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Abstract: Genetic programming is a technique to automatically discover computer 
programs using principles of Darwinian evolution. This chapter introduces the 
basics of genetic programming. To make the material more suitable for 
beginners, these are illustrated with an extensive example. In addition, the 
chapter touches upon some of the more advanced variants of genetic 
programming as well as its theoretical foundations. Numerous pointers to 
further reading, software tools and Web sites are also provided.  

Key words: Genetic programming, genetic algorithms, human-competitive machine 
intelligence, machine learning, schema theory  

1. INTRODUCTION 

The goal of getting computers to automatically solve problems is central 
to artificial intelligence, machine learning, and the broad area encompassed 
by what Turing called “machine intelligence” (Turing 1948, 1950).  

In his 1983 talk entitled “AI: Where It Has Been and Where It Is Going, 
machine learning pioneer Arthur Samuel stated the main goal of the fields of 
machine learning and artificial intelligence:  

“[T]he aim [is] … to get machines to exhibit 
behavior, which if done by humans, would be 
assumed to involve the use of intelligence.”  

Genetic programming is a systematic method for getting computers to 
automatically solve a problem starting from a high-level statement of what 
needs to be done. Genetic programming is a domain-independent method 
that genetically breeds a population of computer programs to solve a 
problem. Specifically, genetic programming iteratively transforms a 
population of computer programs into a new generation of programs by 
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applying analogs of naturally occurring genetic operations. This process is 
illustrated in Figure 1. 

 

Figure 1. Main loop of genetic programming 

The genetic operations include crossover (sexual recombination), 
mutation, reproduction, gene duplication, and gene deletion. Analogs of 
developmental processes are sometimes used to transform an embryo into a 
fully developed structure. Genetic programming is an extension of the 
genetic algorithm (Holland 1975) in which the structures in the population 
are not fixed-length character strings that encode candidate solutions to a 
problem, but programs that, when executed, are the candidate solutions to 
the problem.  

Programs are expressed in genetic programming as syntax trees rather 
than as lines of code. For example, the simple expression 
max(x*x,x+3*y)is represented as shown in Figure 2. The tree includes 
nodes (which we will also call point) and links. The nodes indicate the 
instructions to execute. The links indicate the arguments for each instruction. 
In the following the internal nodes in a tree will be called functions, while 
the tree’s leaves will be called terminals.  

 

Figure 2. Basic tree-like program representation used in genetic programming 
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Figure 3. Multi-tree program representation 

In more advanced forms of genetic programming, programs can be 
composed of multiple components (e.g., subroutines). In this case the 
representation used in genetic programming is a set of trees (one for each 
component) grouped together under a special node called root, as illustrated 
in Figure 3. We will call these (sub)trees branches. The number and type of 
the branches in a program, together with certain other features of the 
structure of the branches, form the architecture of the program. 

Genetic programming trees and their corresponding expressions can 
equivalently be represented in prefix notation (e.g., as Lisp S-expressions). 
In prefix notation, functions always precede their arguments. For example, 
max(x*x,x+3*y) becomes (max (* x x)(+ x (* 3 y))). In 
this notation, it is easy to see the correspondence between expressions and 
their syntax trees. Simple recursive procedures can convert prefix-notation 
expressions into infix-notation expressions and vice versa. Therefore, in the 
following, we will use trees and their corresponding prefix-notation 
expressions interchangeably. 

2. PREPARATORY STEPS OF GENETIC 
PROGRAMMING  

Genetic programming starts from a high-level statement of the 
requirements of a problem and attempts to produce a computer program that 
solves the problem.  
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The human user communicates the high-level statement of the problem to 
the genetic programming algorithm by performing certain well-defined 
preparatory steps.  

The five major preparatory steps for the basic version of genetic 
programming require the human user to specify 
1. the set of terminals (e.g., the independent variables of the problem, zero-

argument functions, and random constants) for each branch of the to-be-
evolved program, 

2. the set of primitive functions for each branch of the to-be-evolved 
program,  

3. the fitness measure (for explicitly or implicitly measuring the fitness of 
individuals in the population), 

4. certain parameters for controlling the run, and 
5. the termination criterion and method for designating the result of the run. 

The first two preparatory steps specify the ingredients that are available 
to create the computer programs. A run of genetic programming is a 
competitive search among a diverse population of programs composed of the 
available functions and terminals.  

The identification of the function set and terminal set for a particular 
problem (or category of problems) is usually a straightforward process. For 
some problems, the function set may consist of merely the arithmetic 
functions of addition, subtraction, multiplication, and division as well as a 
conditional branching operator. The terminal set may consist of the 
program’s external inputs (independent variables) and numerical constants.  

For many other problems, the ingredients include specialized functions 
and terminals. For example, if the goal is to get genetic programming to 
automatically program a robot to mop the entire floor of an obstacle-laden 
room, the human user must tell genetic programming what the robot is 
capable of doing. For example, the robot may be capable of executing 
functions such as moving, turning, and swishing the mop.  

If the goal is the automatic creation of a controller, the function set may 
consist of integrators, differentiators, leads, lags, gains, adders, subtractors, 
and the like and the terminal set may consist of signals such as the reference 
signal and plant output.  

If the goal is the automatic synthesis of an analog electrical circuit, the 
function set may enable genetic programming to construct circuits from 
components such as transistors, capacitors, and resistors. Once the human 
user has identified the primitive ingredients for a problem of circuit 
synthesis, the same function set can be used to automatically synthesize an 
amplifier, computational circuit, active filter, voltage reference circuit, or 
any other circuit composed of these ingredients.  
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The third preparatory step concerns the fitness measure for the problem. 
The fitness measure specifies what needs to be done. The fitness measure is 
the primary mechanism for communicating the high-level statement of the 
problem’s requirements to the genetic programming system. For example, if 
the goal is to get genetic programming to automatically synthesize an 
amplifier, the fitness function is the mechanism for telling genetic 
programming to synthesize a circuit that amplifies an incoming signal (as 
opposed to, say, a circuit that suppresses the low frequencies of an incoming 
signal or that computes the square root of the incoming signal). The first two 
preparatory steps define the search space whereas the fitness measure 
implicitly specifies the search’s desired goal. 

The fourth and fifth preparatory steps are administrative. The fourth 
preparatory step entails specifying the control parameters for the run. The 
most important control parameter is the population size. Other control 
parameters include the probabilities of performing the genetic operations, the 
maximum size for programs, and other details of the run.  

The fifth preparatory step consists of specifying the termination criterion 
and the method of designating the result of the run. The termination criterion 
may include a maximum number of generations to be run as well as a 
problem-specific success predicate. The single best-so-far individual is then 
harvested and designated as the result of the run. 

3. EXECUTIONAL STEPS OF GENETIC 
PROGRAMMING  

After the user has performed the preparatory steps for a problem, the run 
of genetic programming can be launched. Once the run is launched, a series 
of well-defined, problem-independent steps is executed.  

Genetic programming typically starts with a population of randomly 
generated computer programs composed of the available programmatic 
ingredients (as provided by the human user in the first and second 
preparatory steps).  

Genetic programming iteratively transforms a population of computer 
programs into a new generation of the population by applying analogs of 
naturally occurring genetic operations. These operations are applied to 
individual(s) selected from the population. The individuals are 
probabilistically selected to participate in the genetic operations based on 
their fitness (as measured by the fitness measure provided by the human user 
in the third preparatory step). The iterative transformation of the population 
is executed inside the main generational loop of the run of genetic 
programming. 
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The executional steps of genetic programming are as follows:  
1. Randomly create an initial population (generation 0) of individual 

computer programs composed of the available functions and terminals.  
2. Iteratively perform the following sub-steps (called a generation) on the 

population until the termination criterion is satisfied:  
a) Execute each program in the population and ascertain its fitness 

(explicitly or implicitly) using the problem’s fitness measure.  
b) Select one or two individual program(s) from the population with a 

probability based on fitness (with reselection allowed) to participate 
in the genetic operations in (c).  

c) Create new individual program(s) for the population by applying the 
following genetic operations with specified probabilities: 
– Reproduction: Copy the selected individual program to the new 

population. 
– Crossover: Create new offspring program(s) for the new 

population by recombining randomly chosen parts from two 
selected programs. 

– Mutation: Create one new offspring program for the new 
population by randomly mutating a randomly chosen part of one 
selected program.  

– Architecture-altering operations: Choose an architecture-
altering operation from the available repertoire of such operations 
and create one new offspring program for the new population by 
applying the chosen architecture-altering operation to one selected 
program.  

3. After the termination criterion is satisfied, the single best program in the 
population produced during the run (the best-so-far individual) is 
harvested and designated as the result of the run. If the run is successful, 
the result may be a solution (or approximate solution) to the problem. 
Figure 4 is a flowchart of genetic programming showing the genetic 

operations of crossover, reproduction, and mutation as well as the 
architecture-altering operations. This flowchart shows a two-offspring 
version of the crossover operation.  
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Figure 4. Flowchart of genetic programming 

The preparatory steps specify what the user must provide in advance to 
the genetic programming system. Once the run is launched, the executional 
steps as shown in the flowchart (Figure 4) are executed. Genetic 
programming is problem-independent in the sense that the flowchart 
specifying the basic sequence of executional steps is not modified for each 
new run or each new problem.  

There is usually no discretionary human intervention or interaction 
during a run of genetic programming (although a human user may exercise 
judgment as to whether to terminate a run).  

Genetic programming starts with an initial population of computer 
programs composed of functions and terminals appropriate to the problem. 
The individual programs in the initial population are typically generated by 
recursively generating a rooted point-labeled program tree composed of 
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random choices of the primitive functions and terminals (provided by the 
user as part of the first and second preparatory steps). The initial individuals 
are usually generated subject to a pre-established maximum size (specified 
by the user as a minor parameter as part of the fourth preparatory step). For 
example, in the “Full” initialization method nodes are taken from the 
function set until a maximum tree depth is reached. Beyond that depth only 
terminals can be chosen. Figure 5 shows several snapshots of this process. A 
variant of this, the “Grow” initialization method, allows the selection of 
nodes from the whole primitive set until the depth limit is reached. 
Thereafter, it behaves like the “Full” method. Figure 6 illustrates this 
process. Pseudo code for a recursive implementation of both the “Full” and 
the “Grow” methods is given in Figure 7. The code assumes that programs 
are represented as prefix-notation expressions.  

In general, after the initialization phase, the programs in the population 
are of different size (number of functions and terminals) and of different 
shape (the particular graphical arrangement of functions and terminals in the 
program tree).  

 

Figure 5. Creation of a seven-point tree using the “Full” initialization method (t=time)  
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Figure 6. Creation of a five-point tree using the “Grow” initialization method (t=time) 

 

Figure 7. Pseudo code for recursive program generation with the “Full” and “Grow” methods 

Each individual program in the population is either measured or 
compared in terms of how well it performs the task at hand (using the fitness 
measure provided in the third preparatory step). For many problems, this 
measurement yields a single explicit numerical value, called fitness. 
Normally, fitness evaluation requires executing the programs in the 
population, often multiple times, within the genetic programming system. A 
variety of execution strategies exist, including the (relatively uncommon) 
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off-line or on-line compilation and linking and the (relatively common) 
virtual-machine-code compilation and interpretation.  

Interpreting a program tree means executing the nodes in the tree in an 
order that guarantees that nodes are not executed before the value of their 
arguments (if any) is known. This is usually done by traversing the tree in a 
recursive way starting from the root node, and postponing the evaluation of 
each node until the value of its children (arguments) is known. This process 
is illustrated in Figure 8, where the numbers to the right of internal nodes 
represent the results of evaluating the subtrees rooted at such nodes. In this 
example, the independent variable X evaluates to –1. Figure 9 gives a 
pseudo-code implementation of the interpretation procedure. The code 
assumes that programs are represented as prefix-notation expressions and 
that such expressions can be treated as lists of components (where a 
construct like expr(i) can be used to read or set component i of expression 
expr).  

 

Figure 8. Example interpretation of a syntax tree (the terminal x is a variable has a value of -
1) 
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Figure 9. Typical interpreter for genetic programming 

Irrespective of the execution strategy adopted, the fitness of a program 
may be measured in many different ways, including, for example, in terms of 
the amount of error between its output and the desired output, the amount of 
time (fuel, money, etc.) required to bring a system to a desired target state, 
the accuracy of the program in recognizing patterns or classifying objects 
into classes, the payoff that a game-playing program produces, or the 
compliance of a complex structure (such as an antenna, circuit, or controller) 
with user-specified design criteria. The execution of the program sometimes 
returns one or more explicit values. Alternatively, the execution of a 
program may consist only of side effects on the state of a world (e.g., a 
robot’s actions). Alternatively, the execution of a program may yield both 
return values and side effects.  

The fitness measure is, for many practical problems, multi-objective in 
the sense that it combines two or more different elements. In practice, the 
different elements of the fitness measure are in competition with one another 
to some degree.  

For many problems, each program in the population is executed over a 
representative sample of different fitness cases. These fitness cases may 
represent different values of the program’s input(s), different initial 
conditions of a system, or different environments. Sometimes the fitness 
cases are constructed probabilistically.  

The creation of the initial random population is, in effect, a blind random 
search of the search space of the problem. It provides a baseline for judging 
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future search efforts. Typically, the individual programs in generation 0 all 
have exceedingly poor fitness. Nonetheless, some individuals in the 
population are (usually) more fit than others. The differences in fitness are 
then exploited by genetic programming. Genetic programming applies 
Darwinian selection and the genetic operations to create a new population of 
offspring programs from the current population.  

The genetic operations include crossover (sexual recombination), 
mutation, reproduction, and the architecture-altering operations. Given 
copies of two parent trees, typically, crossover involves randomly selecting a 
crossover point (which can equivalently be thought of as either a node or a 
link between nodes) in each parent tree and swapping the sub-trees rooted at 
the crossover points, as exemplified in Figure 10. Often crossover points are 
not selected with uniform probability. A frequent strategy is, for example, to 
select internal nodes (functions) 90% of the times, and any node for the 
remaining 10% of the times. Traditional mutation consists of randomly 
selecting a mutation point in a tree and substituting the sub-tree rooted there 
with a randomly generated sub-tree, as illustrated in Figure 11. Mutation is 
sometimes implemented as crossover between a program and a newly 
generated random program (this is also known as “headless chicken” 
crossover). Reproduction involves simply copying certain individuals into 
the new population. Architecture altering operations will be discussed later 
in this chapter. 

 

Figure 10. Example of two-child crossover between syntax trees 
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Figure 11. Example of sub-tree mutation 

The genetic operations described above are applied to individual(s) that 
are probabilistically selected from the population based on fitness. In this 
probabilistic selection process, better individuals are favored over inferior 
individuals. However, the best individual in the population is not necessarily 
selected and the worst individual in the population is not necessarily passed 
over.  

After the genetic operations are performed on the current population, the 
population of offspring (i.e., the new generation) replaces the current 
population (i.e., the now-old generation). This iterative process of measuring 
fitness and performing the genetic operations is repeated over many 
generations.  

The run of genetic programming terminates when the termination 
criterion (as provided by the fifth preparatory step) is satisfied. The outcome 
of the run is specified by the method of result designation. The best 
individual ever encountered during the run (i.e., the best-so-far individual) is 
typically designated as the result of the run.  

All programs in the initial random population (generation 0) of a run of 
genetic programming are syntactically valid, executable programs. The 
genetic operations that are performed during the run (i.e., crossover, 
mutation, reproduction, and the architecture-altering operations) are 
designed to produce offspring that are syntactically valid, executable 
programs. Thus, every individual created during a run of genetic 
programming (including, in particular, the best-of-run individual) is a 
syntactically valid, executable program. 

There are numerous alternative implementations of genetic programming 
that vary from the preceding brief description.  
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4. EXAMPLE OF A RUN OF GENETIC 
PROGRAMMING 

To provide concreteness, this section contains an illustrative run of 
genetic programming in which the goal is to automatically create a computer 
program whose output is equal to the values of the quadratic polynomial 
x2+x+1 in the range from –1 to +1. That is, the goal is to automatically create 
a computer program that matches certain numerical data. This process is 
sometimes called system identification or symbolic regression.  

We begin with the five preparatory steps.  
The purpose of the first two preparatory steps is to specify the ingredients 

of the to-be-evolved program.  
Because the problem is to find a mathematical function of one 

independent variable, the terminal set (inputs to the to-be-evolved program) 
includes the independent variable, x. The terminal set also includes 
numerical constants. That is, the terminal set, T, is 
T = {X, ℜ}.  
Here ℜ denotes constant numerical terminals in some reasonable range 

(say from –5.0 to +5.0).  
The preceding statement of the problem is somewhat flexible in that it 

does not specify what functions may be employed in the to-be-evolved 
program. One possible choice for the function set consists of the four 
ordinary arithmetic functions of addition, subtraction, multiplication, and 
division. This choice is reasonable because mathematical expressions 
typically include these functions. Thus, the function set, F, for this problem 
is  
F = {+, -, *, %}.  
The two-argument +, -, *, and % functions add, subtract, multiply, and 

divide, respectively. To avoid run-time errors, the division function % is 
protected: it returns a value of 1 when division by 0 is attempted (including 0 
divided by 0), but otherwise returns the quotient of its two arguments.  

Each individual in the population is a composition of functions from the 
specified function set and terminals from the specified terminal set.  

The third preparatory step involves constructing the fitness measure. The 
purpose of the fitness measure is to specify what the human wants. The high-
level goal of this problem is to find a program whose output is equal to the 
values of the quadratic polynomial x2+x+1. Therefore, the fitness assigned to 
a particular individual in the population for this problem must reflect how 
closely the output of an individual program comes to the target polynomial 
x2+x+1. The fitness measure could be defined as the value of the integral 
(taken over values of the independent variable x between –1.0 and +1.0) of 
the absolute value of the differences (errors) between the value of the 
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individual mathematical expression and the target quadratic polynomial 
x2+x+1. A smaller value of fitness (error) is better. A fitness (error) of zero 
would indicate a perfect fit.  

For most problems of symbolic regression or system identification, it is 
not practical or possible to analytically compute the value of the integral of 
the absolute error. Thus, in practice, the integral is numerically approximated 
using dozens or hundreds of different values of the independent variable x in 
the range between –1.0 and +1.0.  

The population size in this small illustrative example will be just four. In 
actual practice, the population size for a run of genetic programming consists 
of thousands or millions of individuals. In actual practice, the crossover 
operation is commonly performed on about 90% of the individuals in the 
population; the reproduction operation is performed on about 8% of the 
population; the mutation operation is performed on about 1% of the 
population; and the architecture-altering operations are performed on 
perhaps 1% of the population. Because this illustrative example involves an 
abnormally small population of only four individuals, the crossover 
operation will be performed on two individuals and the mutation and 
reproduction operations will each be performed on one individual. For 
simplicity, the architecture-altering operations are not used for this problem.  

A reasonable termination criterion for this problem is that the run will 
continue from generation to generation until the fitness of some individual 
gets below 0.01. In this contrived example, the run will (atypically) yield an 
algebraically perfect solution (for which the fitness measure attains the ideal 
value of zero) after merely one generation.  

Now that we have performed the five preparatory steps, the run of 
genetic programming can be launched. That is, the executional steps shown 
in the flowchart of Figure 4 are now performed.  

Genetic programming starts by randomly creating a population of four 
individual computer programs. The four programs are shown in Figure 12 in 
the form of trees.  

The first randomly constructed program tree (Figure 12a) is equivalent to 
the mathematical expression x+1. A program tree is executed in a depth-first 
way, from left to right, in the style of the LISP programming language. 
Specifically, the addition function (+) is executed with the variable x and the 
constant value 1 as its two arguments. Then, the two-argument subtraction 
function (–) is executed. Its first argument is the value returned by the just-
executed addition function. Its second argument is the constant value 0. The 
overall result of executing the entire program tree is thus x+1.  

The first program (Figure 12a) was constructed, using the “Grow” 
method, by first choosing the subtraction function for the root (top point) of 
the program tree. The random construction process continued in a depth-first 
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fashion (from left to right) and chose the addition function to be the first 
argument of the subtraction function. The random construction process then 
chose the terminal x to be the first argument of the addition function (thereby 
terminating the growth of this path in the program tree). The random 
construction process then chose the constant terminal 1 as the second 
argument of the addition function (thereby terminating the growth along this 
path). Finally, the random construction process chose the constant terminal 0 
as the second argument of the subtraction function (thereby terminating the 
entire construction process).  
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Figure 13. The fitness of each of the four randomly created individuals of generation 0 is 
equal to the area between two curves. 
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Figure 14. Population of generation 1 (after one reproduction, one mutation, and one two-
offspring crossover operation) 

The second program (Figure 12b) adds the constant terminal 1 to the 
result of multiplying x by x and is equivalent to x2+1. The third program 
(Figure 12c) adds the constant terminal 2 to the constant terminal 0 and is 
equivalent to the constant value 2. The fourth program (Figure 12d) is 
equivalent to x.  

Randomly created computer programs will, of course, typically be very 
poor at solving the problem at hand. However, even in a population of 
randomly created programs, some programs are better than others. The four 
random individuals from generation 0 in Figure 12 produce outputs that 
deviate from the output produced by the target quadratic function x2+x+1 by 
different amounts. In this particular problem, fitness can be graphically 
illustrated as the area between two curves. That is, fitness is equal to the area 
between the parabola x2+x+1 and the curve representing the candidate 
individual. Figure 13 shows (as shaded areas) the integral of the absolute 
value of the errors between each of the four individuals in Figure 12 and the 
target quadratic function x2+x+1. The integral of absolute error for the 
straight line x+1 (the first individual) is 0.67 (Figure 13a). The integral of 
absolute error for the parabola x2+1 (the second individual) is 1.0 (Figure 
13b). The integrals of the absolute errors for the remaining two individuals 
are 1.67 (Figure 13c) and 2.67 (Figure 13d), respectively.  

As can be seen in Figure 13, the straight line x+1 (Figure 13a) is closer to 
the parabola x2+x+1 in the range from –1 to +1 than any of its three cohorts 
in the population. This straight line is, of course, not equivalent to the 
parabola x2+x+1. This best-of-generation individual from generation 0 is not 
even a quadratic function. It is merely the best candidate that happened to 
emerge from the blind random search of generation 0. In the valley of the 
blind, the one-eyed man is king.  

After the fitness of each individual in the population is ascertained, 
genetic programming then probabilistically selects relatively more fit 
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programs from the population. The genetic operations are applied to the 
selected individuals to create offspring programs. The most commonly 
employed methods for selecting individuals to participate in the genetic 
operations are tournament selection and fitness-proportionate selection. In 
both methods, the emphasis is on selecting relatively fit individuals. An 
important feature common to both methods is that the selection is not 
greedy. Individuals that are known to be inferior will be selected to a certain 
degree. The best individual in the population is not guaranteed to be 
selected. Moreover, the worst individual in the population will not 
necessarily be excluded. Anything can happen and nothing is guaranteed.  

We first perform the reproduction operation. Because the first individual 
(Figure 12a) is the most fit individual in the population, it is very likely to be 
selected to participate in a genetic operation. Let’s suppose that this 
particular individual is, in fact, selected for reproduction. If so, it is copied, 
without alteration, into the next generation (generation 1). It is shown in 
Figure 14a as part of the population of the new generation. 

We next perform the mutation operation. Because selection is 
probabilistic, it is possible that the third best individual in the population 
(Figure 12c) is selected. One of the three nodes of this individual is then 
randomly picked as the site for the mutation. In this example, the constant 
terminal 2 is picked as the mutation site. This program is then randomly 
mutated by deleting the entire subtree rooted at the picked point (in this case, 
just the constant terminal 2) and inserting a subtree that is randomly grown 
in the same way that the individuals of the initial random population were 
originally created. In this particular instance, the randomly grown subtree 
computes the quotient of x and x using the protected division operation %. 
The resulting individual is shown in Figure 14b. This particular mutation 
changes the original individual from one having a constant value of 2 into 
one having a constant value of 1. This particular mutation improves fitness 
from 1.67 to 1.00.  

Finally, we perform the crossover operation. Because the first and second 
individuals in generation 0 are both relatively fit, they are likely to be 
selected to participate in crossover. The selection (and reselection) of 
relatively more fit individuals and the exclusion and extinction of unfit 
individuals is a characteristic feature of Darwinian selection. The first and 
second programs are mated sexually to produce two offspring (using the 
two-offspring version of the crossover operation). One point of the first 
parent (Figure 12a), namely the + function, is randomly picked as the 
crossover point for the first parent. One point of the second parent (Figure 
12b), namely its leftmost terminal x, is randomly picked as the crossover 
point for the second parent. The crossover operation is then performed on the 
two parents. The two offspring are shown in Figures 2.4c and 2.4d. One of 
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the offspring (Figure 14c) is equivalent to x and is not noteworthy. However, 
the other offspring (Figure 14d) is equivalent to x2+x+1 and has a fitness 
(integral of absolute errors) of zero. Because the fitness of this individual is 
below 0.01, the termination criterion for the run is satisfied and the run is 
automatically terminated. This best-so-far individual (Figure 14d) is 
designated as the result of the run. This individual is an algebraically correct 
solution to the problem.  

Note that the best-of-run individual (Figure 14d) incorporates a good trait 
(the quadratic term x2) from the second parent (Figure 12b) with two other 
good traits (the linear term x and constant term of 1) from the first parent 
(Figure 12a). The crossover operation produced a solution to this problem by 
recombining good traits from these two relatively fit parents into a superior 
(indeed, perfect) offspring.  

In summary, genetic programming has, in this example, automatically 
created a computer program whose output is equal to the values of the 
quadratic polynomial x2+x+1 in the range from –1 to +1.  

5. ADVANCED FEATURES OF GENETIC 
PROGRAMMING 

Various advanced features of genetic programming are not covered by 
the foregoing illustrative problem and the foregoing discussion of the 
preparatory and executional steps of genetic programming.  

5.1 Constrained Syntactic Structures 

For certain simple problems (such as the illustrative problem above), the 
search space for a run of genetic programming consists of the unrestricted 
set of possible compositions of the problem’s functions and terminals.  

However, for many problems, a constrained syntactic structure imposes 
restrictions on how the functions and terminals may be combined.  

Consider, for example, a function that instructs a robot to turn by a 
certain angle. In a typical implementation of this hypothetical function, the 
function’s first argument may be required to return a numerical value 
(representing the desired turning angle) and its second argument may be 
required to be a follow-up command (e.g., move, turn, stop). In other words, 
the functions and terminals permitted in the two argument subtrees for this 
particular function are restricted. These restrictions are implemented by 
means of syntactic rules of construction.  
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A constrained syntactic structure (sometimes called strong typing) is a 
grammar that specifies the functions or terminals that are permitted to appear 
as a specified argument of a specified function in the program tree.  

When a constrained syntactic structure is used, there are typically 
multiple function sets and multiple terminal sets. The rules of construction 
specify where the different function sets or terminal sets may be used.  

When a constrained syntactic structure is used, all the individuals in the 
initial random population (generation 0) are created so as to comply with the 
constrained syntactic structure. All genetic operations (i.e., crossover, 
mutation, reproduction, and the architecture-altering operations) that are 
performed during the run are designed to produce offspring that comply with 
the requirements of the constrained syntactic structure. Thus, all individuals 
(including, in particular, the best-of-run individual) that are produced during 
the run of genetic programming will necessarily comply with the 
requirements of the constrained syntactic structure.  

5.2 Automatically Defined Functions 

Human computer programmers organize sequences of reusable steps into 
subroutines. They then repeatedly invoke the subroutines—typically with 
different instantiations of the subroutine’s dummy variables (formal 
parameters). Reuse eliminates the need to “reinvent the wheel” on each 
occasion when a particular sequence of steps may be useful. Reuse makes it 
possible to exploit a problem’s modularities, symmetries, and regularities 
(and thereby potentially accelerate the problem-solving process).  

Programmers commonly organize their subroutines into hierarchies.  
The automatically defined function (ADF) is one of the mechanisms by 

which genetic programming implements the parameterized reuse and 
hierarchical invocation of evolved code. Each automatically defined function 
resides in a separate function-defining branch within the overall multi-part 
computer program (see Figure 3). When automatically defined functions are 
being used, a program consists of one (or more) function-defining branches 
(i.e., automatically defined functions) as well as one or more main result-
producing branches. An automatically defined function may possess zero, 
one, or more dummy variables (formal parameters). The body of an 
automatically defined function contains its work-performing steps. Each 
automatically defined function belongs to a particular program in the 
population. An automatically defined function may be called by the 
program’s main result-producing branch, another automatically defined 
function, or another type of branch (such as those described below). 
Recursion is sometimes allowed. Typically, the automatically defined 
functions are invoked with different instantiations of their dummy variables.  
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The work-performing steps of the program’s main result-producing 
branch and the work-performing steps of each automatically defined 
function are automatically and simultaneously created during the run of 
genetic programming.  

The program’s main result-producing branch and its automatically 
defined functions typically have different function and terminal sets. A 
constrained syntactic structure is used to implement automatically defined 
functions.  

Automatically defined functions are the focus of Genetic Programming 
II: Automatic Discovery of Reusable Programs (Koza 1994a) and the 
videotape Genetic Programming II Videotape: The Next Generation (Koza 
1994b).  

5.3 Automatically Defined Iterations, Automatically 
Defined Loops, Automatically Defined Recursions, 
and Automatically Defined Stores 

Automatically defined iterations (ADIs), automatically defined loops 
(ADLs), and automatically defined recursions (ADRs) provide means (in 
addition to automatically defined functions) to reuse code. 

Automatically defined stores (ADSs) provide means to reuse the result of 
executing code.  

Automatically defined iterations, automatically defined loops, 
automatically defined recursions, and automatically defined stores are 
described in Genetic Programming III: Darwinian Invention and Problem 
Solving (Koza, Bennett, Andre, and Keane 1999).  

5.4 Program Architecture and Architecture-Altering 
Operations 

The architecture of a program consists of  
– the total number of branches, 
– the type of each branch (e.g., result-producing branch, automatically 

defined function, automatically defined iteration, automatically defined 
loop, automatically defined recursion, or automatically defined store),  

– the number of arguments (if any) possessed by each branch, and  
– if there is more than one branch, the nature of the hierarchical references 

(if any) allowed among the branches.  
There are three ways by which genetic programming can arrive at the 

architecture of the to-be-evolved computer program:  
– The human user may prespecify the architecture of the overall program 

(i.e., perform an additional architecture-defining preparatory step). That 
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is, the number of preparatory steps is increased from the five previously 
itemized to six.  

– The run may employ evolutionary selection of the architecture (as 
described in Genetic Programming II), thereby enabling the architecture 
of the overall program to emerge from a competitive process during the 
run of genetic programming. When this approach is used, the number of 
preparatory steps remains at the five previously itemized.  

– The run may employ the architecture-altering operations (Koza 1994c, 
1995; Koza, Bennett, Andre, and Keane 1999), thereby enabling genetic 
programming to automatically create the architecture of the overall 
program dynamically during the run. When this approach is used, the 
number of preparatory steps remains at the five previously itemized.  

5.5 Genetic Programming Problem Solver (GPPS) 

The Genetic Programming Problem Solver (GPPS) is described in the 
1999 book Genetic Programming III: Darwinian Invention and Problem 
Solving (Koza, Bennett, Andre, and Keane 1999, part 4).  

If GPPS is being used, the user is relieved of performing the first and 
second preparatory steps (concerning the choice of the terminal set and the 
function set). The function set for GPPS consists of the four basic arithmetic 
functions (addition, subtraction, multiplication, and division) and a 
conditional operator (i.e., functions found in virtually every general-purpose 
digital computer that has ever been built). The terminal set for GPPS consists 
of numerical constants and a set of input terminals that are presented in the 
form of a vector.  

By employing this generic function set and terminal set, GPPS reduces 
the number of preparatory steps from five to three.  

GPPS relies on the architecture-altering operations to dynamically create, 
duplicate, and delete subroutines and loops during the run of genetic 
programming. Additionally, in version 2.0 of GPPS, the architecture-altering 
operations are used to dynamically create, duplicate, and delete recursions 
and internal storage. Because the architecture of the evolving program is 
automatically determined during the run, GPPS eliminates the need for the 
user to specify in advance whether to employ subroutines, loops, recursions, 
and internal storage in solving a given problem. It similarly eliminates the 
need for the user to specify the number of arguments possessed by each 
subroutine. And, GPPS eliminates the need for the user to specify the 
hierarchical arrangement of the invocations of the subroutines, loops, and 
recursions. That is, the use of GPPS relieves the user of performing the 
preparatory step of specifying the program’s architecture.  
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5.6 Developmental Genetic Programming 

Developmental genetic programming is used for problems of 
synthesizing analog electrical circuits, as described in part 5 of Genetic 
Programming III. When developmental genetic programming is used, a 
complex structure (such as an electrical circuit) is created from a simple 
initial structure (the embryo).  

6. HUMAN-COMPETITIVE RESULTS PRODUCED 
BY GENETIC PROGRAMMING 

Samuel’s statement (quoted above) reflects the goal articulated by the 
pioneers of the 1950s in the fields of artificial intelligence and machine 
learning, namely to use computers to automatically produce human-like 
results. Indeed, getting machines to produce human-like results is the reason 
for the existence of the fields of artificial intelligence and machine learning.  

To make the notion of human-competitiveness more concrete, we say 
that a result is “human-competitive” if it satisfies one or more of the eight 
criteria in table 1.  

Table 1. Eight criteria for saying that an automatically created result is human-competitive 
 Criterion 
A The result was patented as an invention in the 

past, is an improvement over a patented 
invention, or would qualify today as a 
patentable new invention. 

B The result is equal to or better than a result 
that was accepted as a new scientific result at 
the time when it was published in a peer-
reviewed scientific journal. 

C The result is equal to or better than a result 
that was placed into a database or archive of 
results maintained by an internationally 
recognized panel of scientific experts. 

D The result is publishable in its own right as a 
new scientific resultindependent of the fact 
that the result was mechanically created. 

E The result is equal to or better than the most 
recent human-created solution to a long-
standing problem for which there has been a 
succession of increasingly better human-
created solutions. 

F The result is equal to or better than a result 
that was considered an achievement in its 
field at the time it was first discovered. 
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 Criterion 
G The result solves a problem of indisputable 

difficulty in its field. 
H The result holds its own or wins a regulated 

competition involving human contestants (in 
the form of either live human players or 
human-written computer programs). 

As can seen from table 1, the eight criteria have the desirable attribute of 
being at arms-length from the fields of artificial intelligence, machine 
learning, and genetic programming. That is, a result cannot acquire the rating 
of “human competitive” merely because it is endorsed by researchers inside 
the specialized fields that are attempting to create machine intelligence. 
Instead, a result produced by an automated method must earn the rating of 
“human competitive” independent of the fact that it was generated by an 
automated method.  

Table 2 lists the 36 human-competitive instances (of which we are aware) 
where genetic programming has produced human-competitive results. Each 
entry in the table is accompanied by the criteria (from table 1) that establish 
the basis for the claim of human-competitiveness.  

Table 2. [Enter a caption for this table] 
 Claimed instance Basis for claim of 

human-
competitiveness 

Reference 

1 Creation of a better-
than-classical 
quantum algorithm 
for the Deutsch-
Jozsa “early 
promise” problem 

B, F Spector, Barnum, 
and Bernstein 1998 

2 Creation of a better-
than-classical 
quantum algorithm 
for Grover’s 
database search 
problem 

B, F Spector, Barnum, 
and Bernstein 1999 

3 Creation of a 
quantum algorithm 
for the depth-two 
AND/OR query 
problem that is better 
than any previously 
published result 

D Spector, Barnum, 
Bernstein, and 
Swamy 1999; 
Barnum, Bernstein, 
and Spector 2000 

4 Creation of a 
quantum algorithm 
for the depth-one OR 
query problem that is 
better than any 

D Barnum, Bernstein, 
and Spector 2000 
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 Claimed instance Basis for claim of 
human-
competitiveness 

Reference 

previously published 
result 

5 Creation of a 
protocol for 
communicating 
information through 
a quantum gate that 
was previously 
thought not to permit 
such communication 

D Spector and 
Bernstein 2002 

6 Creation of a novel 
variant of quantum 
dense coding 

D Spector and 
Bernstein 2002 

7 Creation of a soccer-
playing program that 
won its first two 
games in the Robo 
Cup 1997 
competition 

H Luke 1998 

8 Creation of a soccer-
playing program that 
ranked in the middle 
of the field of 34 
human-written 
programs in the 
Robo Cup 1998 
competition 

H Andre and Teller 
1999 

9 Creation of four 
different algorithms 
for the 
transmembrane 
segment 
identification 
problem for proteins 

B, E Sections 18.8 and 
18.10 of Genetic 
Programming II and 
sections 16.5 and 
17.2 of Genetic 
Programming III 

10 Creation of a sorting 
network for seven 
items using only 16 
steps 

A, D Sections 21.4.4, 
23.6, and 57.8.1 of 
Genetic 
Programming III 

11 Rediscovery of the 
Campbell ladder 
topology for lowpass 
and highpass filters 

A, F Section 25.15.1 of 
Genetic 
Programming III 
and section 5.2 of 
Genetic 
Programming IV  

12 Rediscovery of the 
Zobel “M-derived 
half section” and 

A, F Section 25.15.2 of 
Genetic 
Programming III 
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 Claimed instance Basis for claim of 
human-
competitiveness 

Reference 

“constant K” filter 
sections 

13 Rediscovery of the 
Cauer (elliptic) 
topology for filters 

A, F Section 27.3.7 of 
Genetic 
Programming III 

14 Automatic 
decomposition of the 
problem of 
synthesizing a 
crossover filter 

A, F Section 32.3 of 
Genetic 
Programming III 

15 Rediscovery of a 
recognizable voltage 
gain stage and a 
Darlington emitter-
follower section of 
an amplifier and 
other circuits 

A, F Section 42.3 of 
Genetic 
Programming III 

16 Synthesis of 60 and 
96 decibel amplifiers 

A, F Section 45.3 of 
Genetic 
Programming III 

17 Synthesis of analog 
computational 
circuits for squaring, 
cubing, square root, 
cube root, logarithm, 
and Gaussian 
functions 

A, D, G Section 47.5.3 of 
Genetic 
Programming III 

18 Synthesis of a real-
time analog circuit 
for time-optimal 
control of a robot 

G Section 48.3 of 
Genetic 
Programming III 

19 Synthesis of an 
electronic 
thermometer 

A, G Section 49.3 of 
Genetic 
Programming III 

20 Synthesis of a 
voltage reference 
circuit 

A, G Section 50.3 of 
Genetic 
Programming III 

21 Creation of a cellular 
automata rule for the 
majority 
classification 
problem that is better 
than the Gacs-
Kurdyumov-Levin 
(GKL) rule and all 
other known rules 
written by humans 

D, E and section 58.4 of 
Genetic 
Programming III 
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 Claimed instance Basis for claim of 
human-
competitiveness 

Reference 

22 Creation of motifs 
that detect the D–E–
A–D box family of 
proteins and the 
manganese 
superoxide 
dismutase family 

C Section 59.8 of 
Genetic 
Programming III 

23 Synthesis of 
topology for a PID-
D2 (proportional, 
integrative, 
derivative, and 
second derivative) 
controller  

A, F Section 3.7 of 
Genetic 
Programming IV 

24 Synthesis of an 
analog circuit 
equivalent to 
Philbrick circuit 

A, F Section 4.3 of 
Genetic 
Programming IV 

25 Synthesis of NAND 
circuit 

A, F Section 4.4 of 
Genetic 
Programming IV 

26 Simultaneous 
synthesis of 
topology, sizing, 
placement, and 
routing of analog 
electrical circuits 

G Chapter 5 of Genetic 
Programming IV 

27 Synthesis of 
topology for a PID 
(proportional, 
integrative, and 
derivative) controller  

A, F Section 9.2 of 
Genetic 
Programming IV 

28 
Rediscovery of 
negative feedback A, E, F, G 

Chapter 14 of 
Genetic 
Programming IV 

29 
Synthesis of a low-
voltage balun circuit A 

Section 15.4.1 of 
Genetic 
Programming IV 

30 Synthesis of a mixed 
analog-digital 
variable capacitor 
circuit A 

Section 15.4.2 of 
Genetic 
Programming IV 

31 
Synthesis of a high-
current load circuit A 

Section 15.4.3 of 
Genetic 
Programming IV 

32 Synthesis of a 
voltage-current A 

Section 15.4.4 of 
Genetic 
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 Claimed instance Basis for claim of 
human-
competitiveness 

Reference 

conversion circuit Programming IV 
33 

Synthesis of a cubic 
signal generator A 

Section 15.4.5 of 
Genetic 
Programming IV 

34 Synthesis of a 
tunable integrated 
active filter A 

Section 15.4.6 of 
Genetic 
Programming IV 

35 Creation of PID 
tuning rules that 
outperform the 
Ziegler-Nichols and 
Astrom-Hagglund 
tuning rules 

A, B, D, E, F, G Chapter 12 of 
Genetic 
Programming IV 

36 Creation of three 
non-PID controllers 
that outperform a 
PID controller that 
uses the Ziegler-
Nichols or Astrom-
Hagglund tuning 
rules 

A, B, D, E, F, G Chapter 13 of 
Genetic 
Programming IV 

There are now 23 instances where genetic programming has duplicated 
the functionality of a previously patented invention, infringed a previously 
patented invention, or created a patentable new invention (see criterion A in 
Table 1). Specifically, there are 15 instances where genetic programming has 
created an entity that either infringes or duplicates the functionality of a 
previously patented 20th-century invention, six instances where genetic 
programming has done the same with respect to an invention patented after 
January 1, 2000, and two instances where genetic programming has created a 
patentable new invention. The two new inventions are general-purpose 
controllers that outperform controllers employing tuning rules that have been 
in widespread use in industry for most of the 20th century.  

7. PROMISING APPLICATION AREAS FOR 
GENETIC PROGRAMMING AND OTHER 
METHODS OF GENETIC AND EVOLUTIONARY 
COMPUTATION 

Since its early beginnings, the field of genetic and evolutionary 
computation has produced a cornucopia of results.  
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Genetic programming and other methods of genetic and evolutionary 
computation may be especially productive in areas having some or all of the 
following characteristics:  
– where the interrelationships among the relevant variables are unknown or 

poorly understood (or where it is suspected that the current understanding 
may possibly be wrong),  

– where finding the size and shape of the ultimate solution to the problem 
is a major part of the problem, 

– where large amounts of primary data requiring examination, 
classification, and integration is accumulating in computer readable form,  

– where there are good simulators to test the performance of tentative 
solutions to a problem, but poor methods to directly obtain good 
solutions,  

– where conventional mathematical analysis does not, or cannot, provide 
analytic solutions,  

– where an approximate solution is acceptable (or is the only result that is 
ever likely to be obtained), or 

– where small improvements in performance are routinely measured (or 
easily measurable) and highly prized.  

8. GENETIC PROGRAMMING THEORY 

Genetic programming is a search technique that explores the space of 
computer programs. As discussed above, the search for solutions to a 
problem starts from a group of points (random programs) in this search 
space. Those points that are of above average quality are then used to 
generate a new generation of points through crossover, mutation, 
reproduction and possibly other genetic operations. This process is repeated 
over and over again until a termination criterion is satisfied.  

If we could visualize this search, we would often find that initially the 
population looks a bit like a cloud of randomly scattered points, but that, 
generation after generation, this cloud changes shape and moves in the 
search space following a well defined trajectory. Because genetic 
programming is a stochastic search technique, in different runs we would 
observe different trajectories. These, however, would very likely show very 
clear regularities to our eye that could provide us with a deep understanding 
of how the algorithm is searching the program space for the solutions to a 
given problem. We could probably readily see, for example, why genetic 
programming is successful in finding solutions in certain runs and with 
certain parameter settings, and unsuccessful in/with others.  
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Unfortunately, it is normally impossible to exactly visualize the program 
search space due to its high dimensionality and complexity, and so we 
cannot just use our senses to understand and predict the behavior of genetic 
programming.  

In this situation, one approach to gain an understanding of the behavior 
of a genetic programming system is to perform many real runs and record 
the variations of certain numerical descriptors (like the average fitness or the 
average size of the programs in the population at each generation, the 
average difference between parent and offspring fitness, etc.). Then, one can 
try to hypothesize explanations about the behavior of the system that are 
compatible with (and could explain) the empirical observations.  

This exercise is very error prone, though, because a genetic programming 
system is a complex adaptive system with zillions of degrees of freedom. So, 
any small number of statistical descriptors is likely to be able to capture only 
a tiny fraction of the complexities of such a system. This is why in order to 
understand and predict the behavior of genetic programming (and indeed of 
most other evolutionary algorithms) in precise terms we need to define and 
then study mathematical models of evolutionary search. 

Schema theories are among the oldest, and probably the best-known 
classes of models of evolutionary algorithms. A schema (pl. schemata) is a 
set of points in the search space sharing some syntactic feature. Schema 
theories provide information about the properties of individuals of the 
population belonging to any schema at a given generation in terms of 
quantities measured at the previous generation, without having to actually 
run the algorithm.  

For example, in the context of genetic algorithms operating on binary 
strings, a schema is, syntactically, a string of symbols from the alphabet 
{0,1,*}, like *10*1. The character * is interpreted as a “don't care'' symbol, 
so that, semantically, a schema represents a set of bit strings. For example 
the schema *10*1 represents a set of four strings: {01001, 01011, 11001, 
11011}.  

Typically schema theorems are descriptions of how the number (or the 
proportion) of members of the population belonging to (or matching) a 
schema varies over time.  

For a given schema H the selection/crossover/mutation process can be 
seen as a Bernoulli trial, because a newly created individual either samples 
or does not sample H. Therefore, the number of individuals sampling H at 
the next generation, m(H,t+1) is a binomial stochastic variable. So, if we 
denote with α(Η,t) the success probability of each trial (i.e. the probability 
that a newly created individual samples H), an exact schema theorem is 
simply  
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E[m(H,t+1)]=M α(H,t) 

where M is the population size and E[.] is the expectation operator. Holland's 
and other approximate schema theories (Holland 1975; Goldberg 1989; 
Whitley 1994) normally provide a lower bound for α(H,t) or, equivalently, 
for E[m(H,t+1)]. For example, several schema theorems for one-point 
crossover and point mutation have the following form  


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 ×
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where m(H,t) is number of individuals in the schema H at generation t, M is 
the population size, p(H,t) is the selection probability for strings in H at 
generation t, pm is the mutation probability, O(H) is the schema order, i.e. 
number of defining bits, pc is the crossover probability, L(H) is the defining 
length, i.e. distance between the furthest defining bits in H, and N is the 
bitstring length. The factor σ differs in the different formulation of the 
schema theorem: σ=1-m(H,t)/M in (Holland, 1975) (where one of the parents 
was chosen randomly, irrespective of fitness), σ=1 in (Goldberg, 1989) and 
σ=1-p(H,t) in (Whitley, 1994). 

More recently, Stephens and collaborators (Stephens and Waelbroeck 
1997; Stephens and Waelbroeck 1999) have produced exact formulations for 
α(H,t), which are now known as “exact'' schema theorems for genetic 
algorithms. These, however, are beyond the scope of this chapter.  

The theory of schemata in genetic programming has had a slow start, one 
of the difficulties being that the variable size tree structure in genetic 
programming makes it more difficult to develop a definition of genetic 
programming schema having the necessary power and flexibility. Several 
alternatives have been proposed in the literature, which define schemata as 
composed of one or multiple trees or fragments of trees. Here, however, we 
will focus only on a particular one, which was proposed in (Poli and 
Langdon, 1997; Poli and Langdon 1998) since this has later been used to 
develop an exact and general schema theory for genetic programming (Poli 
2001; Langdon and Poli 2002).  

In this definition, syntactically, a genetic programming schema is a tree 
with some “don’t care” nodes which represents exactly one primitive 
function or terminal. Semantically, a schema represents all programs that 
match its size, shape and defining (non-“don’t care'”) nodes. For example, 
the schema  

H = (DON'T-CARE x (+ y DON'T-CARE)) 
represents the programs (+ x (+ y x)), (+ x (+ y y)), (* 

x (+ y x)), etc. 
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The exact schema theorem in (Poli 2001) gives the expected proportion 
of individuals matching a schema in the next generation as a function of 
information about schemata in the current generation. The calculation is non-
trivial, but it is easier than one might think.  

Let us assume, for simplicity, that only reproduction and (one-offspring) 
crossover are performed. Because these two operators are mutually 
exclusive, for a generic schema H we then have:  

[ ]
]crossoverbyproducedisHmatchingoffspringAnPr[

onreproductiviaobtainedisHinindividualAnPr),(
+
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Then, assuming that reproduction is performed with probability pr and 
crossover with probability pc (with pr+pc=1), we obtain  

[ ]









×+

×=

H
p

HptH

c

r

matchesoffspringthethatsuchare
pointscrossovertheandparentsThe

Pr

cloningforselectedisinindividualAnPr),(α

 

Clearly, the first probability in this expression is simply the selection 
probability for members of the schema H as dictated by, say, fitness-
proportionate selection or tournament selection. So, 

[ ] ),(cloningforinindividualanSelectingPr tHpH =  

We now need to calculate the second term in α(Η,t), that is the 
probability that the parents have shapes and contents compatible with the 
creation of an offspring matching H, and that the crossover points in the two 
parents are such that exactly the necessary material to create such an 
offspring is swapped. This is the harder part of the calculation.  

An observation that helps simplify the problem is that, although the 
probability of choosing a particular crossover point in a parent depends on 
the actual size and shape of such a parent, the process of crossover point 
selection is independent from the actual primitives present in the parent tree. 
So, for example, the probability of choosing any crossover point in the 
program (+ x (+ y x)) is identical to the probability of choosing any 
crossover point in the program (AND D1 (OR D1 D2)). This is because 
the two programs have exactly the same shape. Thanks to this observation 
we can write  



Chapter 8 









×









=










∑ ∑

Hji
lk

lkji

H

lk
lk

ji

 in offspring an produce  and  pointsat over  crossed
 if that such , and  shapes  withparents Selecting

Pr

andshapesinand
pointscrossover  Choosing

Pr

matchesoffspringthethatsuchare
pointscrossovertheandparentsThe

Pr

,shapesparent
ofpairsallFor

andshapes
in,points

crossoverallFor
 

If, for simplicity, we assume that crossover points are selected with 
uniform probability, then  
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So, we are left with the problem of calculating the probability of 
selecting (for crossover) parents having specific shapes while at the same 
time having an arrangement of primitives such that, if crossed over at certain 
predefined points, they produce an offspring matching a particular schema of 
interest.  

Again, here we can simplify the problem by considering how crossover 
produces offspring: it excises a subtree rooted at the chosen crossover point 
in a parent, and replaces it with a subtree excised from the chosen crossover 
point in the other parent. This means that the offspring will have the right 
shape and primitives to match the schema of interest if and only if, after the 
excision of the chosen subtree, the first parent has shape and primitives 
compatible with the schema, and the subtree to be inserted has shape and 
primitives compatible with the schema. That is:  
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These two selection probabilities can be calculated exactly. However, the 
calculation requires the introduction of several other concepts and notation, 
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which are beyond the introductory nature of this chapter. These definitions, 
the complete theory and a number of examples and applications can be 
found in (Poli 2001; Langdon and Poli 2002; Poli and McPhee 2003a; Poli 
and McPhee 2003b).  

Although exact schema theoretic models of genetic programming have 
become available only very recently, they have already started shedding 
some light on fundamental questions regarding the how and why genetic 
programming works. Importantly, other important theoretical models of 
genetic programming have recently been developed which add even more to 
our theoretical understanding of genetic programming. These, however, go 
well beyond the scope of this chapter. The interested reader should consult 
Foundations of Genetic Programming (Langdon and Poli, 2002) and (Poli 
and McPhee 2003a; Poli and McPhee 2003b) for more information. 

9. CONCLUSIONS 

In his seminal 1948 paper entitled “Intelligent Machinery,” Turing 
identified three ways by which human-competitive machine intelligence 
might be achieved. In connection with one of those ways, Turing (1948) 
said: 

“There is the genetical or evolutionary 
search by which a combination of genes is looked 
for, the criterion being the survival value.”  

Turing did not specify how to conduct the “genetical or evolutionary 
search” for machine intelligence. In particular, he did not mention the idea of 
a population-based parallel search in conjunction with sexual recombination 
(crossover) as described in John Holland’s 1975 book Adaptation in Natural 
and Artificial Systems. However, in his 1950 paper “Computing Machinery 
and Intelligence,” Turing (1950) did point out 

“We cannot expect to find a good child-
machine at the first attempt. One must experiment 
with teaching one such machine and see how well 
it learns. One can then try another and see if it is 
better or worse. There is an obvious connection 
between this process and evolution, by the 
identifications 

“Structure of the child machine = 
Hereditary material 

“Changes of the child machine = Mutations 
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"Natural selection = Judgment of the 
experimenter” 

That is, Turing perceived in 1948 and 1950 that one possibly productive 
approach to machine intelligence would involve an evolutionary process in 
which a description of a computer program (the hereditary material) 
undergoes progressive modification (mutation) under the guidance of natural 
selection (i.e., selective pressure in the form of what we now call “fitness”).  

Today, many decades later, we can see that indeed Turing was right. 
Genetic programming has started fulfilling Turing’s dream by providing us 
with a systematic method, based on Darwinian evolution, for getting 
computers to automatically solve hard real-life problems. To do so, it simply 
requires a high-level statement of what needs to be done (and enough 
computing power). 

Turing also understood the need to evaluate objectively the behaviour 
exhibited by machines, to avoid human biases when assessing their 
intelligence. This led him to propose an imitation game, now know as the 
Turing test for machine intelligence, whose goals are wonderfully 
summarised by Arthur Samuel’s position statement quoted in the 
introduction of this chapter. 

At present genetic programming is certainly not in a position to produce 
computer programs that would pass the full Turing test for machine 
intelligence, and it might not be ready for this immense task for centuries. 
Nonetheless, thanks to the constant technological improvements in genetic 
programming technology, in its theoretical foundations and in computing 
power, genetic programming has been able to solve tens of difficult 
problems with human-competitive results (see Table 2) in the recent past. 
These are a small step towards fulfilling Turing and Samuel’s dreams, but 
they are also early signs of things to come. It is, indeed, arguable that in a 
few years’ time genetic programming will be able to routinely and 
competently solve important problems for us in a variety of specific domains 
of application, even when running on a single personal computer, thereby 
becoming an essential collaborator for many of human activities. This, we 
believe, will be a remarkable step forward towards achieving true, human-
competitive machine intelligence. 

SOURCES OF ADDITIONAL INFORMATION ABOUT 
GENETIC PROGRAMMING 

Sources of information about genetic programming include  
− Genetic Programming: On the Programming of Computers by Means of Natural 

Selection (Koza 1992a) and the accompanying videotape Genetic Programming: The 
Movie (Koza and Rice 1992);  
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− Genetic Programming II: Automatic Discovery of Reusable Programs (Koza 1994a) and 
the accompanying videotape Genetic Programming II Videotape: The Next Generation 
(Koza 1994b);  

− Genetic Programming III: Darwinian Invention and Problem Solving (Koza, Bennett, 
Andre, and Keane 1999) and the accompanying videotape Genetic Programming III 
Videotape: Human-Competitive Machine Intelligence (Koza, Bennett, Andre, Keane, and 
Brave 1999);  

− Genetic Programming IV. Routine Human-Competitive Machine Intelligence (Koza, 
Keane, Streeter, Mydlowec, Yu, and Lanza 2003); 

− Genetic ProgrammingAn Introduction (Banzhaf, Nordin, Keller, and Francone 1998);  
− Genetic Programming and Data Structures: Genetic Programming + Data Structures = 

Automatic Programming! (Langdon 1998) in the series on genetic programming from 
Kluwer Academic Publishers; 

− Automatic Re-engineering of Software Using Genetic Programming (Ryan 1999) in the 
series on genetic programming from Kluwer Academic Publishers;  

− Data Mining Using Grammar Based Genetic Programming and Applications (Wong and 
Leung 2000) in the series on genetic programming from Kluwer Academic Publishers;  

− Principia Evolvica: Simulierte Evolution mit Mathematica (Jacob 1997, in German) and 
Illustrating Evolutionary Computation with Mathematica (Jacob 2001);  

− Genetic Programming (Iba 1996, in Japanese); 
− Evolutionary Program Induction of Binary Machine Code and Its Application (Nordin 

1997);  
− Foundations of Genetic Programming (Langdon and Poli 2002);  
− Emergence, Evolution, Intelligence: Hydroinformatics (Babovic 1996);  
− Theory of Evolutionary Algorithms and Application to System Synthesis (Blickle 1997);  
− edited collections of papers such as the three Advances in Genetic Programming books 

from the MIT Press (Kinnear 1994; Angeline and Kinnear 1996; Spector, Langdon, 
O’Reilly, and Angeline 1999);  

− the proceedings of the Genetic Programming Conference held between 1996 and 1998 
(Koza, Goldberg, Fogel, and Riolo 1996; Koza, Deb, Dorigo, Fogel, Garzon, Iba, and 
Riolo 1997; Koza, Banzhaf, Chellapilla, Deb, Dorigo, Fogel, Garzon, Goldberg, Iba, and 
Riolo 1998);  

− the proceedings of the annual Genetic and Evolutionary Computation Conference 
(GECCO) (combining the formerly annual Genetic Programming Conference and the 
formerly biannual International Conference on Genetic Algorithms) operated by the 
International Society for Genetic and Evolutionary Computation (ISGEC) and held 
starting in 1999 (Banzhaf, Daida, Eiben, Garzon, Honavar, Jakiela, and Smith 1999; 
Whitley, Goldberg, Cantu-Paz, Spector, Parmee, and Beyer 2000; Spector, Goodman, 
Wu, Langdon, Voigt, Gen, Sen, Dorigo, Pezeshk, Garzon, and Burke 2001; Langdon, 
Cantu-Paz, Mathias, Roy, Davis, Poli, Balakrishnan, Honavar, Rudolph, Wegener, Bull, 
Potter, Schultz, Miller, Burke, and Jonoska 2002);  

− the proceedings of the annual Euro-GP conferences held starting in 1998 (Banzhaf, Poli, 
Schoenauer, and Fogarty 1998; Poli, Nordin, Langdon, and Fogarty 1999; Poli, Banzhaf, 
Langdon, Miller, Nordin, and Fogarty 2000; Miller, Tomassini, Lanzi, Ryan, Tettamanzi, 
and Langdon 2001; Foster, Lutton, Miller, Ryan, and Tettamanzi 2002);  

− the proceedings of the Workshop of Genetic Programming Theory and Practice 
organized by the Center for Study of Complex Systems of the University of Michigan (to 
be published in 2003 by Kluwer Academic Publishers),  

− the Genetic Programming and Evolvable Machines journal (from Kluwer Academic 
Publishers) started in April 2000;  
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− web sites such as www.genetic-programming.org and www.genetic-
programming.com;  

− LISP code for implementing genetic programming, available in Genetic Programming 
(Koza 1992a), and genetic programming implementations in other languages such as C 
or Java (Web sites such as www.genetic-programming.org contain links to 
computer code in various programming languages); 

− early papers on genetic programming, such as the Stanford University Computer Science 
Department technical report Genetic Programming: A Paradigm for Genetically 
Breeding Populations of Computer Programs to Solve Problems (Koza 1990a) and the 
paper “Hierarchical Genetic Algorithms Operating on Populations of Computer 
Programs,” presented at the 11th International Joint Conference on Artificial Intelligence 
in Detroit (Koza 1989);  

− an annotated bibliography of the first 100 papers on genetic programming (other than 
those of which John Koza was the author or co-author) in appendix F of Genetic 
Programming II: Automatic Discovery of Reusable Programs (Koza 1994a); and  

− William Langdon’s bibliography on genetic programming at 
http://www.cs.bham.ac.uk/~wbl/biblio/ or 
http://liinwww.ira.uka.de/bibliography/Ai/genetic.programmi
ng.html. This bibliography is the most extensive in the field and contains over 3,034 
papers (as of January 2003) and over 880 authors. It provides on-line access to many of 
the papers. 
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