
Constraint-Handling Techniques used
with Evolutionary Algorithms

Carlos A. Coello Coello

CINVESTAV-IPN (EVOCINV)

Depto. de Computación

Av. IPN No. 2508, Col. San Pedro Zacatenco

México, D. F. 07360, MEXICO

ccoello@cs.cinvestav.mx

1

Copyright is held by the author/owner(s).GECCO’07, July 7–11, 2007, London, England, United Kingdom.ACM 978-1-59593-698-1/07/0007.

Motivation

Traditional mathematical programming techniques used to solve

constrained optimization problems have several limitations when

dealing with the general nonlinear programming problem:

Min f(�x) (1)

subject to:

gi(�x) ≤ 0, i = 1, . . . , m (2)

hj(�x) = 0, j = 1, . . . , p (3)

where �x is the vector of decision variables �x = [x1, x2, . . . , xn]T , m

is the number of inequality constraints and p is the number of

equality constraints (in both cases, constraints can be either linear

or nonlinear).

2

Copyright is held by the author/owner(s).GECCO’07, July 7–11, 2007, London, England, United Kingdom.ACM 978-1-59593-698-1/07/0007.

Motivation

Evolutionary Algorithms (EAs) have been found successful in the

solution of a wide variety of optimization problems. However, EAs

are unconstrained search techniques. Thus, incorporating

constraints into the fitness function of an EA is an open research

area.

There is a considerable amount of research regarding mechanisms

that allow EAs to deal with equality and inequality constraints;

both type of constraints can be linear or nonlinear. Such work is

precisely the scope of this tutorial.

3Copyright is held by the author/owner(s).GECCO’07, July 7–11, 2007, London, England, United Kingdom.ACM 978-1-59593-698-1/07/0007.

Search Space

F

F
F

S

4Copyright is held by the author/owner(s).GECCO’07, July 7–11, 2007, London, England, United Kingdom.ACM 978-1-59593-698-1/07/0007. 3057

A Taxonomy of Constraint-Handling Approaches

• Penalty Functions

• Special representations and operators

• Separation of constraints and objectives

• Hybrid Methods

5

GECCO 2007 Tutorial / Constraint-Handling Techniques used with Evolutionary Algorithms

Penalty Functions

The most common approach in the EA community to handle constraints

(particularly, inequality constraints) is to use penalties. Penalty

functions were originally proposed by Richard Courant in the 1940s and

were later expanded by Carroll and Fiacco & McCormick.

6

GECCO 2007 Tutorial / Constraint-Handling Techniques used with Evolutionary Algorithms

Penalty Functions

The idea of penalty functions is to transform a constrained

optimization problem into an uncontrained one by adding (or

subtracting) a certain value to/from the objective function based

on the amount of constraint violation present in a certain solution.

7

Penalty Functions

In mathematical programming, two kinds of penalty functions are

considered: exterior and interior. In the case of exterior methods,

we start with an infeasible solution and from there we move

towards the feasible region.

8 3058

Penalty Functions

In the case of interior methods, the penalty term is chosen such

that its value will be small at points away from the constraint

boundaries and will tend to infinity as the constraint boundaries

are approached. Then, if we start from a feasible point, the

subsequent points generated will always lie within the feasible

region since the constraint boundaries act as barriers during the

optimization process.

9

GECCO 2007 Tutorial / Constraint-Handling Techniques used with Evolutionary Algorithms

Penalty Functions

EAs normally adopt external penalty functions of the form:

φ(�x) = f(�x) ±





n
∑

i=1

ri × Gi +

p
∑

j=1

cj × Lj



 (4)

where φ(�x) is the new (expanded) objective function to be

optimized, Gi and Lj are functions of the constraints gi(�x) and

hj(�x), respectively, and ri and cj are positive constants normally

called “penalty factors”.

10

GECCO 2007 Tutorial / Constraint-Handling Techniques used with Evolutionary Algorithms

Penalty Functions

The most common form of Gi and Lj is:

Gi = max[0, gi(�x)]β (5)

Lj = |hj(�x)|γ (6)

where β and γ are normally 1 or 2.

11

Penalty Functions

Penalty functions can deal both with equality and inequality

constraints, and the normal approach is to transform an equality to

an inequality of the form:

|hj(�x)| − ǫ ≤ 0 (7)

where ǫ is the tolerance allowed (a very small value).

12 3059

Types of Penalty Functions used with EAs

• Death Penalty

• Static Penalty

• Dynamic Penalty

• Adaptive Penalty

• Recent Approaches

– Self-Adaptive Fitness Formulation

– ASCHEA

– Stochastic Ranking

13

GECCO 2007 Tutorial / Constraint-Handling Techniques used with Evolutionary Algorithms

Death Penalty

The rejection of infeasible individuals (also called “death penalty”)

is probably the easiest way to handle constraints and it is also

computationally efficient, because when a certain solution violates

a constraint, it is rejected and generated again. Thus, no further

calculations are necessary to estimate the degree of infeasibility of

such a solution.

14

GECCO 2007 Tutorial / Constraint-Handling Techniques used with Evolutionary Algorithms

Criticism to Death Penalty

• Not advisable, except in the case of problems in which the

feasible region is fairly large.

• No use of information from infeasible points.

• Search may “stagnate” in the presence of very small feasible

regions.

• A variation that assigns a zero fitness to infeasible solutions

may work better in practice.

15

Static Penalty

Under this category, we consider approaches in which the penalty

factors do not depend on the current generation number in any

way, and therefore, remain constant during the entire evolutionary

process.

16 3060

Static Penalty

An example of this sort of approach is the following:

• The approach proposed by Homaifar, Lai and Qi [1994] in which

they define levels of violation of the constraints (and penalty factors

associated to them):

fitness(�x) = f(�x) +
m
∑

i=1

(

Rk,i × max [0, gi(�x)]2
)

(8)

where Rk,i are the penalty coefficients used, m is total the number

of constraints, f(�x) is the unpenalized objective function, and

k = 1, 2, . . . , l, where l is the number of levels of violation defined by

the user.

17

GECCO 2007 Tutorial / Constraint-Handling Techniques used with Evolutionary Algorithms

Criticism to Static Penalty

• It may not be a good idea to keep the same penalty factors

along the entire evolutionary process.

• Penalty factors are, in general, problem-dependent.

• Approach is simple, although in some cases (e.g., in the

approach by Homaifar, Lai and Qi [1994]), the user may need

to set up a high number of penalty factors.

18

GECCO 2007 Tutorial / Constraint-Handling Techniques used with Evolutionary Algorithms

Dynamic Penalty

Within this category, we will consider any penalty function in

which the current generation number is involved in the

computation of the corresponding penalty factors (normally the

penalty factors are defined in such a way that they increase over

time—i.e., generations).

19

Dynamic Penalty

An example of this sort of approach is the following:

• The approach from Joines and Houck [1994] in which individuals are

evaluated (at generation t) using:

fitness(�x) = f(�x) + (C × t)α
× SV C(β, �x) (9)

where C, α and β are constants defined by the user (the authors

used C = 0.5, α = 1 or 2, and β = 1 or 2).

20 3061

Dynamic Penalty

SV C(β, �x) is defined as:

SV C(β, �x) =
n
∑

i=1

Dβ
i (�x) +

p
∑

j=1

Dj(�x) (10)

and

Di(�x) =







0 gi(�x) ≤ 0

|gi(�x)| otherwise
1 ≤ i ≤ n (11)

Dj(�x) =







0 −ǫ ≤ hj(�x) ≤ ǫ

|hj(�x)| otherwise
1 ≤ j ≤ p (12)

This dynamic function increases the penalty as we progress through

generations.

21

GECCO 2007 Tutorial / Constraint-Handling Techniques used with Evolutionary Algorithms

Criticism to Dynamic Penalty

• Some researchers have argued that dynamic penalties work

better than static penalties.

• In fact, many EC researchers consider dynamic penalty as a

good choice when dealing with an arbitrary constrained

optimization problem.

• Note however, that it is difficult to derive good dynamic

penalty functions in practice as it is difficult to produce good

penalty factors for static functions.

22

GECCO 2007 Tutorial / Constraint-Handling Techniques used with Evolutionary Algorithms

Adaptive Penalty

Bean and Hadj-Alouane [1992,1997] developed a method that uses

a penalty function which takes a feedback from the search process.

Each individual is evaluated by the formula:

fitness(�x) = f(�x) + λ(t)





n
∑

i=1

g2

i (�x) +

p
∑

j=1

|hj(�x)|



 (13)

where λ(t) is updated at every generation t.

23

Adaptive Penalty

λ(t) is updated in the following way:

λ(t + 1) =















(1/β1) · λ(t), if case #1

β2 · λ(t), if case #2

λ(t), otherwise,

(14)

where cases #1 and #2 denote situations where the best individual in

the last k generations was always (case #1) or was never (case #2)

feasible, β1, β2 > 1, β1 > β2, and β1 �= β2 (to avoid cycling).

24 3062

Adaptive Penalty

In other words, the penalty component λ(t + 1) for the generation

t + 1 is decreased if all the best individuals in the last k generations

were feasible or is increased if they were all infeasible. If there are

some feasible and infeasible individuals tied as best in the

population, then the penalty does not change.

25

GECCO 2007 Tutorial / Constraint-Handling Techniques used with Evolutionary Algorithms

Criticism to Adaptive Penalty

• Setting the parameters of this type of approach may be difficult

(e.g., what generational gap (k) is appropriate?).

• This sort of approach regulates in a more “intelligent” way the

penalty factors.

• An interesting aspect of this approach is that it tries to avoid

having either an all-feasible or an all-infeasible population.

More recent constraint-handling approaches pay a lot of

attention to this issue.

26

GECCO 2007 Tutorial / Constraint-Handling Techniques used with Evolutionary Algorithms

Penalty Functions: Central Issues

The main problem with penalty functions is that the “ideal”

penalty factor to be adopted in a penalty function cannot be

known a priori for an arbitrary problem. If the penalty adopted is

too high or too low, then there can be problems.

27

Penalty Functions: Central Issues

If the penalty is too high and the optimum lies at the boundary of

the feasible region, the EA will be pushed inside the feasible region

very quickly, and will not be able to move back towards the

boundary with the infeasible region. On the other hand, if the

penalty is too low, a lot of the search time will be spent exploring

the infeasible region because the penalty will be negligible with

respect to the objective function.

28 3063

Recent Approaches

Three modern constraint-handling approaches that use penalty

functions deserve special consideration, since they are highly

competitive:

• Self-Adaptive Fitness Formulation

• ASCHEA

• Stochastic Ranking

29

GECCO 2007 Tutorial / Constraint-Handling Techniques used with Evolutionary Algorithms

Self-Adaptive Fitness Formulation

• Proposed by Farmani and Wright [2003].

• The approach uses an adaptive penalty that is applied in 3 steps:

1. The sum of constraint violation is computed for each individual.

2. The best and worst solutions are identified in the current population.

3. A penalty is applied in two parts:

– It is applied only if one or more feasible solutions have a better

objective function value than the best solution found so far. The

idea is to increase the fitness of the infeasible solutions.

– Increase the fitness of the infeasible solutions as to favor those

solutions which are nearly feasible and also have a good objective

function value.

30

GECCO 2007 Tutorial / Constraint-Handling Techniques used with Evolutionary Algorithms

Self-Adaptive Fitness Formulation

• The penalty factor is defined in terms of both the best and the

worst solutions.

• The authors use a genetic algorithm with binary representation

(with Gray codes) and roulette-wheel selection.

• Good results, but not better than the state-of-the-art

techniques (e.g., Stochastic Ranking).

31

Self-Adaptive Fitness Formulation

• The number of fitness function evaluations required by the

approach is high (1, 400, 000).

• Its main selling point is that the approach does not require of

any extra user-defined parameters. Also, the implementation

seems relatively simple.

• Other self-adaptive penalty functions have been proposed more

recently (see for example [Tessema & Yen, 2006]).

32 3064

ASCHEA

The Adaptive Segregational Constraint Handling Evolutionary

Algorithm (ASCHEA) was proposed by Hamida and Schoenauer

[2000]. It uses an evolution strategy and it is based on three main

components:

• An adaptive penalty function.

• A recombination guided by the constraints.

• A so-called “segregational” selection operator.

33

GECCO 2007 Tutorial / Constraint-Handling Techniques used with Evolutionary Algorithms

ASCHEA

The adaptive penalty adopted is the following:

fitness(�x) =







f(�x) if the solution is feasible

f(�x) − penal(�x) otherwise
(15)

where

penal(�x) = α

q
∑

j=1

g+

j (�x) + α
m
∑

j=q+1

|hj(�x)| (16)

where g+

j (�x) is the positive part of gj(�x) and α is the penalty factor adopted

for all the constraints.

34

GECCO 2007 Tutorial / Constraint-Handling Techniques used with Evolutionary Algorithms

ASCHEA

The penalty factor is adapted based on the desired ratio of feasible solutions

(with respect to the entire population) τtarget and the current ratio at

generation t τt:

if(τt > τtarget) α(t + 1) = α(t)/fact

else α(t + 1) = α(t) ∗ fact

where fact > 1 and τtarget are user-defined parameters and

α(0) =

∣

∣

∣

∣

∑n
i=1

fi(�x)
∑n

i=1
Vi(�x)

∣

∣

∣

∣

∗ 1000 (17)

where Vi(�x) is the sum of the constraint violation of individual i.

35

ASCHEA

The Recombination guided by the constraints combines an

infeasible solution with a feasible one when there are few feasible

solutions, based on τtarget. If τt > τtarget, then the recombination is

performed in the traditional way (i.e., disregarding feasibility).

The Segregational Selection operator aims to define a ratio

τselect of feasible solutions such that they become part of the next

generation. The remaining individuals are selected in the

traditional way based on their penalized fitness. τselect is another

user-defined parameter.

36 3065

ASCHEA

• In its most recent version [2002], it uses a penalty factor for

each constraint, as to allow more accurate penalties.

• This version also uses niching to maintain diversity (this,

however, adds more user-defined parameters).

• The approach requires a high number of fitness function

evaluations (1, 500, 000).

37

GECCO 2007 Tutorial / Constraint-Handling Techniques used with Evolutionary Algorithms

Stochastic Ranking

This approach was proposed by Runarsson and Yao [2000], and it

consists of a multimembered evolution strategy that uses a penalty

function and a selection based on a ranking process. The idea of

the approach is try to balance the influence of the objective

function and the penalty function when assigning fitness to an

individual. An interesting aspect of the approach is that it doesn’t

require the definition of a penalty factor. Instead, the approach

requires a user-defined parameter called Pf , which determines the

balance between the objective function and the penalty function.

38

GECCO 2007 Tutorial / Constraint-Handling Techniques used with Evolutionary Algorithms

Stochastic Ranking

Begin

For i=1 to N

For j=1 to P-1

u=random(0,1)

If (φ(Ij) = φ(Ij+1) = 0) or (u < Pf)

If (f(Ij) > f(Ij+1))

swap(Ij ,Ij+1)

Else

If (φ(Ij) > φ(Ij+1))

swap(Ij ,Ij+1)

End For

If no swap is performed

break

End For

End

39

Stochastic Ranking

The population is sorted using an algorithm similar to bubble-sort

(which sorts a list based on pairwise comparisons). Based on the

value of Pf , the comparison of two adjacent individuals is

performed based only on the objective function. The remainder of

the comparisons take place based on the sum of constraint

violation. Thus, Pf introduces the “stochastic” component to the

ranking process, so that some solutions may get a good rank even if

they are infeasible.

40 3066

Stochastic Ranking

• The value of Pf certainly impacts the performance of the

approach. The authors empirically found that 0.4 < Pf < 0.5

produces the best results.

• The authors report the best results found so far for the

benchmark adopted with only 350, 000 fitness function

evaluations.

• The approach is easy to implement.

41

GECCO 2007 Tutorial / Constraint-Handling Techniques used with Evolutionary Algorithms

Other Recent Approaches

There are two other recent approaches that we will also briefly

discuss:

• A Simple Multimembered Evolution Strategy (SMES)

• The α Constrained Method

42

GECCO 2007 Tutorial / Constraint-Handling Techniques used with Evolutionary Algorithms

A Simple Multimembered Evolution Strategy

Mezura-Montes and Coello [2005] proposed an approach based on a

(µ + λ) evolution strategy. Individuals are compared using the

following criteria (originally proposed by [Deb, 2000]):

1. Between two feasible solutions, the one with the highest fitness

value wins.

2. If one solution is feasible and the other one is infeasible, the

feasible solution wins.

3. If both solutions are infeasible, the one with the lowest sum of

constraint violation is preferred.

43

A Simple Multimembered Evolution Strategy

Additionally, the approach has 3 main mechanisms:

1. Diversity Mechanism: The infeasible solution which is

closest to become feasible is retained in the population, so that

it is recombined with feasible solutions.

2. Combined Recombination: Panmictic recombination is

adopted, but with a combination of the discrete and

intermediate recombination operators.

3. Stepsize: The initial stepsize of the evolution strategy is

reduced so that finer movements in the search space are

favored.

44 3067

A Simple Multimembered Evolution Strategy

This approach provided highly competitive results with respect to

stochastic ranking, the homomorphous maps and ASCHEA while

performing only 240,000 fitness function evaluations.

In more recent work, similar mechanisms were incorporated into a

differential evolution algorithm, obtaining even better results.

The approach is easy to implement and robust.

45

GECCO 2007 Tutorial / Constraint-Handling Techniques used with Evolutionary Algorithms

The α Constrained Method

This is a transformation method for constrained optimization

introduced by Takahama [1999]. Its main idea is to define a

satisfaction level for the constraints of a problem. The approach

basically adopts a lexicographic order with relaxation of the

constraints. Equality constraints can be easily handled through the

relaxation of the constraints.

46

GECCO 2007 Tutorial / Constraint-Handling Techniques used with Evolutionary Algorithms

The α Constrained Method

In [Takahama and Sakai, 2005], this approach is coupled to a

modified version of Nelder and Mead’s method. The authors argue

that Nelder and Mead’s method can be seen as an evolutionary

algorithm in which, for example, the variation operators are:

reflection, contraction and expansion. The authors also extend this

method with a boundary mutation operator, the use of multiple

simplexes, and a modification to the traditional operators of the

method, as to avoid that the method gets easily trapped in a local

optimum.

47

The α Constrained Method

The approach was validated using a well-known benchmark of 13

test functions. Results were compared with respect to stochastic

ranking. The number of evaluations performed was variable and

ranged from 290,000 to 330,000 evaluations in most cases. The

results found were very competitive, although the approach had

certain sensitivity to the variation of some of its parameters.

48 3068

Special representations and operators

Some researchers have decided to develop special representation

schemes to tackle a certain (particularly difficult) problem for which

a generic representation scheme (e.g., the binary representation

used in the traditional genetic algorithm) might not be appropriate.

49

GECCO 2007 Tutorial / Constraint-Handling Techniques used with Evolutionary Algorithms

Special representations and operators

Due to the change of representation, it is necessary to design

special genetic operators that work in a similar way than the

traditional operators used with a binary representation. For

example: Random Keys [Bean, 1992, 1994].

50

GECCO 2007 Tutorial / Constraint-Handling Techniques used with Evolutionary Algorithms

Special representations and operators

A more interesting type of approaches within this group are the

so-called “Decoders”. The emphasis of these approaches is to map

chromosomes from the infeasible region into the feasible region of

the problem to solve. In some cases, special operators have also

been designed in order to produce offspring that lie on the

boundary between the feasible and the infeasible region.

51

Special representations and operators

A more intriguing idea is to transform the whole feasible region

into a different shape that is easier to explore. The most important

approach designed along these lines are the “homomorphous maps”

[Koziel & Michalewicz, 1999]. This approach performs a

homomorphous mapping between an n-dimensional cube and a

feasible search space (either convex or non-convex). The main idea

of this approach is to transform the original problem into another

(topologically equivalent) function that is easier to optimize by an

evolutionary algorithm.

52 3069

Special representations and operators

The convex case is the following:

T

r

x

0

0

0

0
y

F

53

GECCO 2007 Tutorial / Constraint-Handling Techniques used with Evolutionary Algorithms

Special representations and operators

The non-convex case is the following:

F

F
r 0

t t t t t t1 2 3 4 5 6

S

t

0 1

54

GECCO 2007 Tutorial / Constraint-Handling Techniques used with Evolutionary Algorithms

Special representations and operators

The Homomorphous Maps (HM) was for some time, the most

competitive constraint-handling approach available (until the

publication of Stochastic Ranking). However, the implementation

of the algorithm is more complex, and the experiments reported

required a high number of fitness function evaluations (1, 400, 000).

55

Special representations and operators

The version of HM for convex feasible regions is very efficient.

However, the version for non-convex feasible regions requires a

parameter v and a binary search procedure to find the intersection

of a line with the boundary of the feasible region.

56 3070

Separation of constraints and objectives

Unlike penalty functions which combine the value of the objective

function and the constraints of a problem to assign fitness, these

approaches handle constraints and objectives separately. Some

examples:

• Coevolution: Use two populations that interact with each

other and have encounters [Paredis, 1994].

57

GECCO 2007 Tutorial / Constraint-Handling Techniques used with Evolutionary Algorithms

Separation of constraints and objectives

• Superiority of feasible points: The idea is to assign always

a higher fitness to feasible solutions [Powell & Skolnick, 1993;

Deb, 2000].

• Behavioral memory: Schoenauer and Xanthakis [1993]

proposed to satisfy, sequentially, the constraints of a problem.

58

GECCO 2007 Tutorial / Constraint-Handling Techniques used with Evolutionary Algorithms

Separation of constraints and objectives

• Use of multiobjective optimization concepts: The main

idea is to redefine the single-objective optimization of f(�x) as a

multiobjective optimization problem in which we will have

m + 1 objectives, where m is the total number of constraints.

Then, any multi-objective evolutionary algorithm can be

adopted [Coello et al., 2002; Deb, 2001]. Note however, that

the use of multiobjective optimization is not straightforward,

and several issues have to be taken into consideration.

59

Separation of constraints and objectives

This last type of approach has been very popular in the last few

years. For example:

• Surry & Radcliffe [1997] proposed COMOGA (Constrained

Optimization by Multiobjective Optimization Genetic

Algorithms) where individuals are Pareto-ranked based on the

sum of constraint violation. Then, solutions can be selected

using binary tournament selection based either on their rank or

their objective function value.

60 3071

Separation of constraints and objectives

• Zhou et al. [2003] proposed a ranking procedure based on the

Pareto Strength concept (introduced in SPEA) for the

bi-objective problem, i.e. to count the number of individuals

which are dominated for a given solution. Ties are solved by

the sum of constraint violation (second objective in the

problem). The Simplex crossover (SPX) operator is used to

generate a set of offspring where the individual with the

highest Pareto strength and also the solution with the lowest

sum of constraint violation are both selected to take part in the

population for the next generation.

61

GECCO 2007 Tutorial / Constraint-Handling Techniques used with Evolutionary Algorithms

Separation of constraints and objectives

• Venkatraman and Yen [2005] proposed a generic framework

divided in two phases: The first one treats the NLP as a

constraint satisfaction problem i.e. the goal is to find at least

one feasible solution. To achieve that, the population is ranked

based only on the sum of constraint violation. The second

phase starts when the first feasible solution was found. At this

point, both objectives (original objective function and the sum

of constraint violation) are taken into account and

nondominated sorting [Deb, 2002] is used to rank the

population.

62

GECCO 2007 Tutorial / Constraint-Handling Techniques used with Evolutionary Algorithms

Separation of constraints and objectives

• Hernandez et al. [2004] proposed an approach named IS-PAES

which is based on the Pareto Archive Evolution Strategy

(PAES) originally proposed by Knowles and Corne [2000].

IS-PAES uses an external memory to store the best set of

solutions found. Furthermore, it adopts a shrinking mechanism

to reduce the search space. The multiobjective concept is used

in this case as a secondary criterion (Pareto dominance is used

only to decide whether or not a new solution is inserted in the

external memory).

63

Separation of constraints and objectives

Possible problems of the use of MO concepts:

Runarsson and Yao [2005] presented a comparison of two versions

of Pareto ranking in constraint space: (1) considering the objective

function value in the ranking process and (2) without considering

it. These versions were compared against a typical over-penalized

penalty function approach. The authors found that the use of

Pareto Ranking leads to bias-free search, then, they concluded that

it causes the search to spend most of the time searching in the

infeasible region; therefore, the approach is unable to find feasible

solutions (or finds feasible solutions with a poor value of the

objective function).

64 3072

Separation of constraints and objectives

Possible problems of the use of MO concepts:

Note however, that “pure” Pareto ranking is rarely used as a

mechanism to handle constraints, since some bias is normally

introduced to the selection mechanism (when a constraint is

satisfied, it makes no sense to keep using it in the Pareto

dominance relationship).

65

GECCO 2007 Tutorial / Constraint-Handling Techniques used with Evolutionary Algorithms

Hybrid methods

Within this category, we consider methods that are coupled with

another technique (either another heuristic or a mathematical

programming approach). Examples:

• Adeli and Cheng [1994] proposed a hybrid EA that integrates

the penalty function method with the primal-dual method.

This approach is based on sequential minimization of the

Lagrangian method.

66

GECCO 2007 Tutorial / Constraint-Handling Techniques used with Evolutionary Algorithms

Hybrid methods

• Kim and Myung [1997] proposed the use of an evolutionary

optimization method combined with an augmented Lagrangian

function that guarantees the generation of feasible solutions

during the search process.

• Constrained optimization by random evolution

(CORE): This is an approach proposed by Belur [1997] which

combines a random evolution search with Nelder and Mead’s

method [1965].

67

Hybrid methods

• Ant System (AS): The main AS algorithm is a multi-agent

system where low level interactions between single agents (i.e.,

artificial ants) result in a complex behavior of the whole ant

colony. Although mainly used for combinatorial optimization,

AS has also been successfully applied to numerical optimization

[Bilchev & Parmee, 1995; Leguizamon, 2004]. Some of the

recent research in this area focuses on the exploration of the

boundary between the feasible and infeasible regions

[Leguizamon & Coello, 2006].

68 3073

Hybrid methods

• Simulated Annealing (SA): Wah & Chen [2001] proposed a

hybrid of SA and a genetic algorithm (GA). The first part of

the search is guided by SA. After that, the best solution is

refined using a GA. To deal with constraints, Wah & Chen use

Lagrangian Multipliers.

69

GECCO 2007 Tutorial / Constraint-Handling Techniques used with Evolutionary Algorithms

Hybrid methods

• Artificial Immune System (AIS): Hajela and Lee [1996]

proposed a GA hybridized with an AIS (based on the negative

selection approach). The idea is to adopt as antigens some

feasible solutions and evolve (in an inner GA) the antibodies

(i.e., the infeasible solutions) so that they are “similar” (at a

genotypic level) to the antigens.

70

GECCO 2007 Tutorial / Constraint-Handling Techniques used with Evolutionary Algorithms

Hybrid methods

• Cultural Algorithms: In this sort of approach, the main idea

is to preserve beliefs that are socially accepted and discard (or

prune) unacceptable beliefs. The acceptable beliefs can be seen

as constraints that direct the population at the

micro-evolutionary level. Therefore, constraints can influence

directly the search process, leading to an efficient optimization

process.

71

Hybrid methods

• In other words, when using cultural algorithms, some sort of

knowledge is extracted during the search process and is used to

influence the evolutionary operators as to allow a more efficient

search. The first versions of cultural algorithms for constrained

optimization had some memory handling problems [Chung &

Reynolds, 1996], but later on, they were improved using spatial

data structures that allowed to handle problems with any

number of decision variables [Coello & Landa, 2002].

72 3074

Test Functions

Michalewicz and Schoenauer [1996] proposed a set of test functions,

which was later expanded by Runarsson and Yao [2000]. The

current set contains 13 test functions. These test functions contain

characteristics that are representative of what can be considered

“difficult” global optimization problems for an evolutionary

algorithm.

73

GECCO 2007 Tutorial / Constraint-Handling Techniques used with Evolutionary Algorithms

Test Functions

Note however, that many other test functions exist. See for example:

Mezura Montes, Efrén and Coello Coello, Carlos A., What Makes a

Constrained Problem Difficult to Solve by an Evolutionary

Algorithm, Technical Report EVOCINV-01-2004, Evolutionary

Computation Group at CINVESTAV, Sección de Computación,

Departamento de Ingenieŕıa Eléctrica, CINVESTAV-IPN, México,

February 2004.

C. A. Floudas and P. M. Pardalos, A Collection of Test Problems for

Constrained Global Optimization Algorithms, Number 455 in

Lecture Notes in Computer Science. Springer-Verlag, 1990.

Christodoulos A. Floudas et al. (editors), Handbook of Test Problems in

Local and Global Optimization, Kluwer Academic Publishers,

Dordrecht, 1999.

74

GECCO 2007 Tutorial / Constraint-Handling Techniques used with Evolutionary Algorithms

Test Functions (Current Benchmark)

Problem n Type of function ρ LI NI LE NE

g01 13 quadratic 0.0003% 9 0 0 0

g02 20 nonlinear 99.9973% 1 1 0 0

g03 10 nonlinear 0.0026% 0 0 0 1

g04 5 quadratic 27.0079% 0 6 0 0

g05 4 nonlinear 0.0000% 2 0 0 3

g06 2 nonlinear 0.0057% 0 2 0 0

g07 10 quadratic 0.0000% 3 5 0 0

g08 2 nonlinear 0.8581% 0 2 0 0

g09 7 nonlinear 0.5199% 0 4 0 0

g10 8 linear 0.0020% 3 3 0 0

g11 2 quadratic 0.0973% 0 0 0 1

g12 3 quadratic 4.7697% 0 93 0 0

g13 5 nonlinear 0.0000% 0 0 1 2

75

Test Functions

Additional test functions have been recently proposed, and a new

benchmark, consisting of 24 test functions (which include the 13

indicated in the previous slide) is now becoming more popular. See:

J. J. Liang, T. P. Runarsson, E. Mezura-Montes, M. Clerc, P. N.

Suganthan, C. A. Coello Coello, K. Deb, Problem Definitions

and Evaluation Criteria for the CEC 2006, Special Session

on Constrained Real-Parameter Optimization, Technical

Report, Nanyang Technological University, Singapore, 2006.

76 3075

Test Case Generators

Michalewicz [2000] proposed a Test Case Generator for constrained

parameter optimization techniques. This generator allows to build

test problems by varying several features such as: dimensionality,

multimodality, number of constraints, connectedness of the feasible

region, size of the feasible region with respect to the whole search

space and ruggedness of the objective function.

77

GECCO 2007 Tutorial / Constraint-Handling Techniques used with Evolutionary Algorithms

Test Case Generators

The first version of this test problems generator had some problems

because the functions produced were symmetric. This motivated

the development of a new version called TCG-2 [Schmidt et al.,

2000].

78

GECCO 2007 Tutorial / Constraint-Handling Techniques used with Evolutionary Algorithms

Some Recommendations

• Study (and try first) traditional mathematical programming

techniques (e.g., gradient-based methods, Nelder-Mead,

Hooke-Jeeves, etc.).

• If interested in numerical optimization, try evolution strategies

or differential evolution, instead of using genetic algorithms.

Also, the combination of parents and offspring in the selection

process tends to produce better performance.

• Pay attention to diversity. Keeping populations in which every

individual is feasible is not always a good idea.

• Normalizing the constraints of the problem is normally a good

idea.

79

Current Research Topics

• New constraint-handling approaches (e.g., based on

multiobjective optimization concepts).

• Old constraint-handling techniques with new search engines

(e.g., differential evolution, particle swarm optimization, ant

colony, etc.).

• Hybrids of EAs with mathematical programming techniques

(e.g., evolution strategy + simplex, use of Lagrange multipliers,

etc.).

80 3076

Current Research Topics

• Test function generators (how to build them and make them

reliable? Test functions available online?).

• New metrics that allow the evaluate the online performance of

a constraint-handling technique.

• Special operators for exploring the boundary between the

feasible and infeasible regions.

81

GECCO 2007 Tutorial / Constraint-Handling Techniques used with Evolutionary Algorithms

To know more about constraint-handling

techniques used with EAs

Please visit our constraint-handling repository located at:

http://www.cs.cinvestav.mx/˜constraint

The repository currently (as of April 18th, 2007) had 524

bibliographic references.

82

GECCO 2007 Tutorial / Constraint-Handling Techniques used with Evolutionary Algorithms

Suggested Readings

• Zbigniew Michalewicz and Marc Schoenauer, Evolutionary

Algorithms for Constrained Parameter Optimization

Problems, Evolutionary Computation, Vol. 4, No. 1, pp. 1–32,

1996.

• Carlos A. Coello Coello, Theoretical and Numerical

Constraint-Handling Techniques used with Evolutionary

Algorithms: A Survey of the State of the Art, Computer

Methods in Applied Mechanics and Engineering, Vol. 191, No.

11–12, pp. 1245–1287, January 2002.

83

Suggested Readings

• Thomas P. Runarsson and Xin Yao, Stochastic Ranking for

Constrained Evolutionary Optimization, IEEE Transactions

on Evolutionary Computation, 4(3):284–294, September 2000.

• Alice E. Smith and David W. Coit, Constraint Handling

Techniques–Penalty Functions, in Thomas Bäck, David B.

Fogel, and Zbigniew Michalewicz, editors, Handbook of Evolutionary

Computation, chapter C 5.2. Oxford University Press and Institute

of Physics Publishing, 1997.

84 3077

