COSC 6352: Declarative Programming Languages

Lecture September 16, 2008 by Dr. Verma

Scribe: W. Faris
Semantics of the While loop (continued from prev lecture)
While E do C

· Previous translation uses a goto statement, this is not satisfactory

· Another translation:

· if E then
 begin
 C
 while E do C1
 end
· Not a satisfactory solution either, recursive use of the meaning

· Build a chain/sequence of commands C1, C2, C3, …
 Each C gets closer to the definition of the while statement

· Define by induction

· Base Case: C0

While 0 < 1 do {null}

· Inductive Step: Ci+1
if E then

 begin

 C

 Ci

 end

· Each iteration gives a better approximation to the meaning of the while loop

· C0 does 0 executions of C

· C1 does 1 execution of C + C0
· C2 does 1 execution of C + C1 = 2 executions of C

· Ci does 1 execution of C + Ci-1 = i executions of C

· The meaning of the while loop equals the limit of the sequence of meanings of Ci’s
 [image: image2.png]I'(while E do C) = UZ,T(C))

where [image: image4.png]r(x)

 = meaning of x

Bindings and Applied Occurrences

Ex:
const i = -j
· The identifier i is a binding occurrence because it is being defined

· The identifier j is an applied occurrence because it is being used

Ex:
var i: integer

4 occurrences of i (1 binding/3 applied)

begin

 defined once

 i := 0

 used three times (2 l-values, 1 r-value)

 i := i + 1

end
Ex:
label 10

(Neither binding nor applied occurrence

 (superfluous)

10: begin

(binding occurrence of label 10

Various approaches to Binding
1. Syntactic binding

A property of a PL that tells you the ease of which a program reader can find binding occurrences in programs

· Necessary for program readability and understandability

· Helps programmers and processors understand where id’s acquire their meaning

The syntax of a PL should help in locating binding occurrences. Binding occurrences of command labels and enumerated const identifiers can be buried in large type expressions or commands. Some are easier to locate than others are.

2. Nested binding

Ex:
const i = 3

proc p

const i = 4

begin {p}

end {p}

The scope of (i = 3) has a hole. It does not cover the inside of p where (i= 4). This is allowed because programs are developed by multiple programmers who will not be aware of all the identifiers already introduced in a large program.

3. Implicit binding

Not all bindings are attributed to explicit occurrences of identifiers.

In Pascal:
with L do C

Field names of the type L are bound to corresponding contents of the l-value of L.

Ex:
var r: record

with r do

i is bound to r.i, but

.... i …

…. i …

there is no explicit

end

end

occurrence of i.

Implicit binding is not a good idea to have due to how easily one can lose track of the meaning of an identifier.

4. Default binding

Default binding is used in FORTRAN and PL/I, but it is very error prone and provides only a minor convenience. Programmers should be wary of predefined or standard identifiers.

In FORTRAN:
i,j,k,l,m,n are defined by default to integers
Other languages get rid of this feature and give an error if an identifier is not defined.

5. Overloaded identifiers

It is plausible to have more than one meaning for an identifier. However, in these cases the context must be used to remove any ambiguity

Ex:
function factorial(n: integer): integer

begin

 if n == 0 then 1

 else factorial := n x factorial(n – 1)

The function ‘factorial’ has two meanings

· The location for the return value

· The procedure itself

Generic Overloading

· Procedures with the same name

· Types and # of parameters determine which procedure to call

· Operators

· In Pascal:
+ is for arithmetic addition and set union

6. Pseudo identifiers

The ‘return’ statement is not introduced by a programmer, but behaves like an identifier.

Ex:
proc p

 proc q

 begin {q}

 return

 end {q}

 begin {p}

 return

 end {p}

The first return statement can only exit the q procedure, but not the p procedure. There is a scope hole for the second return statement since you can never exit the p procedure from within the q procedure. Nor can you redefine the return statement for the p procedure from within the q procedure.

7. Other variations on binding

· Sometimes an occurrence can be both binding and applied
PL/1 or C:
Declare (J) external;
i. Applied occurrence because it’s defined in the program elsewhere

ii. Binding occurrence in relation to the file in which it occurs

· Sometimes more than one binding occurrence is associated with a single binding
proc Q (…. ; p; …); forward;
proc Q();

Both are binding occurrences for a procedure. Allows for mutual recursion.

· Sometimes an occurrence is neither binding nor applied (superfluous)
function integeral(function f(x: real)); …) ;

In this example, x is superfluous. The procedure f is a parameter of integral, so when integral calls f within its body we can examine the parameter it supplies to f and so the x can be omitted.

8. Free identifiers

An identifier is said to be free (non-local or global) in a construct if it has an applied occurrence in the construct that is not bound in the construct.

Ex:

var z: t;

8 occurrences, only one binding (z)

 begin

 z := x;

z is not free

 x := y;

x, y, t are free

 y := z;

w is not free (because it is not applied)

 end

The concept of free depends on the size of the construct. If you are just looking at the line y := z; then y and z are free. If you are looking at the whole program, none of the identifiers is free.

Ex:

proc p

 begin

 … i …

Where is the free identifier i getting its meaning?
· Static binding: Where the procedure is defined (definition environment)

i. C and pascal

· Dynamic binding: Where the procedure is called (procedure invocation environment)

i. Lisp
Binding occurrence: when an identifier is being defined�Applied occurrence: when an identifier is being used

