CHAPTER 9.5-6, CHAPTERS 8.1 AND 10.2-3

Industrial-strength inference
Outline

Logic Programming

Resolution

Completeness
Does a complete algorithm exist?

Should be able to infer \(\text{Reach}(M,e) \), but FC/BC won't do it.

\[
\begin{align*}
\text{Reach} \models (x) \text{ Reach}(x) & \models (x) \text{ Reach}(x) \\
\text{Reach} \models (x) \text{ Reach}(x) & \models (x) \text{ Reach}(x) \\
\end{align*}
\]

E.g., from

but incomplete for general first-order logic

Forward and backward chaining are complete for Horn KBs.

\[
\begin{align*}
\neg a & \models \neg a \quad \text{Whenever KB} \\
\end{align*}
\]

Procedure is complete if and only if

Completeness in FOL
A brief history of reasoning

- Practical algorithm for FOL—resolution
- Complete algorithm for propositional logic
- Complete algorithm for arithmetic
- Complete algorithm for FOL (reduce to propositional)
- Proof by truth tables
- First-order logic
- Propositional logic (again)
- Probability theory (propositional logic + uncertainty)
- "Syllogisms" (inference rules), quantifiers
- Propositional logic, inference (maybe)

- Aristotle
- Stoics
- 450 B.C.

- Boole
- 1847

- Frege
- 1879

- Wittgenstein
- 1922

- Godel
- 1930

- Herbrand
- 1930

- Davis/Putnam
- 1960

- Robinson
- 1965
Inference continues until an empty clause is derived (contradiction)

Resolution

Resolution rule combines two clauses to make a new one:

Resolution uses \(\not\alpha \) in CNF (conjunctive normal form) to prove \(\not\alpha \) is unsatisfiable

Resolution is a refutation procedure:

success or failure, or may go on forever

Cf. Halting Problem: proof procedure may be about to terminate with

\(\not\alpha \) cannot always prove that \(\not\alpha \) is unsatisfiable

can find a proof of \(\alpha \) if \(\not\alpha \)

Entailment in first-order logic is only semi-decidable:

Resolution
\{ \forall x \in W / x \} = \varnothing \text{ with }

\frac{\text{Rich} \land (x \neg \text{happy} \land (x \neg \text{rich}))}{\text{Rich} \land \exists x (x \neg \text{happy} \land (x \neg \text{rich}))}

For example,

\varnothing \forall \varnothing \land \exists \varnothing = \varnothing \land \exists \varnothing

where

\varnothing \land \exists \varnothing

\text{Full first-order version:}

\varnothing \land \exists \varnothing

\text{Basic propositional version:}

\text{Resolution inference rule}
\[\neg (R \land p) \lor (\exists \neg (R \land p)) \]

7. Distribute \(\lor \) over \(\land \), e.g., \((R \land p) \lor (\exists \neg (R \land p)) \)

6. Drop universal quantifiers

5. Eliminate \(\exists \) by Skolemization (next slide)

\[\forall x \neg \exists y \neg p \land \neg \neg p \]

4. Move quantifiers left in order, e.g., \(\forall x \exists y \neg p \land \neg \neg p \)

3. Standardize variables apart, e.g., \(\forall x \exists y \neg p \land \neg \neg p \)

2. Move \(\neg \) inwards, e.g., \(\neg \exists x p \lor \neg \neg p \)

1. Replace \(p \) by \(\exists x \neg p \)

Any FOL KB can be converted to CNF as follows:

The KB is a conjunction of clauses:

\((\neg (R \land p) \lor (\exists \neg (R \land p)) \lor (\forall x \neg \exists y \neg p \land \neg \neg p) \lor (\forall x \exists y \neg p \land \neg \neg p) \lor (\exists x \neg p \lor \neg \neg p))\)

Clause = disjunction of literals, e.g., \(\forall x \neg \exists y \neg (\text{Rich}(x) \land \neg \text{Unhappy}(y)) \)

Literal = (possibly negated) atomic sentence, e.g., \(\neg \text{Rich}(x) \land \neg \text{Unhappy}(y) \)
Skolem function arguments: all enclosing universally quantified variables.

\[
\begin{align*}
\text{Correct:} & \quad \exists x \phi(x) \Rightarrow (\exists x \phi(x))' \\
\text{Incorrect:} & \quad \exists x \phi(x) \Rightarrow (\exists x \phi(x))'
\end{align*}
\]

More tricky when \(x \in \text{inside A} \)

\[
\theta = (\exists x \frac{\theta x}{p}) \quad \text{becomes} \quad \exists x \phi(x) = (\exists x \frac{\phi x}{p})
\]

\[
\exists x \phi(x) \quad \text{becomes} \quad (\exists x \phi(x))'
\]

Ex Skolem Constant
\[
\neg \forall x \in \text{Family}\ (x) \land \neg \forall x \in \text{Friend}\ (x) \land \neg \forall x \in \text{Highly Qualified}\ (x) \\
\neg \forall x \in \text{Qualified}\ (x) \land \forall x \in \text{Highly Qualified}\ (x) \\
\neg \forall x \in \text{Qualified}\ (x) \land \forall x \in \text{Highly Qualified}\ (x)
\]

E.g., to prove \(\text{Rich}(\text{me}) \), add \(\neg \text{Rich}(\text{me}) \) to the CNF KB

- Inter contradiction
- Add to CNF KB
- Convert to CNF
- Negate it

To prove C.

Resolution Proof
Resolution Proof
Should be easier to debug \(\text{Capitol(New York, \cup S \cup I) then } x := x + 2 \) i

<table>
<thead>
<tr>
<th>Debug procedural errors</th>
<th>7. Find false facts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apply program to data</td>
<td>6. Ask queries</td>
</tr>
<tr>
<td>Encode problem instance as data</td>
<td>5. Encode problem instance as facts</td>
</tr>
<tr>
<td>Program solution</td>
<td>4. Encode information in KB</td>
</tr>
<tr>
<td>Figure out solution</td>
<td>3. Tea break</td>
</tr>
<tr>
<td>Assemble information</td>
<td>2. Assemble information</td>
</tr>
<tr>
<td>Identity problem</td>
<td>1. Identity problem</td>
</tr>
<tr>
<td>Ordinary programming</td>
<td>Logic Programming</td>
</tr>
</tbody>
</table>
e.g., not P(X) succeeds iff P(X) fails

Closed-world assumption (negation as failure)

Built-in predicates for arithmetic etc., e.g., X is Y + Z

Depth-first, left-to-right, backward chaining

Efficient retrieval of matching clauses by direct linking

Efficient unification by open coding

Program = set of clauses = head − \texttt{head:−}

Compilation techniques ⇒ 10 million LIPS

Widely used in Europe; Japan (basis of 5th generation project)

Basis: backward chaining with Horn clauses + bells & whistles

Prolog systems
\[A = 1 \{ 2 \} \quad B = \{ 1 \} \quad C = \{ 2 \} \]

answers: \(A = \emptyset, B = \{ 1, 2 \} \)

query: append(A, B, [1, 2])

\[(Z, y', x') \leftarrow \text{append}(X, y', Z) \]

Append two lists to produce a third:

No need to loop over \(S \): successor succeeds for each:

\[dts(X) \leftarrow \text{successor}(X, S), dts(S) \]

\[dts(X) \leftarrow \text{goal}(X) \]

Examples