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Swarm Intelligence

David Corne, Alan Reynolds and Eric Bonabeau

Increasing numbers of books, websites and artelesdevoted to the concept of
‘swarm intelligence’. Meanwhile, a perhaps confgsirariety of computational

techniques are seen to be associated with this srohm as ‘agents’, ‘emergence’,
‘boids’, ‘ant colony optimisation’, and so forthn Ithis chapter we attempt to
clarify the concept of swarm intelligence and iss@ciations, and we attempt to
provide a perspective on its inspirations, hist@yd current state. We focus on
the most popular and successful algorithms that sm®ociated with swarm
intelligence, namely ant colony optimisation, peéiswarm optimisation, and
(more recently) foraging algorithms, and we covee tsources of natural

inspiration with these foci in mind. We then rouoff the chapter with a brief

review of current trends.

1, Introduction

Nature provides inspiration to computer scientistsnany ways. One source of
such inspiration is the way in which natural orgamé behave when they are in
groups. Consider a swarm of ants, a swarm of lzeeslony of bacteria, or a flock
of starlings. In these cases and in many moreogists have told us (and we have
often seen for ourselves) that the group of indigid itself exhibits behaviour that
the individual members do not, or cannot. In otherds, if we consider the group
itself as an individual — thewarm— in some ways, at least, the swarm seems to be
more intelligent than any of the individuals within

This observation is the seed for a cloud ofcepts and algorithms, some of
which have become associated with swarm intelligetedeed, it turns out that
swarm intelligence is only closely associated vaitbmall portion of this cloud. If
we search nature for scenarios in which a collactibagents exhibits behaviour
that the individuals do not (or cannot), it is easyfind entire and vast sub-areas
of science, especially in the bio-sciences. Fomwta, any biological organism
seems to exemplify this concept, when we constaeirdividual organism as the
‘swarm’, and its cellular components as the agents.

We might consider brains, and nervous systemgeédneral, as a supreme
exemplar of this concept, when individual neurores eonsidered as the agents.
Or we might zoom in on certain inhomogeneous sétbi@molecules as our
‘agents’, and herald gene transcription, say, agxample of swarm behaviour.
Fortunately, for the sake of this chapter's brewityl depth, it turns out that the
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swarm intelligence literature has come to refest ®mnall and rather specific set of
observations and associated algorithms. This istoactay that that computer
scientists are uninspired by the totality of natureonders that exhibit such ‘more
than the sum of the parts’ behaviour — much of thisme makes it clear that this
is not so at all. However, if we focus on the sfieconcept of swarm intelligence
and attempt to define it intensionally, the resuilght be thus:

=

Useful behaviour that emerges from the cooperaft@ts of a group of
individual agents;
... in which the individual agents are largely homugeus;
... in which the individual agents act asynchronouslyarallel;
... in which there is little or no centralised cortro

. in which communication between agents is largdfected by some
form of stigmergy;

. in which the “useful behaviour' is relatively gi® (finding a good
place for food, or building a nest -- not writingymphony, or surviving
for many years in a dynamic environment).

apwDd

o

So, swarm intelligence is not about how collectiofgells yield brains (which
falls foul of at least items 2, 5, and 6), andsitniot about how individuals form
civilizations (violating mainly items 3, 5 and &d it is not about such things as
the lifecycle of the slime mould (item 6). Howevdr,is about individuals co-
operating (knowingly or not) to achieve a defirgial. Such as, ants finding the
shortest path between their nest and a good sofifoed, or bees finding the best
sources of nectar within the range of their hivéne§e and similar natural
processes have led directly to families of algonhthat have proved to be very
substantial contributions to the sciences of comdrial optimisation and
machine learning.

So, originally inspired, respectively, by e@éntnatural behaviours of swarms of
ants, and flocks of birds, the backbone of swartelligence research is built
mainly upon two families of algorithms: ant colowptimisation, and particle
swarm optimisation. Seminal works on ant colonyirojsation were Dorigo et al
(1991) and Colorni et al (1992a; 1992b), and plartiwvarm optimisation harks
back to Kennedy & Eberhart (1995). More recentligraative inspirations have
led to new algorithms that are becoming acceptetbuthe swarm intelligence
umbrella; among these are search strategies idspiyebee swarm behaviour,
bacterial foraging, and the way that ants managéutier and sort items. Notably,
this latter behaviour is explored algorithmically & subfield known as swarm
robotics. Meanwhile, the way in which insect colmtcollectively build complex
and functional constructions is a very intriguingdy that continues to be carried
out in the swarm intelligence arena. Finally, aeotfield that is often considered
in the swarm intelligence community is the syncised movement of swarms; in
particular, the problem of defining simple rules iidividual behaviour that led to
realistic and natural behaviour in a simulated sawaReynolds’ rules’ provided a
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general solution to this problem in 1987, and ttésy be considered an early
triumph for swarm intelligence, which has been ekptl much in the film and
entertainment industries.

In the remainder we expand on each of thestersatWe start in section 2 with
an account of the natural behaviours that haveiredpthe main swarm
intelligence algorithms. Section 3 then discus$esmore prominent algorithms
that have been inspired by the techniques in se@jcand section 4 notes some
current trends and developments and offers someuwding remarks.

2. Inspiration from Nature
2.1 Social Insects and Stigmer gy

Ants, termites and bees, among many other insextiesp are known to have a
complex social structure. Swarm behaviour is onsesferal emergent properties
of colonies of such so-callesbcial insectsA ubiquitous characteristic that we see
again and again in such scenariosstigmergy Stigmergy is the name for the
indirect communication that seems to underpin cooperatinang social insects
(as well as between cells, or between arbitraryitiest so long as the
communication isndirect).

The term was introduced by Pierre-Paul GrasgBd late 1950s. Quite simply,
stigmergy means communication via signs or cueseplan the environment by
one entity, which affect the behaviour of otherit@¥ who encounter them.
Stigmergy was originally defined by Grassé in lisearch on the construction of
termite nests. Figure 1 shows a simplified schen@dta termite nest. We will say
more about termite nests in section 2.1.3, bunhfiw it suffices to point out that
these can be huge structures, several metres ¢ogistructed largely from mud
and from the saliva of termite workers. Naturalhe complexity and functionality
of the structure is quite astounding, given whatuméderstand to be the cognitive
capabilities of a single termite.
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Figure 1. A highly simplified schematic of a terenitest

Following several field trips to Africa in thate 1930s and 1940s studying
termites and their nests, among other things, @rakswed that the regulation
and the co-ordination of the nest-building activitig not depend on the termite
workers themselves, but was instead achieved byekeitself. That is, some kind
of stimulating configuration of materials triggeasresponse in a termite worker,
where that response transforms the configuratibm &mother configuration that
may, in turn, trigger yet another, possibly diffeteaction performed by the same
termite or by any other termite worker in the cgloihis concept of stigmergy
was attractive and stimulating, but at the timej afien today, it was and is often
overlooked by students of social insects becaudeaites open the important
operational issue of how the specific trigger-res@oconfigurations and stimuli
must be organized in time and space to allow apjaiEp co-ordination. But
despite the general vagueness of Grassé's formulatiigmergy is recognised as
a very profound concept, the consequences of wdnielstill to be fully explored.
Stigmergy is not only of potential importance fourounderstanding of the
evolution and maintenance of social behaviour immafs, from communally
breeding species to highly social insects, it soaurning out to be a crucial
concept in other fields, such as artificial intgdince, robotics, or the social,
political and economic sciences. Meanwhile, in #nena of natural computing,
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stigmergy is the fundamental concept behind onth@fmain swarm intelligence
algorithms, as well as several others.

Apart from termite nests, another exemplaisecaf stigmergy in nature is that
of pheromone deposition. Ants deposit pheromonegaibeir paths as they travel;
an ant striking out on her own will detect pheromarails, and prefer to follow
such trails already travelled. In general, the ephcof stigmergy captures
underlying commonalities in (usually) insect beloavs that are underpinned by
indirect communication. This covers more emergeehaviours than trail-
following, and (the original inspiration for therte) the construction of structures
such as termite mounds and bee hives. Stigmergysalems key to behaviours
such as brood sorting and cemetery clustering mesant species are known to
spatially cluster their young into age-groups witle nest, and they keep their
nests tidy by removing dead nest mates and piliegtinto clusters outside.

The phenomenon of stigmergy has much earlier elolaty roots; it is now
used to explain the morphologies of multicellulaganisms, sea-shells, and so
forth. Essentially, individual cells position theshges in a way influenced by
deposits left behind by their colleagues or preassA useful way to think of it is
that stigmergic communication involves a ‘stigmemgyucture’ which is like a
notepad, or an actual structure, built from cuéslg individuals.

The structure itself may be a spatially distribuetumulation of pheromone,
or a partially built hive, or a partially constradt extracellular matrix. The
structure itself influences the behaviours of thdividuals that ‘read’ it, and these
individuals usually also add to the structure. Aramts find their directions of
travel influenced by pheromone trails, and they addhe trails themselves.
Termites are triggered by particular patterns thay see locally in the partially
built mound, and act in simple and specific ways assult, resulting in additions
to the structure itself. An authoritative overvieof stigmergy associated
behaviours in nature is Bonabeau et al (1997),envhileraulaz (1994) provides a
comprehensive survey of self-organisation proceBs@sect colonies. As hinted
above, when we consider the stigmergic procesdes observed in nature, the
most prominent sources of inspiration from the swamtelligence viewpoint are
those of navigation to food sources, sorting/clistg and the collective building
of structures. We briefly consider each of thesd.ne

2.1.1 Natural Navigation

Navigation to food sources seems to depend on epesition of pheromone by
individual ants. In the natural environment, thiidh behaviours of a colony of
ants in seeking a new food source is for individaats to wander randomly.
When an ant happens to find a suitable food sotleg will return to their
colony; throughout, the individual ants have beawirlg pheromone trails.
Subsequent ants setting out to seek food will sémsgheromone laid down by
their precursors, and this will influence the palley take up. Over time, of
course, pheromone trails evaporate. However, censithat happens in the case
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of a particularly close food source (or, alternelyy a faster or safer route to a
food source). The first ant to find this sourcel wafturn relatively quickly. Other
ants that take this route will also return reldivguickly, so that the best routes
will enjoy a greater frequency of pheromone layawgr time, becoming strongly
fancied by other ants. The overall collective bébawvamounts to finding the best
path to a nearby food source, and there is enotagthasticity in the process to
avoid convergence to poor local optima — trail erafion ensures that suboptimal
paths discovered early are not converged upon tidekly, while individual ants
maintain stochasticity in their choices, beingueficed by but not enslaved by the
strongest pheromone trail they sense. Figure 2 shawsimple illustration,
indicating how ants will converge via stigmergy tows a safer and faster way to
cross a flow of water between their nest and a &mdce.

nest

H | eedl]

Figure 2: Convergence to a safer crossing over.time

In figure 2, we see three contrived snapshots sifrple scenario over time.
On the left, ants need to cross a narrow streanflogfing water towards a
tempting food source, and three crossings — falldgs — present themselves.
Initially ants are equally likely to try each origach of these ants lays its trail of
pheromone as it makes its journey towards the.righer time, however, the path
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towards the middle twig becomes less laid with phesne, simply because,
unlike the situation with the upper and lower twidlsere are no ants laying
pheromoneon their way backKrom that particular path. Eventually, on the tigh
we see several ants are following the path defibgdthe lower twig, both
attracted by, and further multiplying, the steadyldrup of pheromone on this
path, which is faster than that on the path defimgthe upper twig. Although the
upper twig provides a fairly short journey, it iora perilous, since this twig is
quite narrow, and several ants fall off before geable to strengthen the path.

Actually, this is one of the simplest and mostigtitforward activities in social
insects related to pheromones. The term ‘pheromitself was promoted for this
context in 1959 (the late 1950s was clearly afinbjgeriod for swarm intelligence
vocabulary) (Karlson & Luscher, 1959), to encompalss broad range of
biologically active chemicals used by insects farieties of communicative
purpose. The context in which we describe it ab®/é&nown in biology as
‘recruitment’, referring broadly to tasks in whicimdividuals discover an
opportunity (usually a food source) and need touieothers to help exploit it.
However there are many other behaviours that asecégted with pheromones,
such as indicating alarms or warnings, interactioetsveen queens and workers,
and mating. An excellent source of further inforimatis Vander Meer et al
(1998b), and in particular Vander Meer et al (1998a

2.1.2 Natural Clustering

Turning now to a different style of swarm behavijouris well known that ant
species (as well as other insect species) exhigrgent sorting and clustering of
objects. Two of the most well known examples am d¢hustering of corpses of
dead ants into cemeteries (achieved by the spddsfus Niger Pheidole
pallidula, and Messor sanctaDepickere et al, 2004), and the arrangement of
larvae into similar-age groups (so called broodisgr achieved by eptothorax
unifasciatugFranks & Sendova-Franks, 1992)).

For example, inLeptothorax unifasciatusant colonies, the ants' young are
organised into concentric rings called annuli. Eaicly comprises young of a
different type. The youngest (eggs, and micro-lej\axe clustered together in the
central cluster. As we move outwards from the enirogressively older groups
of larvae are encountered. Also, the spaces betirexse rings increase as we
move outwards.

In cemetery formation, certain ant species are kntwcluster their dead into
piles, with individual piles maintained at leaghaimal distance from each other.
In this way, corpses are removed from the living@undings, and cease to be a
hindrance to the colony. One aspect of this behavio particular is that it is
arguably not exemplary of swarm behaviour; i.eisitperhaps notollective
intelligence. The explanatory model that seemsitiaaly correct and confirmed
by observation (Theraulaz et al, 2002) is one iriclvtan individual operates
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according to quite simple rules while otherwise eyally wandering around
randomly:

1. If not carrying a corpse, and a single corpse (itecgsmall cluster of
corpses) is encountered, pick it up.

2. If carrying a corpse, and a relatively large clustiecorpses is
encountered, put it down.

A single ant could achieve the clustering obserwedature, that seems to
operate according to these rules (Theraulaz e20412). However, the emergent
clusters are produced faster when a collectionnts are involved. Gaubert et al
(2007) is a useful reference for discussion of mathtical and other models of
these behaviours. Meanwhile, a steady line of fecesearch is investigating
computational clustering methods that are diredtlgpired by these natural
phenomena (Handl & Meyer, 2007). The first suclpiired clustering algorithm
was proposed by Lumer & Faieta (1994), closely ase the Deneubourg et al
(1991) model of the natural process. In recent weténdl et al, 2006), an ant-
based clustering method called ATTA is tested, thedcase is made convincingly
that ant-based clustering algorithms certainly haveniche in data mining,
performing particularly well on problems where thember of clusters are not
known in advance, and where the clusters themselrehighly variable in size
and shape. In this article our focus stays withinoigation and we will say little
more about clustering; we refer the reader agaifandl and Meyer's recent
review (Handl & Meyer, 2007) for further study dng topic.

2.1.3 Natural construction

We now consider the extraordinary collective bebawithat leads to the
construction of achievements such as wasp nesisitéemounds and bee hives.
Brood-sorting, considered above, exemplifies a Engtructure that arises from
collective behaviour. However the more visible amgressive structures such as
termite mounds have always impressed observersoféeil confounded us when
we try to imagine how such simple minds can leaduoch creations. As will be
clear from context, stigmergy seems to be the keyumderstanding these
buildings; patterns inherent in partial elementstofictures are thought to trigger
simple rule-based behaviour in the insect, whichliuim changes the perceived
patterns, and so on ..., until a complete hive est s built. Much computation-
based study has been made of this by Bonabeawadiagrand co-workers.

In nature, the sizes of such social insect strest@an reach an astounding 30
metres in diameter (Grassé, 1984). An impressiwmngie of the complexity of
these structures comes from the African termi&scrotermitinag ‘the fungus
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growers’. In a mature nest of this species, theeetypically six distinct elements
of structure (we adapt this description from Boraabet al, 1998):

1. The protective and ribbed cone-shaped outer waillso( featuring
ventilation ducts).

2. Brood chambers within the central “hive' area. Theye a laminar
structure and contain the nurseries where the ytenmngjtes are raised.

3. The hive consists of thin horizontal lamellae supgb by pillars.

4. A flat floor structure, sometimes exhibiting codirvents in a spiral
formation.

5. The royal chamber: a thick walled enclosure for gueen, with small
holes in the walls to allow workers in and out. STtg usually well
protected underneath the hive structure, and igevtie queen lays her

eggs.

6. Garden areas dedicated to cultivating fungi. Thesearranged around
the hive, and have a comb-like structure, arrarfgettbeen the central
hive and the outer walls.

7. Tunnels and galleries constructed both above ahalsbground which
provide pathways from the termite mound to the epk® known foraging
sites.

So, how does a collection of termites make sudhuetsire? Perhaps this is the
most astonishing example of natural swarm inteflcgeat work. Observations and
descriptions of such structures from the biologgréiture have tended to focus on
description elucidating further and finer detail from a véyief species, but have
done little to clarify the mechanism. However, catgtional simulation work
such as Theraulaz & Bonabeau (1995), has indicated such behaviour can
emerge from collections of ‘micro-rules’, wherdtpens of the growing structure
perceived by an individual termite (or ant, wadp,.e) act as a stigmergic trigger,
perhaps in tandem with other environmental infl@ncleading to a specific
response that adds a little new structure. Theraated Bonabeau (1995) and
Bonabeau et al (2000) have shown how specific cidles of such micro-rules
can lead to, in simulation, a variety of emergdniciures, each of which seems
convincingly similar to wasp nests from specificspaspecies. Figure 3 (reprinted
detail with permission) shows examples of thre#iciel nests, constructed in this
fashion, that closely resemble the nest structafeshree specific wasp species;
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several more such are presented in Theraulaz & IBxma(1995) and Bonabeau et
al (2000).

Figure 3. Fig. 2 from Bonabeau et al (2000), repoed with permission. These show
results from artificial colonies of ten wasps, gpigrg under the influence of stimulus-
response micro-rules based on patterns in a 3Dgloesé brick lattice. (a) A nest-like
architecture resembling the nestsvefspawasps, obtained after 20,000 building steps; (b)
An architecture resembling the nestafachartergusvasps, obtained after 20 000
building steps; (c) resemblir@hatergusnests, obtained after 100 000 building stepse)d,
Showing internal structure of (c).
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In Figure 4 we see some examples of micro-ruleth@fkind that can lead to the
types of structures shown in Figure 3. A micro-raleply describes a three-
dimensional pattern of ‘bricks’; in the case of theperiments that led to Figure 3,
a brick has a hexagonal horizontal cross sectiod,there are two types of brick
(it was observed that at least two different brigyloes seem necessary for
interesting results). The three dimensional pattdescribes the immediate
neighbourhood of a single central brick, includihg seven hexagonal cells above
it (the upper patches of hexagons in figure 4) ghethat surround it, and the
seven below it. In the figure, a ‘white’ hexagonaell is empty — meaning no brick
here; otherwise there are two kinds of bricks,idgtished by different shadings
in the figure. A micro-rule expresses the followibgilding instruction: ‘if the
substructure defined by this pattern is found, whid central cell empty, than add
the indicated type of brick in the central position

)

: ®
@ I
= 0

Figure 4. An illustration of two ‘micro-rules’ frorthe space of such rules that can lead to
structures such as those in Figure 3. A single anigle defines a building instruction
based on matching a pattern of existing bricks.i#gle column of three groups of 7
hexagonal cells is a micro-rule, by describingracitire around the neighbourhood of the
central cell (which is empty in the matching patteFhe building instruction is to fill the
central cell with the indicated type of “brick’. this figure, two example micro-rules are
shown, each further illustrated by ‘before’ andeafbuilding patterns on the right.

Intuition suggests how the construction by a ctibecof agents such as wasps of
artefacts such as those in Figure 3, or even momplex artefacts, may be

facilitated by specific collections of micro-rulelspwever that does not make it
easy to design a set of micro-rules for a spetdfiget construction. Sets of micro-
rules achieving the illustrated results were olgidiby using a carefully designed



Swarm Intelligence 12

evolutionary algorithm. Interested readers showldsalt Bonabeau et al (2000)
for further detail, including analyses of the opiemra of the emerging rulesets,
revealing the requirement for various types of odir@tion implicitly built in to
the micro-rule collection.

Meanwhile, it is a long way from wasp nests to igemnmounds, especially
mounds of the complexity hinted at above. Howeugy, considering and
extending partial models for elements of termiteunts, in Bonabeau et al (1998)
some basis is provided for the suspicion that sarhplexity may be explained
by the interaction of stimulus-response ("micrleu based processes and
pheromone-based triggers that modify the stimusisponse behaviour, unfolding
over time as a controlled morphogenetic process.

Finally we note that much of what we have discuseetiis subsection forms
part of the basis for the new field of “swarm ratsit This area of research
(Sahin, 2005; Mondada et al, 2005) focuses on whay be achievable by
collections of small, simple robots furnished wittlatively non-sophisticated
ways to communicate. Chief among the motivatingnelets of such research are
the qualities of robustness, flexibility and scdigbthat swarm robots could bring
to a number of tasks, ranging through agriculte@struction, exploration and
other fields. Imagine we wish to build a factory Miars, for example. We might
imagine this could be performed, in some possibteré, by a relatively small
collection of very sophisticated and intelligentbots. However, in the harsh
conditions of Mars, we can expect that loss orrdesbn of one or more of these
is quite likely. Swarms of simple robots, insteats far more robust to loss and
damage, and may present an altogether more maragshorter-term and more
adaptable approach than the ‘super-robot’ style.

As yet, swarm robotics has not risen to such hejghtthough there is
published discussion along these lines, drawingnfrine sources of natural
inspiration we have already discussed (CicirelloSé&nith, 2001). Meanwhile,
interesting and useful behaviours have been demztedtin swarm robotics
projects, after, in almost all cases, consideralmek in design, engineering and
construction of the individual ‘bots’. Supportingese studies, a large part of
swarm robotics research is into how to design tidévidual robots’ behaviours in
such a way that the swarm (or team) achieves amalbvgoal or behaviour.
Unsurprisingly to many, it turns out that the judics use of evolutionary
computation proves effective for this difficult dgs problem (Waibell et al,
2009). However, hand-design or alternative priredpimethods for designing
behaviours remains a backbone of this researctecedly when the desired
overall behaviour is complex, involving many tagksy. Ducatelle et al, 2009),
and in general there are several emerging issuesvarm robotics that have
sparked active current lines of research, sucthagtoblem of ‘interference’ —
swarm robots, whether co-operating on the same daskot, often physically
interfere with each others’ operation (Pini et 2009) — and the problem of
achieving tasks with minimal energy requirementsh&ts et al, 2008).
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Relatively impressive behaviours from swarm robmtiesearch has so far
included co-operative transport of one or moreecis, and co-operation towards
moving up a vertical step (as large as the botslwed); readers may visit the
European Project ‘Swarmbots’ and ‘Swarmanoids’ sitels for explanation and
many other resources, ahttp://ww.swarm bots.org/, and at
http://www.swarmanoid.org/ as well as similar res®s such as
http://ww. pherobot. conf. Hardware and related technology issues
remain a bottleneck that still inhibits a full egpdtion of social insect swarm
intelligence in robotics, however this work congsutoward that end and will be
observed with great interest.

2.2 Foraging

There are broadly two types of natural processdbéty the term "foraging", and
in turn provide sources of inspiration for optintiea (or resource allocation)
methods. In both cases, the overall emergentvimimais that the swarm finds
and exploits good food sources, adaptively movegotmd new sources as current
ones become depleted, and does all of this witbiefit expenditure of energy (as
opposed to, for example, brute force search of gvironment). The means by
which this behaviour is achieved is rather différém these two sources of
inspiration.

In one case, that of "bacterial foraging' (Passi®®?2), individual bacteria are
(essentially) directed towards rich areas cfieemotaxisthat is, they exist in an
environment in which their food source diffusestts®y can detect and respond to
its presence. In particular, chemotaxis refers tovement along a chemical
gradient. An individual e-coli bacterium has helieppendages callefiagellae
which spin either clockwise or anticlockwise (wendhink of them as analagous
to propellers). When they spin in one directior tiacterium will ‘tumble’; this is
an operation which ends up moving the bacteriurhaat gdistance, and leaving it
with an essentially random new orientation. Whem flagellae spin in the other
direction, the bacterium's movement will be a ‘run'this is a straight-line
movement in the direction the bacterium was facatigthe beginning, and
continues as long as the flagellae continue to ispihe same direction.

In a nutrient-free and toxin-free environment, awdividual bacterium will
alternate between clockwise and anti-clockwise mm of its flagellae. So, it
tumbles, runs, tumbles, runs, and so forth. Thecefbf this behaviour is random
search for nutrients. However, when the bacteriumnoenters an increasing
nutrient gradient, that is, a higher concentrat@nnutrient in its direction of
movement, its internal chemistry operates in a Wy causes the runs to be of
longer duration. It still alternates between turskded runs, but maintains longer
run lengths so long as the gradient continues ¢oease. The effect of this is to
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explore and exploit the food source, moving upwadsg the nutrient gradient,
while maintaining an element of stochastic expiorat

In addition, under certain conditions we know thatteria secrete chemicals
that attract each other. There is speculation tiiatcan happen in response to
nutrient rich environments, so that additional baetare recruited to exploit the
food source, where the attractive secretions Huilther on the attraction provided
by the chemical gradient. Also, there is eviderttat tacteria release such an
attractant under stressful conditions too, whichtimn may be a protective
response; as they swarm into a sizeable clusteny rivalividuals are protected
from the stressful agent. These self-attractant elmeinotactic behaviours are
known to lead to pattern formation under cetainditmms (Budrene & Berg,
1991). These and many other details have beendaked for e. coli and similar
bacteria via careful experimentation, for examplerg & Brown (1972), Segall et
al (1986), and deRosier (1998).

The other broad style of efficient collective foirag behaviour is that exhibited
by the honeybee (among other insects). When aiseewvétrs a food source some
distance from the hive, it returns to the hive aminmunicates the direction,
distance and qualityof the food source to other bees. The details his t
communication, achieved by specialised ‘dance€&,cuite remarkable, and have
emerged from a series of ingenious experimentsohsdrvations, largely by Karl
von Frisch (1967). The essential details are thésecontext, the dance is
performed in alignment with a particular aspecttioé hive structure, which
provides an absolute reference against which the d&ience can perceive
specific angles. The main dance is the ‘waggle’cdamhich consists of a straight
line movement, during which the bee waggles frode gb side along the way.
This straight line movement is done upwards at giqudar angle from the
vertical. At the end of the straight line part, thee loops round to the starting
point and repeats (actually, it alternates thectime of this loop, drawing a figure
"8"). The angle of this dance from vertical indesitto the bee audience the
direction they need to take with respect to theenirposition of the Sun. Among
various extraordinary aspects of this, it is knottat the bee automatically
corrects for movement of the Sun during the day, eemmunicates the correct
direction. Also, at times, the bee will pause iéck, and allow watching bees to
sample the nectar it is carrying, giving an indatof the quality of the food
source.

More interesting from the algorithmic viewppinhowever, is that the
abundance of the food source is communicated bydtiration of the dance
(essentially, the number of times the figure "8"repeated). An individual
enjoying this performance may or may not decidéotlow these directions and
be ‘recruited’ to this particular source. Such adividual may also be exposed to
rival performances. However, the longer the durgttbe more bees will see this
dance, and the more will be recruited to this damatieer than others. In this way,
the bee colony sports the emergent behaviour oftsmasource allocation, with
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more bees assigned to better sources, and adaptatiy time as returning bees
gradually provide shorter and shorter dances asdbece becomes depleted.

As we will see later, both bee and bactermbding have been taken as the
inspiration for general optimisation methods, adl ws for approaches to the
specific problem domain of optimal resource allaat

2.3 Flocking

Perhaps the most visible phenomenon that bringsital swarm intelligence is
the travelling behaviour of groups (flocks, swarimerds, etc...) of individuals that
we are all familiar with. The mesmerising behaviotifarge flocks of starlings is
a common morning sight over river estuaries. Swaomillions of monarch
butterflies, herds of wildebeeste, schools of tiglafswarms of bees, all share
common emergent behaviours, chiefly being:

1. the individuals stay close to each other, but ootdlose, and there seem
to be no collisions;

2. swarms change direction smoothly, as if the swaas asingle
organism;

3. unlikea single organism, yet still smoothly and cleaslyarms
sometimes pass directly through narrow obstactethé way that a
stream of water passes around a vertical sticleglaentrally in the
stream's path).

In some ways, such swarm behaviour is arguably fegsterious than other
emergent behaviours; it seems clear that we mightable to explain this

behaviour via a built-in predisposition for indivials to stay with their colleagues,
and we can readily imagine how evolution will haeeoured such behaviour:
there is safety in numbers. However, the devihighie detail, and it took seminal
work by Reynolds (1987) to outline and demonstcatevincing mechanisms that
can explain these behaviours. Reynolds' work wakinvthe computer graphics
community, and has had a volcanic impact there. Moawn as ‘Reynold's rules’,

the recipe that achieves realistic swarm behaywith some, but not obtrusively
much, parameter investigation needed dependinh@isgecies simulated) is this
triplet of steering behaviours to be followed bgteadividual in a swarm:

Separ ation: steer to avoid coming too close to others.
Alignment: steer towards the mean heading of others.
Cohesion: steer towards the meaositionof others
A basic illustration of each rule is given in Figud. In the figure, we take the

common terminology of “boid’ to refer to an indival in a flock. The figure
shows examples of the adjustments that might beeroader the guidance of the
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rules. To understand how realistic swarm simulatianks, it is important to note
that each boid has its own perceptual field —itecould only ‘see’ a certain
distance, and had a specific field of view (boidsmot see behind them, for
example). The adjustments it makes to its veloaityany time are therefore a
function of the positions and velocities of thedwmin its perceptual field, rather
than a function of the flock as a whole.

The rules are key ingredients to a realigtipesrance in simulated flocks, but
there are several other details, particularly reigar obstacle avoidance and goal-
seeking behaviour. Interested readers may consylh®ds (1987) and the many
papers that cite it. It is important to note thade rules are not strictly nature-
inspired, in the sense that Reynolds was not atieqpo explain natural
swarming behaviour, he was simply attempting to lateuit. However, the
resulting behaviour was found to agree well witlsentvations of natural flocking
behaviour (e.g. Partidge (1982) and Potts (19&4)}, Reynolds (1987) reported
that “many people who view these animated flocksadiately recognize them as
a representation of a natural flock, and find th&@milarly delightful to watch”.
These techniques are now common in the film ingustmong the earliest uses
were in the film Batman Returns (1992, director Borton), in which Reynolds’
rules lay behind the simulated bat swarms and fafkpenguins.
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Figure 5. lllustrating Reynolds’ rules, which le@dnatural-looking behaviour in simulated
swarms. Upper: Separation: each boid makes antawos to velocity which prevents it
coming too close to the flockmates in its percepfigld. Middle: Alignment: a boid
adjusts its heading towards the average of thogte perceptual field; lower: a boid makes
an adjustment to velocity that moves it towardsrtean position of the flockmates in its
perceptual field.

Meanwhile, natural flocking behaviour also turng tiube one of the sources of
inspiration for the highly popular and successfaltigle swarm optimisation
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algorithm, which appears in the next section asairtee prominent flagships for
swarm intelligence. It is not obvious why flockitghaviour might lead to an
optimisation algorithm, however it soon becomesarclehen we consider the
dynamics of flocking, and the tendency of optinimatiandscapes to be locally
smooth. In the case of bacterial foraging, the dyina of the natural behaviour
are such that individuals will tend to congregateuad good areas. With the
bacterial example, nature provides mechanisms faggesting appropriate
directions of movement, while there is a clear gielthe bacterial colony to

achieve - find nutrient rich (and toxin free) arebs particular for the current

context, the secretion of attractant chemicals isnechanism that promotes
bacteria swarming together, while an individualtssipon in its environment

directly provides it with a level of “fitness' thiattcan sense in terms of nutrient
concentration.

When we consider flocking behaviour in birdgwever, Reynolds' work
provides clues about appropriate ways to move hegeds a swarm, but there is
no clear mirror of a “fitness' in the environmedften birds will migrate from A
to B, knowing where they are going, rather thankisge new environments.
However, if flocksdid have a goal to move towards Sfitter' positionstlie
landscape they travel, then it becomes intuitivedgsonable to consider the
cohesive swarm behaviour as a sensible way to \a&ltdieal exploration around
fit areas, perhaps enabling the sensing of evesr fireas that may then sway the
overall movement of the flock. In this way, flocgitbehaviour combines with a
little algorithm engineering to achieve a very sgsful optimisation mechanism.

3. Two Main Concepts for Swarm Intelligence Algorithms

When we consider the impact of swarm intelligenogias on computer science,
two families of algorithms clearly stand out inrer of the amount of work
published, degree of current activity, and the alfémpact on industry. One such
family is inspired directly by the pheromone-tr&illowing behaviour of ant

species, and this field is known as Ant Colony @ation (ACO). The other

such family is inspired by flocking and swarminghbeiour, and the main
exemplar algorithm family is known as Particle Swadptimization (PSO). Also

in this family are algorithms based on bacteriatafing, and some of the
algorithms that are based on bee foraging; thesee shith PSO the broad way in
which the natural phenomenon is mapped onto theeminof search within a
landscape. In this section we discuss these two families in turn.

3.1 Ant Colony Optimization

Ant Colony Optimization (ACO) was introduced in B%ia an algorithm called

"Ant System' (AS) (Dorigo et al, 1996). The basiprach used in AS remains
highly characteristic of most ACO methods in cutnese, and we will describe it
next.
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Recall that, in the natural case, an ant fengsith from its nest to a food source
by following the influences of pheromone trialsdlalown by previous ants who
have previously sought food (and usually returné@, and ACO algorithms in
general, mirror aspects of this behaviour quitéhfally. In short: an artificial ant
builds a solution to the optimisation problem andiaand lays down simple
“artificial pheromone' along the route it took tads that solution. Following
artificial ants then build solutions of their owbut are influenced by the
pheromone trails left behind by their precursorkisTis the essential idea, and
starts to indicate the mapping from the naturath® artificial case. However,
there are various further issues necessary to @ensd make this an effective
optimization algorithm. We discuss this furthertie next section, focussing on
the mapping from the basic ideas of ACO to applicestin optimisation.

311 Applying ACO to optimisation problems

In order to apply AS to an optimisation probleme tproblem needs to be
represented in such a way that any candidate eolti it is a specific path along
a network. This network can be conceived as hawirgingle start node, from
which (usually) every ant starts, and a singlesfimode, reaching which indicates
that the path taken encodes a complete solutionleAr example might be the
network of roads in a city, where each junctiorradds is a node in the network,
and each road is an arc or edge between nodesidéptise problem of finding
the shortest path between a specific junction Aa@mather specific junction B. In
this case, A and B are clearly the start and fimietles, and we can imagine an
ACO approach which maps very closely indeed tontiteiral case. However, with
a little thought, it is clear that we should coastreach individual ants' path
construction so that it does not return to a junctt has already visited (unless
this is a valid move for the problem under consitien). Also, though we might
choose to simulate the preferential recruitmenhefv ants to shorter paths by
closely following the natural case, it seems mamesthle and straightforward to
make the pheromone trail strength directly a fuorcof the solution quality. That
is, when an ant has completed its path, we evathatguality of its solution, and
render things such that better solutions leadranger pheromone deposits along
its arcs. These pheromone deposits will decay times, however, just as in the
natural case - we can see that this will preveetmature convergence to poor
solutions that happen to be popular in the eadgest.

Finally, since such information is often agdik to us, and would seem useful
in cases where ants have large numbers of choigestight bias the paths
available at each junction with the aid of a simpkuristic evaluation of the
potential of that arc. For a shortest path problEmexample, this could be based
on how much closer to B each arc would leave the an

With such considerations in mind, we can sage artificial ants travelling the
road network from A to B via distinct but sensibbeites. At each junction, the ant
senses the pheromone levels that await it at ehdiearcs it can feasibly take.
These levels are made from many components; aatstk highly attractive will
probably enjoy the remnants of trails from priotsathat have reported good



Swarm Intelligence 20

solutions, and/or may have a good heuristic compioegcs with low pheromone
levels will probably be losers in the heuristickets, and have seen little activity
that has led to good solutions; however, the ant stid choose such an arc, since
our algorithm is stochastic.

Finally, as an individual artificial ant arriveat B, it retrospectively lays
pheromone on the path it took, where the strenftthat pheromone trail will
reflect the quality of its solution. The next adi&l ant starts from A and sees a
slightly updated pheromone trail (stigmergic) patf@nd so it continues.

To apply this method to other problems, we $irmeed (implicitly, at least) a
network-based representation of the problem asritbest If we are solving the
traveling salesperson problem (TSP), for examgle, tetwork is the complete
graph of the cities, each arc between cities ind&ahe distance or cost of that
arc, and in this case an individual ant can staswhere. As we follow an
individual ant's route, we sensibly constrain idsgmtial next-hops to avoid cycles,
and along the way we may bias its choices simplydigg the distance of the next
arc, and it retrospectively lays pheromone onckag completed a tour of all
cities. In general, an optimisation problem canasisvbe approached in this way,
by suitable choices of semantics for nodes and arcbwell designed routines for
generating and constraining an ant's availablecelscat each junction.

We can now finish this explication by clarifgithe AS algorithm, which in fact
has already been covered verbosely in the abovee @ transformation of the
problem has been designed, so that an ant's pathgth a network provides a
candidate solution, the algorithm cycles through fibllowing two steps until a
suitable termination condition is reached:

Solution Construction: a number of ants individually construct solutions
based on the current pheromone trail strengthsa(iyi pheromone is
randomly distributed). Each ant steps through teévark choosing
among feasible paths. At each choice point, the ciioses among
available arcs according to a function of the pheoe strength on each
arc, and of the heuristic values of each arc. I dhiginal, and still
commonly used version of this function (see Dorgjoal (1996) and
many more), the pheromone and heuristic comporfentsach arc are
exponentiated to parametersandp respectively, allowing for tuning of
the level to which the algorithm relies on explavat and heuristic
support. Also, the overall attractiveness valueasth arc is scaled so that
the ant can treat these values as a probabilityriltiion over its
available choices.

Pher omone Update: When the ants' paths are complete, for eachfznt,
corresponding solution is evaluated, and pheronisraid on each arc
travelled in proportion to the overall solution {itya Also, the
component of pheromone strength that arises fratieeants is reduced.
Quite simply, for any particular arc, its updatdtepmone strengtphe,

is (1p)poig + pf, wherep controls the speed of pheromone decay, fand
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accumulates the overall quality of solutions fowakiich involved that
arc in the current iteration.

ACO has now been applied to very many problems, (alehrly, or we would
probably not have devoted so much time to it) heenbrery successful, especially
when hybridized with local search or some other aateturistic (in such
hybridized algorithms, an ant will typically useethdditional heuristic for a short
time to find an improvement locally to its solutjomnitially demonstrated for the
TSP (Dorigo et al, 1996), there are an enormousbeurof applications of ACO
now published. We mention vehicle routing (Gambbadet al, 1999), rule
discovery (Parpinelli et al, 2002), and proteirdhig docking (Korb et al, 2007),
just to give some initial idea of the range of &ggions. To discover more, recent
surveys include Blum (2005) and Gutjahr (2007), thtter concentrating on
theoretical analyses. Meanwhile, Socha & Dorigdd@0how how to apply ACO
to continuous domains (essentially, ants selectrpaters via a probability density
function, rather than a discrete distribution oadixed set of arcs).

3.1.2 Ant-Based Routing in Telecommunications

The basic ACO idea of exploiting pheromone-traisdxh recruitment is also the
inspiration for a healthy sub-area of research ammunications networks;
therein, ant-inspired algorithms are designed wsawith network routing and
other network tasks, leading to systems that coenliigh performance with a
high level of robustness, able to adapt with curreztwork traffic and robust to
network damage. Early and prominent studies in thilsee were by
Schoonderwoerd et al (1996; 1997), which were dmgh upon by di Caro and
Dorigo's AntNet (1998). To explain this applicatiarea, and the way that ACO
ideas are applied therein, it will be helpful tosfiexplore the problem and the
associated solution that was studied in Schoondendvet al’'s seminal work.
Schoonderwoerd et al were concerned with loddlancing in
telecommunication networks. The task of a telecomipation network is to
connect calls that can arise at any node, and whif need to be routed to any
other node. The networks themselves, as a funatiothe capacities of the
constituent equipment at each node, cannot guaauniecessful call connections
in all cases, but they aim to maintain overall ptable performance under
standard conditions. At very busy times, and/or af particular node is
overwhelmingly flooded with calls, then typicallyamy calls will be ‘dropped’. It
is worth noting that there are problems with cdntantrol of such systems
(landline telecommunication networks, mobile netwgortraffic networks, and so
forth ...). To achieve centralised control in a whgttmanages load-balancing or
any other such target, several disadvantages gareg. The controller usually
needs current knowledge about many aspects ofrtie esystem, which in turn
necessitates using communication links from eveayt pf the system to the
controller itself. Centrally managed control medkars therefore scale badly as a
result of the rapidly increasing overheads of tasnmunication, interfering with
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the performance of the system itself. Also, failireéhe controller will often lead
to complete failure of the complete system.

Schoonderwoerd et al's ant-inspired approach, whighains a central
part of the majority of more recent ant-based apghes, was to replace the
routing tables in such networks with so-called immome tables’. Networks of
the type of interest invariably have a routing ¢aht each node, specifying which
‘next-hop’ neighbouring node to pass an incominy t given the ultimate
desitination of that call. In Schoonderwoerd et daAnt-Based Control’ (ABC)
method, the routing table at a network node instpeakided n probability
distributions over its neighbouring nodes, one &ach of then possible
destinations in the network. When a routing decis® to be made, it is made
stochastically according to these probabilitiese-it is most likely that the next-
hop with the highest probability will be taken, libere is a chance that the next-
hop with the lowest probability will be taken ingte The entries in the
pheromone table were considered analogous to ploemrtrail strengths, and
changed adaptively during the operation of the netw Updating of these trails
in ABC is very simple —whenever a call is routeahfi nodeA to B, the entries for
A in nodeB's routing table are all increased, with correspogdeductions to
other entries. However this simple idea has obviougitive benefits; first, by
testing various routing decisions over time (ratttean deterministic decisions),
the process effectively monitors the current heaftla wide variety of different
routing strategies; when a link is over-used, owmlothis naturally leads to
diminution in its probability of use, since the asisted entries in routing tables
will not be updated, and hence will naturally reglas alternatives are updated.
Also, as it turns out, the pheromone levels carpadaite quickly to changes in
call patterns and loads. The ABC strategy turnedtmioe surprisingly effective,
despite its simplicity, when Schoonderwoerd et ampared it with a
contemporary agent-based strategy developed byehgphnd Steward (1994),
and found it superior over a wide range of differgtuations.

Research in ant-based approaches for decentralismthgement is
increasingly very active (e.g. Hossein and Saada@03; Rosati et al, 2008; Di
Caro et al, 2008). The essential idea, to replaagcsouilt-in routing strategies
with stochastic ‘pheromone tables’ or similar, ppkcable in almost all modern
communication scenarios, ranging through ad-hoc peder networks, mobile
telephone networks, and various layers of the etetOngoing research continues
to explore alternative strategies for making thetirg decisions, controlling the
updates to pheromone trails, and so forth, whilestigating various distinct
application domains, and continuing to find comipegi or better performance
than alternative state of the art methods use@twark engineering.
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3.2 Particle Swarm Optimization and Foraging

Particle swarm optimization (PSO) was establisred 995 with Kennedy and
Eberhart's paper in IJCNN (Kennedy & Eberhart, 399%ie paper described a
rather simple algorithm (and time has seen no needlter its straightforward
fundamentals), citing Craig Reynolds' work as irsjpon (Reynolds, 1987), along
with slightly later work in the modelling of birddtcks (Heppner & Grenander,
1990). The basic idea is to unite the following tmations: (i) the behaviour of a
flock of birds moving in 3D space towards some g¢gla swarm of solutions to
an optimisation problem, moving through the muitidnsional search space
towards good solutions.

Thus, we equate a “particle’ with a candidaikit®n to an optimization
problem. Such a particle has botlp@sitionand avelocity. Its position is, in fact,
precisely the candidate solution it currently reprds. Its velocity is a
displacement vector in the search space, whidiofies) will contribute towards a
fruitful change in its position at the next itecati

The heart of the classic PSO algorithm is i $tep which calculates a new
position for the particle based on three influendé® inspiration from Reynolds
(1987) is clear, but the details are quite differemd, of course, exploit the fact
that the particle is moving in a search space amdnoeasure the “fitness' of any
position. The influences - the components that teatie updated position — are:

Current velocity: the particle's current velocity (obviously);

Personal Best: the particle remembers the fittest position it hget
encountered, called the personal best. A compowénits updated
velocity is the direction from its current posititmthe personal best;

Global Best: every particle in the swarm is aware of the hmstition
that any particle has yet discovered (i.e. the béshe personal bests).
The final component of velocity update, shared Hyparticles, is a
vector in the direction from its current positioo this globally best
known position.

Following a random initialisation of positions awdlocities, evaluation of the

fithess of the particles' current positions, anchseguent initialisation of the

personal bests and global best, PSO proceeds @markably straightforward

manner. First, each particle updates its velocityadding a vector in each of the
above three component directions. To provide thesetors, in the classic

algorithm, the current velocity component is leftdisturbed, while the personal
and global best components are each scaled bydamascalar drawn uniformly

from [0,2]. The resulting vector is used to updtte current velocity, and the
new velocity vector is used to update the curresgitipn. The new position is

evaluated, bookkeeping is done to update persamhbbobal bests, and then we
repeat.
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Kennedy and Eberhart initially reported that P&ipeared to do very well over
a wide range of test problems, including its use as alternative to
backpropogation for training an artificial neuratwork (Kennedy & Eberhart,
1995). Perhaps helped by the ease of implementatibnthis algorithm
(remarkably few lines of code are needed for tlassit algorithm), an avalanche
of papers began to follow, almost invariably addiogthe evidence that this
algorithm provides a very substantial contributibm optimization practice.
Naturally, this field is now rich in variants angtensions to the original design --
a number of recent surveys are available (e.g. R8jerra & Coello, 2006; Yang
et al, 2007) — while the published applications @sevaried as one might expect
from such a generally applicable algorithm.

3.2.1 Bacteriaand Bees

Newer to the ranks of swarm-intelligence basptimisation, and yet to prove
quite as widely successful, are techniques inddinebacterial and bee foraging.
For the most part, these algorithms follow the Hrairection of PSO, in that
individuals in a swarm represent solutions movingtgh a landscape, with the
fitness of their current solution easily obtained évaluating their position.
Meanwhile, just as with PSO, an individual's movattarough this landscape is
influenced by the movements and discoveries ofratigividuals. The fine details
of a Bacterial Foraging Algorithm (BFA), howevergaquite distinct, and in one
of the more popular methods draw quite closely fghat is known (and briefly
touched upon above) about bacterial swarming inreafassino (2002) presents
a fine and detailed explication of both the natwade and the BFA. It turns out
that BFA-style algorithms are enjoying quite sornecgss in recent application to
a range of engineering problems (e.g. Niu et ab620Tripathy & Mishra, 2007,
Guney & Basbug, 2008).

Also inspiring, so far, a small following arlgarithms that are inspired by bee
foraging behaviour. The authoritative sources fos fare Quijano and Passino's
papers respectively outlining the design and th€Quijano & Passino, 2007a)
and application (Quijano & Passino, 2007b) of a bemging algorithm. In
Quijano & Passino (2007a) the design of a bee fogaglgorithm is presented in
intimate connection with an elaboration of the natsms of natural bee foraging
(such as we briefly described earlier). The al@ponitis as much a model of the
natural process as it is a routine applicable toage kinds of problem.
Considering individual bees as resources, the @irieere is to use bee foraging
behaviour as a way to ideally distribute those weses in the environment, and
maintain an ideal distribution over time as it agap changing patterns of supply.
Just as natural bees maintain an efficient disivbuof individuals among the
available sources of nectar, the idea is thatdhisbe mapped to control problems
which aim to maintain a distribution of resourcesgh as power or voltage) in
such a way that some goal is maintained (such as ®mperature or maximal
efficiency). In Quijano & Passino, 2007b), we sd®e talgorithm tested
successfully on a dynamic voltage allocation prohlén which the task is to
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maintain a uniform and maximal temperature aceassnterconnected grid of
temperature zones.

Finally, we note that bee foraging behaviours telso directly inspired
techniques for internet search, again, based onntiton of maintaining a
maximally effective use of server resources, adgpippropriately and effectively
to the relative richness of new discoveries (Walk00; Nakrani & Tovey,
2003).

4. Current Trends and Concluding Notes

We have pointed to a number of survey papers ahner atorks from which the
reader can attain a full grasp of the current @gtiin swarm intelligence
algorithms, but in this brief section we attempfesv notes that outline major
current trends, and then we wrap up.

A notable trend in recent work on particle swawptimisation, and indeed on
metaheuristics in general, is towards the creatibybrid algorithms. While
themes from evolutionary computation continue torfe®rporated in PSO (Shi et
al, 2005), others have explored the idea of hybaittbn with less frequently used
techniques such as scatter search and path reajir{kim et al, 2007), immune
system methods (Zhang & Wu, 2008) and, indeed, cahbny optimization
(Holden & Freitas, 2007). Meanwhile, the range aflpfems to which PSO may
be applied has been greatly increased with the ldewent of multi-objective
forms of PSO (Coello et al, 2004).

Other work has involved the use of multiple sws This may allow each
swarm to optimize a different section of the santi(van den Bergh &
Engelbrecht, 2004). Alternatively, each swarm rhayconfigured differently to
take advantage of the strengths of different PS@nts (e.g. Jordan et al, 2008),
in an attempt to create a more reliable algorithiat tan be applied to a wide
range of problem domains.

The themes of multi-objective optimization amybridization equally apply to
recent research into ant-colony optimisation. Whiielti-objective ACO is a
more mature field than multi-objective PSO (see, dgample, MARIANO &
Morales, 1999), work continues in categorizing awmnparing multi-objective
approaches to ACO (e.g. Garcia-Martinez et al, 2007 creating generic
frameworks for multi-objective ACO and in creatingw multi-objective variants
(e.g. Alaya, 2007). Recent applications have seewles objective ACO
hybridized with genetic algorithms (Lee et al, 2)d8am search (Blum, 2005b),
and immune systems (Yuan et al, 2008) and muléabje ACO used in
combination with dynamic programming (Hackel et 2008) and integer linear
programming (Doerner et al, 2006).

Other recent work has seen ACO adapted foirusentinuous domains (Dreo
Siarry, 2006; Socha & Dorigo, 2008), while reseacohtinues into variations of
ACO and new algorithm features, for example, défertypes of pheromone and
the use of dominance rules to warn ants from s@agyamongst solutions known
to be of low quality (Lin et al, 2008).
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Recent work on bacterial foraging algorithms bancentrated on exploiting the
effectiveness of the local search ability of thgoaithm, while adapting it improve
the global search ability on high dimensional andtiimodal problems. With this
aim, bacterial foraging has be hybridized with meftective global optimizers
such as genetic algorithms (Chen et al, 2007; Kim,e2007) and particle swarm
optimization (Tang et al, 2007; Biswas et al, 2007)

In conclusion, we have attempted to demystifie tconcept of swarm
intelligence, and, after touring through the clsefurces of natural inspiration,
distilled the essence of its impact and presenamimputer science down to two
major families of algorithms for optimisation. Nesk intriguing and exciting
additional topics in the swarm intelligence arethat we have also discussed, are
stigmergic construction, ant-based clustering, smarm robotics. It is abundantly
clear that the natural inspirations from swarmingsa bees and birds (among
others) have provided us with new ideas for op@tnis algorithms that have
extended the state of the art in performance onynpaoblems, sometimes with
and sometimes without additional tailoring and lgization. Ant-based
clustering seems also to provide a valuable cantioh, while swarm robotics,
stignergy based construction, and a variety of ro#merging subtopics have
considerable promise, and will doubtless developlifections rather difficult to
foresee.
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