Pitfall trap arrays at James Reserve are used by biologists to sample the local
population of lizards and amphibians. Biologists deploy arrays of traps in clusters.
When a lizard is caught in a trap, it is tagged and freed. Over time, a count of
trapped lizards can be used to estimate the overall population of lizards. However,
if a lizard is left too long in a trap, it can die. So, biologists frequently poll each
trap by physically visiting each every few hours: because these traps are deployed
over a few square kilometers, inspecting these traps can be an arduous task. A
Tenet network with image sensors can help: the biologists can inspect the images
remotely, and only visit a trap when a lizard is caught, saving time, effort, and
frustration.

We deployed a Tenet system in an array of pitfall traps at James Reserve. Our
deployment consisted of seven traps in a star configuration. We placed 7 traps each
equipped with a mote and attached Cyclops camera, one stargate master near the
array, and a laptop master at a lodge about 100 yds away from the array. Figure 15
depicts the deployment topology. Some of the nodes were behind the trees with
foliage which blocked line of sight to the base station.

Our goal was to design a triggered data collection system, where each node fre-
quently captures an image, but only sends it to the base station when some inter-
esting change has been detected in the image. This is necessary to conserve network
bandwidth, since each image is 16 KB. However, the image change detection algo-
rithm we use can exhibit false negatives. If a false negative detection occurs, no
image will be delivered at that instant. Even if there actually was a lizard in that
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trap, if that lizard does not move, no image transfer will be triggered at subsequent
sampling times as well. This might result in a missed and eventually dead lizard.
To avoid this, we designed our application to transfer at least one image every 30
minutes. Here is a Tenet task that realizes this relatively complicated logic.

Repeat(120000ms)

-> ImageDetect(TAKE_NEW, FLASH_ON, 128x128, BW, A)

-> Count(B,0,1) -> Mod(B,B,’15’) -> Eq(B,B,’0’)

-> Or(A,A,B) -> Store(C,A) -> DeleteAllAttributeIf(A)

-> Send(E2E_ACK)

-> Retrieve(C) -> Not(C,C) -> DeleteActiveTaskIf(C)

-> DeleteAttribute(C) -> ImageDetect(RESET)

-> ImageFetch(LAST, 40, 140ms, D)

-> SendStr();

In this task, ImageDetect() invokes a background-subtraction-based algorithm to
detect noticeable differences between the new and previous image, and ImageFetch()

retrieves the last image stored in the Cyclops memory. Thus the preceding task
takes an image every 2 minutes, and transfers it only if some change has been
detected in the image or every 15th run (every 30 minutes). If an object is not
detected and it is not the 15th run, the task sends a small message (A ≡ 0) us-
ing Send(E2E ACK), as a keep-alive. Otherwise, it transfers the last image using
SendStr(), and resets the detection background. Each image is an 128x128 black-
and-white image whose size is 16KB, and each packet can contain up to 40 bytes
of image fragment data; so, each image requires 410 packets.

These Image-style tasklets are different from other tasklets in that they are ex-
ecuted on the cameras themselves. Image processing requires memory and MCU
cycles beyond the capabilities of the current generation of motes, and the Cyclops
board was designed to provide specialized image processing tasks. For this reason,
the Tenet mote exports single Image() tasklet that can be used to parametrize and
invoke Image-related operations, such as ImageDetect(), ImageFetch(), ImageSetParam(),

etc. which are implemented within the camera themselves. This design allows any
resource-intensive operation to be performed off-mote and can be applied to other
specialized external sensors (e.g., high-frequency ADC boards that can sample at
10 kHz) with on-board processing.

Our deployment lasted 3 days, and the network was operational only during the
daytime hours (7am–7pm). We collected 589 Cyclops images, out of which 588
images were complete; there was one incomplete image from a node which almost
ran out of battery (we used two D-cell batteries on each node). Figure 16 plots the
time when each has transferred an image on the last day of the experiment. Many
of the transferred images were triggered as a result of changes in the intensity of
sunlight (Figure 18), and some others were intentionally triggered by us to test the
system. One set of images, at node 102 between 7:45pm and 8:40pm, caught a
trapped spider (Figure 17).

Finally, note that there was a similar deployment at James Reserve before [Ah-
madian et al. 2008] that did not use Tenet. Our deployment not only replaced the
previous system but also improved upon that in several aspects: multihop com-
munication, reliable data delivery, easier-to-use end-to-end system, etc. This is
another example which shows that Tenet is reusable and expressive: Tenet can be
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Fig. 16. Image-transfer vs. time plot: An image is generated every 30 minutes, in addition to
whenever an object is detected.

Fig. 17. Spider triggered image transfers.

Fig. 18. Sun/shade change caused image transfers.

used to fully implement and improve on previously existing applications.
In summary, this application has shown the expressiveness and reusability of

the Tenet tasking library, and how off-board processing can be expressed in it.
Largely based on experiences from this deployment, we have moved on to a larger
Tenet deployment with 4 masters and 20 cameras for bird nest monitoring at James
Reserve [Hicks et al. 2008]. This deployment incorporates image compression, and
uses a recently design congestion control protocol, RCRT [Paek and Govindan 2007].

5.6 Manageability

Network monitoring is an important part of networked system manageability. Al-
though we have not extensively evaluated manageability, we have been able to quite
easily construct simple applications that can monitor and measure a Tenet network.
For example, the following task allows us to get a snapshot of the routing tree at
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Fig. 19. Task dissemination latency.

any instant.

Wait(1000ms) -> NextHop(A) -> Send(E2E_ACK)

This obtains each mote’s routing parent using our reliable packet delivery protocol.
Figure 6 was gathered in this manner. Such an application can be invaluable for
monitoring and debugging, particularly since it can run concurrently on Tenet with
an application which we may be trying to debug.

It is also easy to perform certain kinds of measurements. This task

GlobalTime(A) -> Wait(1000ms) -> Send(E2E_ACK)

timestamps a task using the time computed by the FTSP [Maroti et al. 2004]
protocol (which is integrated into the stack) as soon as it is received, backs off
for a second to reduce congestion, and sends the results back. It can be used to
measure the latency of task dissemination. We have run this on the network shown
in Figure 6 and measured the Tenet’s task dissemination latency with a varying
number of masters turned on. With 6 masters, the average tasking latency is
110 ms, and the largest is 550 ms (Figure 19). The benefits of tiering are clearly
evident; in our testbed, the average tasking latency using 6 masters is about a
fifth of that using only 1 master (because the network has a much smaller mote
diameter, leaving fewer opportunities for lost packets and retransmissions between
motes).

5.7 Robustness

We conducted a simple experiment to demonstrate the robustness of our current
Tenet implementation to the failure of masters. In this experiment, we tasked 35
nodes in a 5-master network to sample their temperature sensor and transmit the
samples using our reliable transport protocol. The task chain for this experiment
was as follows.

Sample(100ms, 1, REPEAT, ADC10, A) -> SendStr()

Five minutes after tasking the network, we turned off one of the masters, and five
minutes thereafter, another.

Figure 20 plots, for each connection, the received sequence number against the
time at which the corresponding packet was received at the master. Two things
are noticeable about the figure. For all connections, initially, the sequence number
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Fig. 20. Sequence number evolution of stream transport connections.

evolves smoothly, showing relatively few packet losses. When the first master is
turned off, the sequence number evolution of some (but not all) of the motes exhibits
a discontinuity; until routing converges again, many packets are lost. Eventually,
however, those connections do recover and packets from the affected nodes are
retransmitted to the master. We attribute the long routing convergence times to
the high traffic rate in the network. A similar behavior is seen when the second
master is turned off.

We also measured the rate of negative acknowledgements to estimate the efficacy
of stream transport. For sources that were not affected by the route change, only
7% of the packets were lost end-to-end, despite a fairly heavy traffic load. By
constrast, the number was 25% for those sources that were affected by master
failure. Finally, using our tasking latency measurement tool, we measured the
latency before and during this experiment; the average tasking latency increased
threefold (from 137 ms to 301 ms).

6. CONCLUSIONS

In this article, we have shown that the Tenet architecture simplifies application de-
velopment for tiered sensor networks without significantly sacrificing performance.
By constraining multi-node fusion to the master tier, Tenet also benefits from hav-
ing a generic mote-tier that does not need to be customized for applications. Our
Tenet system is able to run applications concurrently, and our collections of tasklets
support data acquisition, processing, monitoring, and measurement functionality.
Many interesting research directions remain: energy management, support for mo-
bile elements, network congestion control, extending the task library to incorporate
a richer tasklet set, and so forth.

APPENDIX

A.1 List of Tasklet API’s

This section contains the list of tasklet APIs that are provided by the tasklets in
Figure 2. Unless otherwise stated, the default data type returned by a tasklet is
a vector of unsigned 16-bit integer(s). All operations (e.g., Arith, Logical, etc.)
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take attribute(s) and/or constants as their arguments. Unless otherwise stated, all
operations on attribute(s) assume that an attribute is a vector of unsigned 16-bit
integers, and that two arguments of an operation are either of equal size or a scalar
(vector of size one or a constant). Tasklet APIs are case-insensitive.

Tasking API Description Tasklet

Count return a value which is incremented everytime it runs. Count
Constant return a constant Count

Issue issue a task after delay (global or relative, once or periodic) Issue
Wait delay a task for ‘period’ Issue
Repeat repeat a task periodically every ‘period’ Issue
Alarm run the task at global time ‘starttime’ Issue
GlobalRepeat repeat a task every ‘period’ after global ‘starttime’ Issue

Get return a system information Get
NextHop return routing next-hop (parent) Get
GlobalTime return 32-bit time-synchronized global time Get
LocalTime return 32-bit local time Get
RfPower return RF power configuration Get
RfChannel return RF channel configuration Get
Memory Stats return dynamic memory stats structure Get
Leds return the state of the LEDs Get
Num Tasks return the number of tasks installed Get
Num Active Tasks return the number of active tasks running Get
is Timesync return whether time is synchronized or not Get
Local Address return node id Get
Platform return platform type Get
Clock Freq return clock frequency used for localtime Get
Master return current nearest routing master Get
HopCount return hop count to nearest routing master Get
Rssi return RSSI value from routing next-hop Get

Logical Perform the logical operation on attribute(s) Logical
And result← attr & arg Logical
Or result← attr | arg Logical
Not result← arg Logical

Bit Perform the bit operation on attribute(s) Bit
Bit And result← attr AND arg Bit
Bit Or result← attr OR arg Bit
Bit Not result← NOT arg Bit
Bit Xor result← attr XORarg Bit
Bit Nand result← attr NAND arg Bit
Bit Nor result← attr NOR arg Bit
ShiftLeft result← attr ≪ arg Bit
ShiftRight result← attr ≫ arg Bit

Arith perform arithmetic operation Arith
Add result← attr + arg Arith
Sub result← attr − arg Arith
Mult result← attr × arg Arith
Div result← attr ÷ arg Arith
Diff result← |attr − arg| Arith
Mod result← attr % arg Arith
Pow result← attrarg Arith

Comparison perform comparison operation Comparison
LT result← (attr < arg ?) Comparison
GT result← (attr > arg ?) Comparison
EQ result← (attr ≡ arg ?) Comparison
LEQ result← (attr ≤ arg ?) Comparison
GEQ result← (attr ≥ arg ?) Comparison
NEQ result← (attr 6= arg ?) Comparison
Count LT result← count(attr < arg ?) Comparison
Count GT result← count(attr > arg ?) Comparison
Count EQ result← count(attr ≡ arg ?) Comparison
Count LEQ result← count(attr ≤ arg ?) Comparison
Count GEQ result← count(attr ≥ arg ?) Comparison
Count NEQ result← count(attr 6= arg ?) Comparison
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Stats perform statistical operation Stats
Sum result← sum(attr) Stats
Min result← minimum(attr) Stats
Max result← maximum(attr) Stats
Avg result← average(attr) Stats
Cnt result← count(attr) Stats
MeanDev result← meandeviation(attr) Stats

Attribute check an attribute in the current active task Attribute
Exist return 1 if attr exists, otherwise 0 Attribute
Not Exist return 1 if attr does not exist, otherwise 0 Attribute
Length return the length of attr vector Attribute

Actuate actuates a particular channel Actuate
Set Leds set the leds to according to given value Actuate
Sounder start/stop Micasb sounder Actuate

Storage storage is valid within a task, maintained across active tasks Storage
Store store an attribute into storage Storage
Retrieve retrieve an attribute from storage Storage

Pack pack consecutive input values into a vector of values Pack
Pack n Wait perform ‘pack’ and wait until the vector is full Pack

Send send task response back using best-effort transport SendPkt/Str/Rcrt
SendPkt send task response back using packet transport SendPkt
SendStr send task response back using stream transport SendStr
SendRcrt send task response back using RCRT protocol SendRcrt

Reboot reboot the mote Reboot

DeleteAttributeIf delete an attribute if arg == TRUE DeleteAttributeIf
DeleteAttribute delete an attribute DeleteAttributeIf
DeleteAllattributeIf delete all attributes if arg == TRUE DeleteAttributeIf

DeleteTaskIf delete the task completely if arg == TRUE DeleteTaskIf
DeleteActiveTaskIf delete active instance of the task if arg == TRUE DeleteActiveTaskIf

Sample sample on-board ADC’s Sample
Voltage return voltage level Voltage

UserButton (Telosb only) run the task everytime user button is pressed UserButton
SampleMDA400 (Micaz/Mica2 only) sample mda400 vibration board SampleMda400
Onset Detector perform onset-detection and data-filtering OnsetDetector

Image (Micaz/Mica2 only) interact with Cyclops camera Image
Image Snap take a picture Image
Image Detect perform background-subtraction based object detection Image
Image Get get an image from Cyclops Image
Image Set Capture Paramsset camera parameters Image
Image Get Capture Paramsget camera parameters Image
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