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Abstract

This report gives an overview of the XCSFJava 1.1 code, available from the web. The
document specifies where to get the code and how to compile and run the code. Moreover,
the document specifies the features of the code. In short, XCSFJava 1.1 is an XCSF classifier
system implementation that can be used at least for the following purposes: (1) testing and
evaluating XCSF on various function approximation problems, including binary and real-valued
problems, (2) visualizing the evolutionary process in XCSF in 2D or 3D, (3) enhancing XCSF’s
capabilities, such as adding new types of classifier conditions or predictions.
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1 Introduction

The XCS classifier system (Wilson, 1995, 1998) is a learning classifier system (Booker, 1988; Holland
& Reitman, 1978; Wilson & Goldberg, 1989) that evolves its rules, the so-called classifiers, by an
accuracy-based fitness approach. It has been successfully applied to boolean classification problems
(Butz, Kovacs, Lanzi, & Wilson, 2004; Butz, Goldberg, & Tharakunnel, 2003; Butz, 2006; Wilson,
1995, 1998), datamining problems (Bernadé, Llora, & Garrell, 2002; Bernad6-Mansilla & Garrell-
Guiu, 2003; Butz, 2006), multistep (Markov decision) problems (Butz, 2006; Butz, Goldberg, &
Lanzi, 2005; Lanzi, 1999; Lanzi, Loiacono, Wilson, & Goldberg, 2006a; Wilson, 1995) as well as
real-valued function approximation problems (Butz, 2005; Butz, Lanzi, & Wilson, in press; Lanzi,
Loiacono, Wilson, & Goldberg, 2006b, 2007; Wilson, 2002).

This report provides a description of the XCSFJava 1.1 implementation, which encodes XCS for
function approximation (XCSF). XCSF’s functionality is similar to that of XCS, except that there
are no actions (or one “dummy” action) in each classifier and the predictions are often computed
out of problem input values (Wilson, 2001, 2002). The implementation realizes many known XCSF
features and particularly replicates the results published elsewhere (Butz et al., in press). Moreover,
the implementation also supports binary classification problems, such as the multiplexer problem
(cf. Butz et al., 2003, 2004; Wilson, 1998). In binary classification problems, XCSFJava 1.1 yields
faster performance (number of iterations), which is because the original XCS with actions learns the
solution twice: for each solution XCS evolves two classifiers, one with action “0” and another one
with action “1” that specify that one of the actions is correct and the other is not. XCSF only learns
if the current problem instance will yield high payoff (that is, belongs to class “1”) or low payoff
(that is, it belongs to class “0”). Also the runtime performance does not appear to yield significant



differences to a known C implementation (cf. XCS (4 tournament selection) classifier system
implementation in C, version 1.2, http://www.illigal.uiuc.edu/pub/src/XCS/XCS1.2.tar.Z,
Butz, 2003). The XCSFJava 1.1 code also includes the recently introduced greedy compaction
algorithm as well as closest classifier matching (Butz et al., in press).

Finally, the code also includes visualization methods in 2D and 3D. The visualizations show the
evolutionary process. Particularly, it shows the evolving XCS classifier conditions colored fitness-
dependently. The visualization makes it possible to actually see XCSF at work. Visualization is
supported at several time scales including single evolutionary iterations, also showing matching
classifiers and novel offspring classifiers, as well as longer evolutionary intervals.

This report now first specifies the code location of XCSF, the features included in the code
archive, and the requirements to run the code. Next, we specify the provided parameters that
allow various code modifications. Finally, we give some more details on how to implement other
test functions and how to enhance and further evaluate XCSF by means of the provided XCSF
code.

2 Code Introduction

The XCSFJava 1.1 code is a fundamentally re-written XCS implementation, which was derived from
the XCSJava 1.0 code (Butz, 2000). While XCSJava 1.0 only worked for binary inputs, XCSFJava
1.1 handles binary inputs more effectively but can also handle real-valued problem inputs. However,
the traditional action part of XCS (Wilson, 1995) is not included in XCSFJava 1.1 making it only
suitable for function approximation. Nonetheless, certainly an enhanced version of the code may
also include classifier actions and consequently may also be applied to multistep (Markov decision)
problems.

XCSFJava 1.1 uses the matrix toolkits for Java (MTJ)! to handle vector and matrix multipli-
cations. Additionally, Java3D 1.5.x? is used for 3D classifier visualization.

This section gives an introduction to the code including where to get the code, the basic re-
quirements to run the code in Java, and the basic structure of the code. Note that the code includes
also its own API for reference purposes as well as an executable .jar file for your convenience.

2.1 Downloading and Running the Code

The XCSFJava 1.1 code is available from the following web address:
http://medal.cs.umsl.edu/files/XCSFJaval.1l.zip

You can unzip the code in a folder of your convenience. The code includes an XCSFJaval.l.jar
file that enables you to run the code directly.

To run the code successfully, it is important that the newest Java version and Java 3D 1.5.x
are installed on your system. This should enable you to use the full functionality of the XCSF Java
1.1 implementation. Moreover, a test.xcs file is provided that specifies XCSF and other setup
parameters.

! Available from http://rs.cipr.uib.no/mtj/
2Java 3D is available from https://java3d.dev.java.net/ .



2.2 Basic Code Structure

The XCSFJava 1.1 API, located in sub-folder API, is a convenient way to understand the code, its
general structure, and the detailed purposes for each implemented class and method. Thus, this
document only provides a general overview over the code structure and the parameters, classes,
and interfaces involved.

The XCSF class specifies the main method and also implements all functions necessary to control
the execution of one experiment and to monitor performance. The XCSConstants class contains all
parameters relevant to set up a successful XCSF experiment. It also provides convenient methods to
read and write the parameters from and to a file and to maintain all the parameters in a Properties
object.

There are three major code clusters below the XCSF class, which are invoked directly or indirectly
from the XCSF class and which may access parameters in the XCSConstants class: (1) the actual
XCSF implementation; (2) the function interface; and (3) the visualization package. Additionally,
some utilities are implemented.

2.2.1 XCSF Structure

The XCSSets class maintains classifier population and match set, delegating matching, prediction
generation, classifier updating, and evolutionary procedures to the appropriate classifier set. The
sets are maintained and handled in the ClassifierSet class. This class provides the functionality
for generating match sets, potentially triggering covering, updating the match set based on the
function value feedback, and executing the genetic algorithm in a classifier set.

Classifiers are represented as objects of the abstract Classifier class, which provides the base
functionality of any XCSF classifier. Actual complete implementations of a classifier are realized
in the RealClassifier and BooleanClassifier classes. These two classes essentially implement
all functionalities that include a particular condition structure and prediction structure. Abstract
methods that need to be implemented to realize an XCSF classifier are:

public abstract void updatePrediction(double[] actualValue);
public abstract boolean doesMatch(StateDescriptor state);

public abstract double getMatchVote(StateDescriptor state);
public abstract void getReference(StateDescriptor state);

public abstract double[] setCurrentPrediction(StateDescriptor state);
public abstract void updatePredictionError (double[] actualValue);
public abstract boolean isMoreGeneral(Classifier cl);

public abstract void uniformCrossover(Classifier cl);

public abstract boolean applyMutation(StateDescriptor state);
public abstract boolean isIdentical(Classifier cl);

public abstract Condition getCondition();

public abstract double getGenerality();

public abstract void printClassifier();

public abstract void printClassifier(PrintStream pS);

The intended functionality should be either self-explanatory or you can refer to additional infor-
mation given in the XCSFJava 1.1 APL.

Each classifier contains a condition object, where a RealClassifier contains a RealCondition
object and a BooleanClassifier a BooleanCondition object. = The RealCondition ob-



ject is actually an interface that is implemented by the ConditionHyperellipsoid and
ConditionHyperrectangle classes.

Each classifier also contains a RealValuedPrediction object, which is again an interface. There
are currently three forms of predictions implemented: ConstantPrediction realizes the constant
prediction representation and update, used in the XCS classifier system mainly for binary problems
(Wilson, 1995); DeltaUpdatePrediction realizes a linear computed prediction that is updated by
the Widrow-Hoff delta rule (Widrow & Hoff, 1960; Wilson, 2002); finally, RLSPrediction im-
plements recursive least squares prediction updates (Haykin, 2002; Lanzi, Loiacono, Wilson, &
Goldberg, 2005).

2.2.2 Test Functions

The XCSF implementation contains one Function object, which is an interface that requires the
following methods to be implemented by an actual implementation of the interface:

public abstract StateDescriptor getCurrentProblemInput();
public abstract double[] getFunctValue();

public abstract int getInputLength();

public abstract int getOutputLength();

public abstract int getPredictionInputLength();

The first method generates a (random) problem instance using the StateDescriptor class that
provides a convenient way to include various types of input. Currently, boolean and real-valued
problem inputs are supported.

The method getFunctValue() returns a double array that contains all the real values associated
with the last generated problem input. Note that the XCSFJava 1.1 implementation supports the
prediction of multiple values. If multiple function values need to be predicted, XCSF treats those
values independently, that is, each classifier generates prediction values for all function values and
the classifier prediction error is determined out of the average of all single prediction errors.

Methods getInputLength() and getOutputLength() simply return input and output length. Fi-
nally, getPredictionInputLength() returns the input length that is used by the classifiers to generate
their prediction (if applicable). This enables the system to develop classifiers whose conditions
depend on one type of problem input but whose predictions depend on some other type of problem
input. Class DoubleRealSimpleFunction provides an example of this problem type.

For the boolean case, BooleanFunction implements a constant boolean problem and the mul-
tiplexer problem. The following real-valued functions are implemented: RealConstantFunction,
RealSineFunction, RealCrossedRidgeFunction, and RealRadialFunction. The choice of the

function and optional additional function modifications are specified in the XCSConstants class (cf.
the API).

2.2.3 Visualization

Two classes contain the current visualization package. Class NeuronVisualization visualizes the
classifiers in 2D showing their distribution, spatial coverage, and current fitness. The class, when
instantiated, simply takes the first two dimension of a RealClassifier to locate the classifier in
2D space. The space covered by a condition is visualized scaled by parameter relative Visualized-
ConditionSize specified in XCSConstants. Stretch and orientation of an ellipsoid are not considered
in the case of general hyperellipsoids without explicit rotation.



Class Neuron3DVisualization displays classifiers in 3D, given classifier conditions cover at
least a 3D input space. As in the 2D case, potential additional dimensions are ignored by the class.
Conditions are represented as spheres that cover a certain percentage of the space (specified in the
relative Visualized ConditionSize parameter in the XCSConstants class).

2.2.4 Utilities

A couple of additional utility classes were implemented. Class MyUtilities implements object
sorting using quicksort and the determination of the k best objects, which is used for closest
classifier matching. Moreover, MyUtilities supports the generation of uniform random numbers
between zero and one, specified in uniRand(), as well as the generation of normally generated
numbers, specified in normRand(). Additionally, the classes MyDenseVector and MySquaredMatrix
are extensions of the classes DenseVector and DenseMatrix, respectively, providing convenient
methods to instantiate and use vectors and matrices in the XCSF implementation.

2.3 Generated Output

By default, XCSF writes its learning progress to standard output as well as to a file, which is
specified as the (sole) input parameter. If no input parameter is specified, output is written to the
file test.res. The output contains the following performance information:

1. Learning Iteration Step
2. Average absolute error over the last averageFxploitTrials iterations
3. Number of distinct classifiers (macro classifiers) in population (at the specified iteration step)
4. Population size (sum of numerosities)
5. Average number of distinct classifiers in the last averageExploitTrials match sets
Average match set size in the last averageExploitTrials match sets
Average prediction error in population
8. Average fitness in population
9. Average generality in population
10. Average experience in population
11. Average set size estimate in population
12. Average time stamp in population
13. Additionally, individual errors if multiple prediction values are generated.

At the end of each run, XCSFJava 1.1 still generates a test.avd file that contains parameter
settings and all the above listed performance measures averaged over all executed experiments.
Each average is additionally followed by its (unbiased) standard deviation estimate.

Visualization output is generated only if the doVisualization flag is set to true in the
XCSConstants class and a real-valued problem is executed. If selected and real-valued classifiers are
generated, a window opens in which the classifier population is visualized in 2D or 3D, dependent



on if the problem input contains only two or at least three dimensions, respectively. Moreover, the
generated images can be saved by setting the doOnlineScreenshots flag to true. In this case, the
screenshots of the window that contains the visualization are taken. The frequency of visualization
updates and taken screenshots coincides and is specified in the update VisualizationSteps parameter.

3 Parameter Modifications

All relevant XCSFJava 1.1 parameters are included in the XCSConstants class. The API gives
details to each actual parameter. Thus, we will not specify all the parameters in this document
but rather specify how to modify them.

Generally, there are two ways to modify the parameters: First, the XCSConstants file may be
modified and recompiled. In this case the user should make sure that there is no test.xcs file
contained in the folder in which XCSFJava 1.1 is started, since test.xcs may overwrite parameters
set in XCSConstants (unless a startup parameter is given, which can be used to specify the name of
a different parameter file). Second, and more conveniently, the test.xcs file allows the modification
of parameter values without the need for recompilation. At the beginning of a run, XCSF checks
for this parameter file in the folder the program is started in. If the file does not exist, the process
throws an exception and continues with default parameters. If the file exists, XCSFJava 1.1 treats
the file as a Java Properties file that contains tuples of parameter names and values on each line.
If the name corresponds to a name of an actual XCSFJava parameter, the default value is replaced
by the one specified in the file. The XCSFJava 1.1 package includes a test.xcs file that specifies
default parameter values at your convenience.

4 Adding New Code

The object-oriented implementation of XCSFJava 1.1 should provide a convenient way to add your
own pieces of code to test other functions or to enhance the current XCSF capabilities themselves.
We now give a short overview of how this might be accomplished.

4.1 New Test Functions

There are several ways to add new test functions dependent on the type and complexity of the
function. Real valued functions may be added by implementing the abstract RealValuedFunction
class. Classes RealConstantFunction, RealSineFunction, RealCrossedRidgeFunction, and
RealRadialFunction provide good examples for such implementations.

Double real valued functions are problems that provide two types of input: an input for matching
and one for prediction. To test XCSF on such a problem, both input sizes need to be specified.
The implementation DoubleRealSimpleFunction provides an example for this problem type.

Regardless if an additional real-valued function or a double real-valued function is implemented,
it still needs to be invoked by the XCSF code. To do so, only the main method in the XCSF class
needs to be slightly modified: Dependent on the functionType parameter, which is specified in
the XCSConstants class, the chosen function is instantiated here. Thus, you need to add the
construction of the novel function in the switch statement with a new functionType value of your
choice.

If you want to add a novel Boolean function, it is best to add it directly in the BooleanFunction
class. The Boolean function type is chosen based on the functionType value that needs to be set



to a value above 99 in this case. The actual type is then determined by the value minus 100.
Additionally, the getFunctValue() method needs to be enhanced to generate the correct function
value for the new Boolean function. Usually, zero or one is returned, but also other values may be
used such as those used in the layered multiplexer problem (Butz et al., 2003; Wilson, 1995)

4.2 Adding XCSF Functionalities

Besides the option to add additional test problems and evaluate the XCSF implementation based
on these problems, naturally, it is also possible to modify the code as you please to incorporate new
features.

4.2.1 Other Condition Types

Conditions distinguish between real-valued conditions and boolean conditions. If you intend to
implement another Boolean Condition, you may either want to modify the BooleanConditon class
itself, extend the BooleanConditon class, or add a new class that is chosen alternatively to the
currently implemented BooleanConditon class. In the latter cases, the BooleanClassifier class
will need to be modified accordingly.

To add other types of real-valued conditions it is sufficient to implement another condition
class that implements the RealConditon interface. The methods that need to be implemented
should be self-explanatory. The API of the Condition and RealCondition interfaces as well as
the current implementations ConditionHyperrectangle and ConditionHyperellipsoid provide
further useful bits of information.

Additionally, other conditions, such as conditions that handle nominal inputs or a mixture of
inputs may be implemented. Any condition should however implement the Condition interface to
ensure general compatibility.

4.2.2 Other Prediction Types

Also other prediction types may be included. To generate other real-valued prediction types,
the abstract class RealValuedPrediction should be implemented, as long as the prediction is
actually real-valued. An actual prediction instantiation is then realized in the actual classifier
implementation class. RealClassifier provides an example for different prediction types that are
invoked dependent on the XCSConstants parameter predictionType.

5 Final Comments

The code is distributed for academic purposes with absolutely no warranty of any kind, either
expressed or implied, to the extent permitted by applicable state law. We are not responsible for
any damage from its proper or improper use.

Feel free to use, modify and distribute the code with an appropriate acknowledgment of the
source, but in all resulting publications please include the following citation:
Butz (2007). Documentation of XCSFJava 1.1 plus Visualization. MEDAL Report No. 20070008,
Missouri Estimation of Distribution Algorithms Laboratory, University of Missouri in St. Louis,
MO.

If you find any bugs in the source code, please contact the author of this report.
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