
Chapter 8

Chapter 8

A Genetic Programming Tutorial

John R. Koza1 and Riccardo Poli2

1Stanford University, Stanford, California
2Department of Computer Science, University of Essex, UK

Abstract: Genetic programming is a technique to automatically discover computer
programs using principles of Darwinian evolution. This chapter introduces the
basics of genetic programming. To make the material more suitable for
beginners, these are illustrated with an extensive example. In addition, the
chapter touches upon some of the more advanced variants of genetic
programming as well as its theoretical foundations. Numerous pointers to
further reading, software tools and Web sites are also provided.

Key words: Genetic programming, genetic algorithms, human-competitive machine
intelligence, machine learning, schema theory

1. INTRODUCTION

The goal of getting computers to automatically solve problems is central
to artificial intelligence, machine learning, and the broad area encompassed
by what Turing called “machine intelligence” (Turing 1948, 1950).

In his 1983 talk entitled “AI: Where It Has Been and Where It Is Going,
machine learning pioneer Arthur Samuel stated the main goal of the fields of
machine learning and artificial intelligence:

“[T]he aim [is] … to get machines to exhibit
behavior, which if done by humans, would be
assumed to involve the use of intelligence.”

Genetic programming is a systematic method for getting computers to
automatically solve a problem starting from a high-level statement of what
needs to be done. Genetic programming is a domain-independent method
that genetically breeds a population of computer programs to solve a
problem. Specifically, genetic programming iteratively transforms a
population of computer programs into a new generation of programs by

Chapter 8

applying analogs of naturally occurring genetic operations. This process is
illustrated in Figure 1.

Figure 1. Main loop of genetic programming

The genetic operations include crossover (sexual recombination),
mutation, reproduction, gene duplication, and gene deletion. Analogs of
developmental processes are sometimes used to transform an embryo into a
fully developed structure. Genetic programming is an extension of the
genetic algorithm (Holland 1975) in which the structures in the population
are not fixed-length character strings that encode candidate solutions to a
problem, but programs that, when executed, are the candidate solutions to
the problem.

Programs are expressed in genetic programming as syntax trees rather
than as lines of code. For example, the simple expression
max(x*x,x+3*y)is represented as shown in Figure 2. The tree includes
nodes (which we will also call point) and links. The nodes indicate the
instructions to execute. The links indicate the arguments for each instruction.
In the following the internal nodes in a tree will be called functions, while
the tree’s leaves will be called terminals.

Figure 2. Basic tree-like program representation used in genetic programming

Chapter 8

Figure 3. Multi-tree program representation

In more advanced forms of genetic programming, programs can be
composed of multiple components (e.g., subroutines). In this case the
representation used in genetic programming is a set of trees (one for each
component) grouped together under a special node called root, as illustrated
in Figure 3. We will call these (sub)trees branches. The number and type of
the branches in a program, together with certain other features of the
structure of the branches, form the architecture of the program.

Genetic programming trees and their corresponding expressions can
equivalently be represented in prefix notation (e.g., as Lisp S-expressions).
In prefix notation, functions always precede their arguments. For example,
max(x*x,x+3*y) becomes (max (* x x)(+ x (* 3 y))). In
this notation, it is easy to see the correspondence between expressions and
their syntax trees. Simple recursive procedures can convert prefix-notation
expressions into infix-notation expressions and vice versa. Therefore, in the
following, we will use trees and their corresponding prefix-notation
expressions interchangeably.

2. PREPARATORY STEPS OF GENETIC
PROGRAMMING

Genetic programming starts from a high-level statement of the
requirements of a problem and attempts to produce a computer program that
solves the problem.

Chapter 8

The human user communicates the high-level statement of the problem to
the genetic programming algorithm by performing certain well-defined
preparatory steps.

The five major preparatory steps for the basic version of genetic
programming require the human user to specify
1. the set of terminals (e.g., the independent variables of the problem, zero-

argument functions, and random constants) for each branch of the to-be-
evolved program,

2. the set of primitive functions for each branch of the to-be-evolved
program,

3. the fitness measure (for explicitly or implicitly measuring the fitness of
individuals in the population),

4. certain parameters for controlling the run, and
5. the termination criterion and method for designating the result of the run.

The first two preparatory steps specify the ingredients that are available
to create the computer programs. A run of genetic programming is a
competitive search among a diverse population of programs composed of the
available functions and terminals.

The identification of the function set and terminal set for a particular
problem (or category of problems) is usually a straightforward process. For
some problems, the function set may consist of merely the arithmetic
functions of addition, subtraction, multiplication, and division as well as a
conditional branching operator. The terminal set may consist of the
program’s external inputs (independent variables) and numerical constants.

For many other problems, the ingredients include specialized functions
and terminals. For example, if the goal is to get genetic programming to
automatically program a robot to mop the entire floor of an obstacle-laden
room, the human user must tell genetic programming what the robot is
capable of doing. For example, the robot may be capable of executing
functions such as moving, turning, and swishing the mop.

If the goal is the automatic creation of a controller, the function set may
consist of integrators, differentiators, leads, lags, gains, adders, subtractors,
and the like and the terminal set may consist of signals such as the reference
signal and plant output.

If the goal is the automatic synthesis of an analog electrical circuit, the
function set may enable genetic programming to construct circuits from
components such as transistors, capacitors, and resistors. Once the human
user has identified the primitive ingredients for a problem of circuit
synthesis, the same function set can be used to automatically synthesize an
amplifier, computational circuit, active filter, voltage reference circuit, or
any other circuit composed of these ingredients.

Chapter 8

The third preparatory step concerns the fitness measure for the problem.
The fitness measure specifies what needs to be done. The fitness measure is
the primary mechanism for communicating the high-level statement of the
problem’s requirements to the genetic programming system. For example, if
the goal is to get genetic programming to automatically synthesize an
amplifier, the fitness function is the mechanism for telling genetic
programming to synthesize a circuit that amplifies an incoming signal (as
opposed to, say, a circuit that suppresses the low frequencies of an incoming
signal or that computes the square root of the incoming signal). The first two
preparatory steps define the search space whereas the fitness measure
implicitly specifies the search’s desired goal.

The fourth and fifth preparatory steps are administrative. The fourth
preparatory step entails specifying the control parameters for the run. The
most important control parameter is the population size. Other control
parameters include the probabilities of performing the genetic operations, the
maximum size for programs, and other details of the run.

The fifth preparatory step consists of specifying the termination criterion
and the method of designating the result of the run. The termination criterion
may include a maximum number of generations to be run as well as a
problem-specific success predicate. The single best-so-far individual is then
harvested and designated as the result of the run.

3. EXECUTIONAL STEPS OF GENETIC
PROGRAMMING

After the user has performed the preparatory steps for a problem, the run
of genetic programming can be launched. Once the run is launched, a series
of well-defined, problem-independent steps is executed.

Genetic programming typically starts with a population of randomly
generated computer programs composed of the available programmatic
ingredients (as provided by the human user in the first and second
preparatory steps).

Genetic programming iteratively transforms a population of computer
programs into a new generation of the population by applying analogs of
naturally occurring genetic operations. These operations are applied to
individual(s) selected from the population. The individuals are
probabilistically selected to participate in the genetic operations based on
their fitness (as measured by the fitness measure provided by the human user
in the third preparatory step). The iterative transformation of the population
is executed inside the main generational loop of the run of genetic
programming.

Chapter 8

The executional steps of genetic programming are as follows:
1. Randomly create an initial population (generation 0) of individual

computer programs composed of the available functions and terminals.
2. Iteratively perform the following sub-steps (called a generation) on the

population until the termination criterion is satisfied:
a) Execute each program in the population and ascertain its fitness

(explicitly or implicitly) using the problem’s fitness measure.
b) Select one or two individual program(s) from the population with a

probability based on fitness (with reselection allowed) to participate
in the genetic operations in (c).

c) Create new individual program(s) for the population by applying the
following genetic operations with specified probabilities:
– Reproduction: Copy the selected individual program to the new

population.
– Crossover: Create new offspring program(s) for the new

population by recombining randomly chosen parts from two
selected programs.

– Mutation: Create one new offspring program for the new
population by randomly mutating a randomly chosen part of one
selected program.

– Architecture-altering operations: Choose an architecture-
altering operation from the available repertoire of such operations
and create one new offspring program for the new population by
applying the chosen architecture-altering operation to one selected
program.

3. After the termination criterion is satisfied, the single best program in the
population produced during the run (the best-so-far individual) is
harvested and designated as the result of the run. If the run is successful,
the result may be a solution (or approximate solution) to the problem.
Figure 4 is a flowchart of genetic programming showing the genetic

operations of crossover, reproduction, and mutation as well as the
architecture-altering operations. This flowchart shows a two-offspring
version of the crossover operation.

Chapter 8

Perform Reproduction

Yes

No

Gen := Gen + 1

Select Two Individuals
Based on Fitness

Perform
Crossover

Perform Mutation Insert Mutant into
New Population

Copy into New
Population

i := i + 1

Select One Individual
Based on Fitness

Pr

Pc

Pm

Select Genetic Operation

i = M?

Create Initial Random
Population for Run

No

Termination Criterion
Satisfied for Run?

Yes

Gen := 0 Run := Run + 1

Designate
Result for Run

End

Run := 0

i := 0

No
Run = N?

Yes

i := 0

i := i + 1i = M?

Apply Fitness Measure to Individual in the Population

Yes

No

Select One Individual
Based on Fitness

Insert Offspring
into New

Population
i := i + 1

Select an Architecture Altering Operation
Based on its Specified Probability

Perform the
Architecture Altering

Operation

Insert Offspring into
New Population

Select One Individual
Based on Fitness

Pa

Figure 4. Flowchart of genetic programming

The preparatory steps specify what the user must provide in advance to
the genetic programming system. Once the run is launched, the executional
steps as shown in the flowchart (Figure 4) are executed. Genetic
programming is problem-independent in the sense that the flowchart
specifying the basic sequence of executional steps is not modified for each
new run or each new problem.

There is usually no discretionary human intervention or interaction
during a run of genetic programming (although a human user may exercise
judgment as to whether to terminate a run).

Genetic programming starts with an initial population of computer
programs composed of functions and terminals appropriate to the problem.
The individual programs in the initial population are typically generated by
recursively generating a rooted point-labeled program tree composed of

Chapter 8

random choices of the primitive functions and terminals (provided by the
user as part of the first and second preparatory steps). The initial individuals
are usually generated subject to a pre-established maximum size (specified
by the user as a minor parameter as part of the fourth preparatory step). For
example, in the “Full” initialization method nodes are taken from the
function set until a maximum tree depth is reached. Beyond that depth only
terminals can be chosen. Figure 5 shows several snapshots of this process. A
variant of this, the “Grow” initialization method, allows the selection of
nodes from the whole primitive set until the depth limit is reached.
Thereafter, it behaves like the “Full” method. Figure 6 illustrates this
process. Pseudo code for a recursive implementation of both the “Full” and
the “Grow” methods is given in Figure 7. The code assumes that programs
are represented as prefix-notation expressions.

In general, after the initialization phase, the programs in the population
are of different size (number of functions and terminals) and of different
shape (the particular graphical arrangement of functions and terminals in the
program tree).

Figure 5. Creation of a seven-point tree using the “Full” initialization method (t=time)

Chapter 8

Figure 6. Creation of a five-point tree using the “Grow” initialization method (t=time)

Figure 7. Pseudo code for recursive program generation with the “Full” and “Grow” methods

Each individual program in the population is either measured or
compared in terms of how well it performs the task at hand (using the fitness
measure provided in the third preparatory step). For many problems, this
measurement yields a single explicit numerical value, called fitness.
Normally, fitness evaluation requires executing the programs in the
population, often multiple times, within the genetic programming system. A
variety of execution strategies exist, including the (relatively uncommon)

Chapter 8

off-line or on-line compilation and linking and the (relatively common)
virtual-machine-code compilation and interpretation.

Interpreting a program tree means executing the nodes in the tree in an
order that guarantees that nodes are not executed before the value of their
arguments (if any) is known. This is usually done by traversing the tree in a
recursive way starting from the root node, and postponing the evaluation of
each node until the value of its children (arguments) is known. This process
is illustrated in Figure 8, where the numbers to the right of internal nodes
represent the results of evaluating the subtrees rooted at such nodes. In this
example, the independent variable X evaluates to –1. Figure 9 gives a
pseudo-code implementation of the interpretation procedure. The code
assumes that programs are represented as prefix-notation expressions and
that such expressions can be treated as lists of components (where a
construct like expr(i) can be used to read or set component i of expression
expr).

Figure 8. Example interpretation of a syntax tree (the terminal x is a variable has a value of -
1)

Chapter 8

Figure 9. Typical interpreter for genetic programming

Irrespective of the execution strategy adopted, the fitness of a program
may be measured in many different ways, including, for example, in terms of
the amount of error between its output and the desired output, the amount of
time (fuel, money, etc.) required to bring a system to a desired target state,
the accuracy of the program in recognizing patterns or classifying objects
into classes, the payoff that a game-playing program produces, or the
compliance of a complex structure (such as an antenna, circuit, or controller)
with user-specified design criteria. The execution of the program sometimes
returns one or more explicit values. Alternatively, the execution of a
program may consist only of side effects on the state of a world (e.g., a
robot’s actions). Alternatively, the execution of a program may yield both
return values and side effects.

The fitness measure is, for many practical problems, multi-objective in
the sense that it combines two or more different elements. In practice, the
different elements of the fitness measure are in competition with one another
to some degree.

For many problems, each program in the population is executed over a
representative sample of different fitness cases. These fitness cases may
represent different values of the program’s input(s), different initial
conditions of a system, or different environments. Sometimes the fitness
cases are constructed probabilistically.

The creation of the initial random population is, in effect, a blind random
search of the search space of the problem. It provides a baseline for judging

Chapter 8

future search efforts. Typically, the individual programs in generation 0 all
have exceedingly poor fitness. Nonetheless, some individuals in the
population are (usually) more fit than others. The differences in fitness are
then exploited by genetic programming. Genetic programming applies
Darwinian selection and the genetic operations to create a new population of
offspring programs from the current population.

The genetic operations include crossover (sexual recombination),
mutation, reproduction, and the architecture-altering operations. Given
copies of two parent trees, typically, crossover involves randomly selecting a
crossover point (which can equivalently be thought of as either a node or a
link between nodes) in each parent tree and swapping the sub-trees rooted at
the crossover points, as exemplified in Figure 10. Often crossover points are
not selected with uniform probability. A frequent strategy is, for example, to
select internal nodes (functions) 90% of the times, and any node for the
remaining 10% of the times. Traditional mutation consists of randomly
selecting a mutation point in a tree and substituting the sub-tree rooted there
with a randomly generated sub-tree, as illustrated in Figure 11. Mutation is
sometimes implemented as crossover between a program and a newly
generated random program (this is also known as “headless chicken”
crossover). Reproduction involves simply copying certain individuals into
the new population. Architecture altering operations will be discussed later
in this chapter.

Figure 10. Example of two-child crossover between syntax trees

Chapter 8

Figure 11. Example of sub-tree mutation

The genetic operations described above are applied to individual(s) that
are probabilistically selected from the population based on fitness. In this
probabilistic selection process, better individuals are favored over inferior
individuals. However, the best individual in the population is not necessarily
selected and the worst individual in the population is not necessarily passed
over.

After the genetic operations are performed on the current population, the
population of offspring (i.e., the new generation) replaces the current
population (i.e., the now-old generation). This iterative process of measuring
fitness and performing the genetic operations is repeated over many
generations.

The run of genetic programming terminates when the termination
criterion (as provided by the fifth preparatory step) is satisfied. The outcome
of the run is specified by the method of result designation. The best
individual ever encountered during the run (i.e., the best-so-far individual) is
typically designated as the result of the run.

All programs in the initial random population (generation 0) of a run of
genetic programming are syntactically valid, executable programs. The
genetic operations that are performed during the run (i.e., crossover,
mutation, reproduction, and the architecture-altering operations) are
designed to produce offspring that are syntactically valid, executable
programs. Thus, every individual created during a run of genetic
programming (including, in particular, the best-of-run individual) is a
syntactically valid, executable program.

There are numerous alternative implementations of genetic programming
that vary from the preceding brief description.

Chapter 8

4. EXAMPLE OF A RUN OF GENETIC
PROGRAMMING

To provide concreteness, this section contains an illustrative run of
genetic programming in which the goal is to automatically create a computer
program whose output is equal to the values of the quadratic polynomial
x2+x+1 in the range from –1 to +1. That is, the goal is to automatically create
a computer program that matches certain numerical data. This process is
sometimes called system identification or symbolic regression.

We begin with the five preparatory steps.
The purpose of the first two preparatory steps is to specify the ingredients

of the to-be-evolved program.
Because the problem is to find a mathematical function of one

independent variable, the terminal set (inputs to the to-be-evolved program)
includes the independent variable, x. The terminal set also includes
numerical constants. That is, the terminal set, T, is
T = {X, ℜ}.
Here ℜ denotes constant numerical terminals in some reasonable range

(say from –5.0 to +5.0).
The preceding statement of the problem is somewhat flexible in that it

does not specify what functions may be employed in the to-be-evolved
program. One possible choice for the function set consists of the four
ordinary arithmetic functions of addition, subtraction, multiplication, and
division. This choice is reasonable because mathematical expressions
typically include these functions. Thus, the function set, F, for this problem
is
F = {+, -, *, %}.
The two-argument +, -, *, and % functions add, subtract, multiply, and

divide, respectively. To avoid run-time errors, the division function % is
protected: it returns a value of 1 when division by 0 is attempted (including 0
divided by 0), but otherwise returns the quotient of its two arguments.

Each individual in the population is a composition of functions from the
specified function set and terminals from the specified terminal set.

The third preparatory step involves constructing the fitness measure. The
purpose of the fitness measure is to specify what the human wants. The high-
level goal of this problem is to find a program whose output is equal to the
values of the quadratic polynomial x2+x+1. Therefore, the fitness assigned to
a particular individual in the population for this problem must reflect how
closely the output of an individual program comes to the target polynomial
x2+x+1. The fitness measure could be defined as the value of the integral
(taken over values of the independent variable x between –1.0 and +1.0) of
the absolute value of the differences (errors) between the value of the

Chapter 8

individual mathematical expression and the target quadratic polynomial
x2+x+1. A smaller value of fitness (error) is better. A fitness (error) of zero
would indicate a perfect fit.

For most problems of symbolic regression or system identification, it is
not practical or possible to analytically compute the value of the integral of
the absolute error. Thus, in practice, the integral is numerically approximated
using dozens or hundreds of different values of the independent variable x in
the range between –1.0 and +1.0.

The population size in this small illustrative example will be just four. In
actual practice, the population size for a run of genetic programming consists
of thousands or millions of individuals. In actual practice, the crossover
operation is commonly performed on about 90% of the individuals in the
population; the reproduction operation is performed on about 8% of the
population; the mutation operation is performed on about 1% of the
population; and the architecture-altering operations are performed on
perhaps 1% of the population. Because this illustrative example involves an
abnormally small population of only four individuals, the crossover
operation will be performed on two individuals and the mutation and
reproduction operations will each be performed on one individual. For
simplicity, the architecture-altering operations are not used for this problem.

A reasonable termination criterion for this problem is that the run will
continue from generation to generation until the fitness of some individual
gets below 0.01. In this contrived example, the run will (atypically) yield an
algebraically perfect solution (for which the fitness measure attains the ideal
value of zero) after merely one generation.

Now that we have performed the five preparatory steps, the run of
genetic programming can be launched. That is, the executional steps shown
in the flowchart of Figure 4 are now performed.

Genetic programming starts by randomly creating a population of four
individual computer programs. The four programs are shown in Figure 12 in
the form of trees.

The first randomly constructed program tree (Figure 12a) is equivalent to
the mathematical expression x+1. A program tree is executed in a depth-first
way, from left to right, in the style of the LISP programming language.
Specifically, the addition function (+) is executed with the variable x and the
constant value 1 as its two arguments. Then, the two-argument subtraction
function (–) is executed. Its first argument is the value returned by the just-
executed addition function. Its second argument is the constant value 0. The
overall result of executing the entire program tree is thus x+1.

The first program (Figure 12a) was constructed, using the “Grow”
method, by first choosing the subtraction function for the root (top point) of
the program tree. The random construction process continued in a depth-first

Chapter 8

fashion (from left to right) and chose the addition function to be the first
argument of the subtraction function. The random construction process then
chose the terminal x to be the first argument of the addition function (thereby
terminating the growth of this path in the program tree). The random
construction process then chose the constant terminal 1 as the second
argument of the addition function (thereby terminating the growth along this
path). Finally, the random construction process chose the constant terminal 0
as the second argument of the subtraction function (thereby terminating the
entire construction process).

+

x 1

-

0

+

2 0*

x

1

+

x

x

*

-

-1 -2

(a) (b) (c) (d)

+1x 2 +1x 2 x

Figure 12. Initial population of four randomly created individuals of generation 0

-2

4

-1 1

-2

4

-1 1

-2

4

-1 1

(a) (b) (c) (d)

Figure 13. The fitness of each of the four randomly created individuals of generation 0 is
equal to the area between two curves.

Chapter 8

+

x 1

-

0 x

-

0

+

1

1 *

x+

x

% 0

+

x x

(a) (b) (c) (d)

+1x 1 x 2 + +1x x

Figure 14. Population of generation 1 (after one reproduction, one mutation, and one two-
offspring crossover operation)

The second program (Figure 12b) adds the constant terminal 1 to the
result of multiplying x by x and is equivalent to x2+1. The third program
(Figure 12c) adds the constant terminal 2 to the constant terminal 0 and is
equivalent to the constant value 2. The fourth program (Figure 12d) is
equivalent to x.

Randomly created computer programs will, of course, typically be very
poor at solving the problem at hand. However, even in a population of
randomly created programs, some programs are better than others. The four
random individuals from generation 0 in Figure 12 produce outputs that
deviate from the output produced by the target quadratic function x2+x+1 by
different amounts. In this particular problem, fitness can be graphically
illustrated as the area between two curves. That is, fitness is equal to the area
between the parabola x2+x+1 and the curve representing the candidate
individual. Figure 13 shows (as shaded areas) the integral of the absolute
value of the errors between each of the four individuals in Figure 12 and the
target quadratic function x2+x+1. The integral of absolute error for the
straight line x+1 (the first individual) is 0.67 (Figure 13a). The integral of
absolute error for the parabola x2+1 (the second individual) is 1.0 (Figure
13b). The integrals of the absolute errors for the remaining two individuals
are 1.67 (Figure 13c) and 2.67 (Figure 13d), respectively.

As can be seen in Figure 13, the straight line x+1 (Figure 13a) is closer to
the parabola x2+x+1 in the range from –1 to +1 than any of its three cohorts
in the population. This straight line is, of course, not equivalent to the
parabola x2+x+1. This best-of-generation individual from generation 0 is not
even a quadratic function. It is merely the best candidate that happened to
emerge from the blind random search of generation 0. In the valley of the
blind, the one-eyed man is king.

After the fitness of each individual in the population is ascertained,
genetic programming then probabilistically selects relatively more fit

Chapter 8

programs from the population. The genetic operations are applied to the
selected individuals to create offspring programs. The most commonly
employed methods for selecting individuals to participate in the genetic
operations are tournament selection and fitness-proportionate selection. In
both methods, the emphasis is on selecting relatively fit individuals. An
important feature common to both methods is that the selection is not
greedy. Individuals that are known to be inferior will be selected to a certain
degree. The best individual in the population is not guaranteed to be
selected. Moreover, the worst individual in the population will not
necessarily be excluded. Anything can happen and nothing is guaranteed.

We first perform the reproduction operation. Because the first individual
(Figure 12a) is the most fit individual in the population, it is very likely to be
selected to participate in a genetic operation. Let’s suppose that this
particular individual is, in fact, selected for reproduction. If so, it is copied,
without alteration, into the next generation (generation 1). It is shown in
Figure 14a as part of the population of the new generation.

We next perform the mutation operation. Because selection is
probabilistic, it is possible that the third best individual in the population
(Figure 12c) is selected. One of the three nodes of this individual is then
randomly picked as the site for the mutation. In this example, the constant
terminal 2 is picked as the mutation site. This program is then randomly
mutated by deleting the entire subtree rooted at the picked point (in this case,
just the constant terminal 2) and inserting a subtree that is randomly grown
in the same way that the individuals of the initial random population were
originally created. In this particular instance, the randomly grown subtree
computes the quotient of x and x using the protected division operation %.
The resulting individual is shown in Figure 14b. This particular mutation
changes the original individual from one having a constant value of 2 into
one having a constant value of 1. This particular mutation improves fitness
from 1.67 to 1.00.

Finally, we perform the crossover operation. Because the first and second
individuals in generation 0 are both relatively fit, they are likely to be
selected to participate in crossover. The selection (and reselection) of
relatively more fit individuals and the exclusion and extinction of unfit
individuals is a characteristic feature of Darwinian selection. The first and
second programs are mated sexually to produce two offspring (using the
two-offspring version of the crossover operation). One point of the first
parent (Figure 12a), namely the + function, is randomly picked as the
crossover point for the first parent. One point of the second parent (Figure
12b), namely its leftmost terminal x, is randomly picked as the crossover
point for the second parent. The crossover operation is then performed on the
two parents. The two offspring are shown in Figures 2.4c and 2.4d. One of

Chapter 8

the offspring (Figure 14c) is equivalent to x and is not noteworthy. However,
the other offspring (Figure 14d) is equivalent to x2+x+1 and has a fitness
(integral of absolute errors) of zero. Because the fitness of this individual is
below 0.01, the termination criterion for the run is satisfied and the run is
automatically terminated. This best-so-far individual (Figure 14d) is
designated as the result of the run. This individual is an algebraically correct
solution to the problem.

Note that the best-of-run individual (Figure 14d) incorporates a good trait
(the quadratic term x2) from the second parent (Figure 12b) with two other
good traits (the linear term x and constant term of 1) from the first parent
(Figure 12a). The crossover operation produced a solution to this problem by
recombining good traits from these two relatively fit parents into a superior
(indeed, perfect) offspring.

In summary, genetic programming has, in this example, automatically
created a computer program whose output is equal to the values of the
quadratic polynomial x2+x+1 in the range from –1 to +1.

5. ADVANCED FEATURES OF GENETIC
PROGRAMMING

Various advanced features of genetic programming are not covered by
the foregoing illustrative problem and the foregoing discussion of the
preparatory and executional steps of genetic programming.

5.1 Constrained Syntactic Structures

For certain simple problems (such as the illustrative problem above), the
search space for a run of genetic programming consists of the unrestricted
set of possible compositions of the problem’s functions and terminals.

However, for many problems, a constrained syntactic structure imposes
restrictions on how the functions and terminals may be combined.

Consider, for example, a function that instructs a robot to turn by a
certain angle. In a typical implementation of this hypothetical function, the
function’s first argument may be required to return a numerical value
(representing the desired turning angle) and its second argument may be
required to be a follow-up command (e.g., move, turn, stop). In other words,
the functions and terminals permitted in the two argument subtrees for this
particular function are restricted. These restrictions are implemented by
means of syntactic rules of construction.

Chapter 8

A constrained syntactic structure (sometimes called strong typing) is a
grammar that specifies the functions or terminals that are permitted to appear
as a specified argument of a specified function in the program tree.

When a constrained syntactic structure is used, there are typically
multiple function sets and multiple terminal sets. The rules of construction
specify where the different function sets or terminal sets may be used.

When a constrained syntactic structure is used, all the individuals in the
initial random population (generation 0) are created so as to comply with the
constrained syntactic structure. All genetic operations (i.e., crossover,
mutation, reproduction, and the architecture-altering operations) that are
performed during the run are designed to produce offspring that comply with
the requirements of the constrained syntactic structure. Thus, all individuals
(including, in particular, the best-of-run individual) that are produced during
the run of genetic programming will necessarily comply with the
requirements of the constrained syntactic structure.

5.2 Automatically Defined Functions

Human computer programmers organize sequences of reusable steps into
subroutines. They then repeatedly invoke the subroutines—typically with
different instantiations of the subroutine’s dummy variables (formal
parameters). Reuse eliminates the need to “reinvent the wheel” on each
occasion when a particular sequence of steps may be useful. Reuse makes it
possible to exploit a problem’s modularities, symmetries, and regularities
(and thereby potentially accelerate the problem-solving process).

Programmers commonly organize their subroutines into hierarchies.
The automatically defined function (ADF) is one of the mechanisms by

which genetic programming implements the parameterized reuse and
hierarchical invocation of evolved code. Each automatically defined function
resides in a separate function-defining branch within the overall multi-part
computer program (see Figure 3). When automatically defined functions are
being used, a program consists of one (or more) function-defining branches
(i.e., automatically defined functions) as well as one or more main result-
producing branches. An automatically defined function may possess zero,
one, or more dummy variables (formal parameters). The body of an
automatically defined function contains its work-performing steps. Each
automatically defined function belongs to a particular program in the
population. An automatically defined function may be called by the
program’s main result-producing branch, another automatically defined
function, or another type of branch (such as those described below).
Recursion is sometimes allowed. Typically, the automatically defined
functions are invoked with different instantiations of their dummy variables.

Chapter 8

The work-performing steps of the program’s main result-producing
branch and the work-performing steps of each automatically defined
function are automatically and simultaneously created during the run of
genetic programming.

The program’s main result-producing branch and its automatically
defined functions typically have different function and terminal sets. A
constrained syntactic structure is used to implement automatically defined
functions.

Automatically defined functions are the focus of Genetic Programming
II: Automatic Discovery of Reusable Programs (Koza 1994a) and the
videotape Genetic Programming II Videotape: The Next Generation (Koza
1994b).

5.3 Automatically Defined Iterations, Automatically
Defined Loops, Automatically Defined Recursions,
and Automatically Defined Stores

Automatically defined iterations (ADIs), automatically defined loops
(ADLs), and automatically defined recursions (ADRs) provide means (in
addition to automatically defined functions) to reuse code.

Automatically defined stores (ADSs) provide means to reuse the result of
executing code.

Automatically defined iterations, automatically defined loops,
automatically defined recursions, and automatically defined stores are
described in Genetic Programming III: Darwinian Invention and Problem
Solving (Koza, Bennett, Andre, and Keane 1999).

5.4 Program Architecture and Architecture-Altering
Operations

The architecture of a program consists of
– the total number of branches,
– the type of each branch (e.g., result-producing branch, automatically

defined function, automatically defined iteration, automatically defined
loop, automatically defined recursion, or automatically defined store),

– the number of arguments (if any) possessed by each branch, and
– if there is more than one branch, the nature of the hierarchical references

(if any) allowed among the branches.
There are three ways by which genetic programming can arrive at the

architecture of the to-be-evolved computer program:
– The human user may prespecify the architecture of the overall program

(i.e., perform an additional architecture-defining preparatory step). That

Chapter 8

is, the number of preparatory steps is increased from the five previously
itemized to six.

– The run may employ evolutionary selection of the architecture (as
described in Genetic Programming II), thereby enabling the architecture
of the overall program to emerge from a competitive process during the
run of genetic programming. When this approach is used, the number of
preparatory steps remains at the five previously itemized.

– The run may employ the architecture-altering operations (Koza 1994c,
1995; Koza, Bennett, Andre, and Keane 1999), thereby enabling genetic
programming to automatically create the architecture of the overall
program dynamically during the run. When this approach is used, the
number of preparatory steps remains at the five previously itemized.

5.5 Genetic Programming Problem Solver (GPPS)

The Genetic Programming Problem Solver (GPPS) is described in the
1999 book Genetic Programming III: Darwinian Invention and Problem
Solving (Koza, Bennett, Andre, and Keane 1999, part 4).

If GPPS is being used, the user is relieved of performing the first and
second preparatory steps (concerning the choice of the terminal set and the
function set). The function set for GPPS consists of the four basic arithmetic
functions (addition, subtraction, multiplication, and division) and a
conditional operator (i.e., functions found in virtually every general-purpose
digital computer that has ever been built). The terminal set for GPPS consists
of numerical constants and a set of input terminals that are presented in the
form of a vector.

By employing this generic function set and terminal set, GPPS reduces
the number of preparatory steps from five to three.

GPPS relies on the architecture-altering operations to dynamically create,
duplicate, and delete subroutines and loops during the run of genetic
programming. Additionally, in version 2.0 of GPPS, the architecture-altering
operations are used to dynamically create, duplicate, and delete recursions
and internal storage. Because the architecture of the evolving program is
automatically determined during the run, GPPS eliminates the need for the
user to specify in advance whether to employ subroutines, loops, recursions,
and internal storage in solving a given problem. It similarly eliminates the
need for the user to specify the number of arguments possessed by each
subroutine. And, GPPS eliminates the need for the user to specify the
hierarchical arrangement of the invocations of the subroutines, loops, and
recursions. That is, the use of GPPS relieves the user of performing the
preparatory step of specifying the program’s architecture.

Chapter 8

5.6 Developmental Genetic Programming

Developmental genetic programming is used for problems of
synthesizing analog electrical circuits, as described in part 5 of Genetic
Programming III. When developmental genetic programming is used, a
complex structure (such as an electrical circuit) is created from a simple
initial structure (the embryo).

6. HUMAN-COMPETITIVE RESULTS PRODUCED
BY GENETIC PROGRAMMING

Samuel’s statement (quoted above) reflects the goal articulated by the
pioneers of the 1950s in the fields of artificial intelligence and machine
learning, namely to use computers to automatically produce human-like
results. Indeed, getting machines to produce human-like results is the reason
for the existence of the fields of artificial intelligence and machine learning.

To make the notion of human-competitiveness more concrete, we say
that a result is “human-competitive” if it satisfies one or more of the eight
criteria in table 1.

Table 1. Eight criteria for saying that an automatically created result is human-competitive
 Criterion
A The result was patented as an invention in the

past, is an improvement over a patented
invention, or would qualify today as a
patentable new invention.

B The result is equal to or better than a result
that was accepted as a new scientific result at
the time when it was published in a peer-
reviewed scientific journal.

C The result is equal to or better than a result
that was placed into a database or archive of
results maintained by an internationally
recognized panel of scientific experts.

D The result is publishable in its own right as a
new scientific resultindependent of the fact
that the result was mechanically created.

E The result is equal to or better than the most
recent human-created solution to a long-
standing problem for which there has been a
succession of increasingly better human-
created solutions.

F The result is equal to or better than a result
that was considered an achievement in its
field at the time it was first discovered.

Chapter 8

 Criterion
G The result solves a problem of indisputable

difficulty in its field.
H The result holds its own or wins a regulated

competition involving human contestants (in
the form of either live human players or
human-written computer programs).

As can seen from table 1, the eight criteria have the desirable attribute of
being at arms-length from the fields of artificial intelligence, machine
learning, and genetic programming. That is, a result cannot acquire the rating
of “human competitive” merely because it is endorsed by researchers inside
the specialized fields that are attempting to create machine intelligence.
Instead, a result produced by an automated method must earn the rating of
“human competitive” independent of the fact that it was generated by an
automated method.

Table 2 lists the 36 human-competitive instances (of which we are aware)
where genetic programming has produced human-competitive results. Each
entry in the table is accompanied by the criteria (from table 1) that establish
the basis for the claim of human-competitiveness.

Table 2. [Enter a caption for this table]
 Claimed instance Basis for claim of

human-
competitiveness

Reference

1 Creation of a better-
than-classical
quantum algorithm
for the Deutsch-
Jozsa “early
promise” problem

B, F Spector, Barnum,
and Bernstein 1998

2 Creation of a better-
than-classical
quantum algorithm
for Grover’s
database search
problem

B, F Spector, Barnum,
and Bernstein 1999

3 Creation of a
quantum algorithm
for the depth-two
AND/OR query
problem that is better
than any previously
published result

D Spector, Barnum,
Bernstein, and
Swamy 1999;
Barnum, Bernstein,
and Spector 2000

4 Creation of a
quantum algorithm
for the depth-one OR
query problem that is
better than any

D Barnum, Bernstein,
and Spector 2000

Chapter 8

 Claimed instance Basis for claim of
human-
competitiveness

Reference

previously published
result

5 Creation of a
protocol for
communicating
information through
a quantum gate that
was previously
thought not to permit
such communication

D Spector and
Bernstein 2002

6 Creation of a novel
variant of quantum
dense coding

D Spector and
Bernstein 2002

7 Creation of a soccer-
playing program that
won its first two
games in the Robo
Cup 1997
competition

H Luke 1998

8 Creation of a soccer-
playing program that
ranked in the middle
of the field of 34
human-written
programs in the
Robo Cup 1998
competition

H Andre and Teller
1999

9 Creation of four
different algorithms
for the
transmembrane
segment
identification
problem for proteins

B, E Sections 18.8 and
18.10 of Genetic
Programming II and
sections 16.5 and
17.2 of Genetic
Programming III

10 Creation of a sorting
network for seven
items using only 16
steps

A, D Sections 21.4.4,
23.6, and 57.8.1 of
Genetic
Programming III

11 Rediscovery of the
Campbell ladder
topology for lowpass
and highpass filters

A, F Section 25.15.1 of
Genetic
Programming III
and section 5.2 of
Genetic
Programming IV

12 Rediscovery of the
Zobel “M-derived
half section” and

A, F Section 25.15.2 of
Genetic
Programming III

Chapter 8

 Claimed instance Basis for claim of
human-
competitiveness

Reference

“constant K” filter
sections

13 Rediscovery of the
Cauer (elliptic)
topology for filters

A, F Section 27.3.7 of
Genetic
Programming III

14 Automatic
decomposition of the
problem of
synthesizing a
crossover filter

A, F Section 32.3 of
Genetic
Programming III

15 Rediscovery of a
recognizable voltage
gain stage and a
Darlington emitter-
follower section of
an amplifier and
other circuits

A, F Section 42.3 of
Genetic
Programming III

16 Synthesis of 60 and
96 decibel amplifiers

A, F Section 45.3 of
Genetic
Programming III

17 Synthesis of analog
computational
circuits for squaring,
cubing, square root,
cube root, logarithm,
and Gaussian
functions

A, D, G Section 47.5.3 of
Genetic
Programming III

18 Synthesis of a real-
time analog circuit
for time-optimal
control of a robot

G Section 48.3 of
Genetic
Programming III

19 Synthesis of an
electronic
thermometer

A, G Section 49.3 of
Genetic
Programming III

20 Synthesis of a
voltage reference
circuit

A, G Section 50.3 of
Genetic
Programming III

21 Creation of a cellular
automata rule for the
majority
classification
problem that is better
than the Gacs-
Kurdyumov-Levin
(GKL) rule and all
other known rules
written by humans

D, E and section 58.4 of
Genetic
Programming III

Chapter 8

 Claimed instance Basis for claim of
human-
competitiveness

Reference

22 Creation of motifs
that detect the D–E–
A–D box family of
proteins and the
manganese
superoxide
dismutase family

C Section 59.8 of
Genetic
Programming III

23 Synthesis of
topology for a PID-
D2 (proportional,
integrative,
derivative, and
second derivative)
controller

A, F Section 3.7 of
Genetic
Programming IV

24 Synthesis of an
analog circuit
equivalent to
Philbrick circuit

A, F Section 4.3 of
Genetic
Programming IV

25 Synthesis of NAND
circuit

A, F Section 4.4 of
Genetic
Programming IV

26 Simultaneous
synthesis of
topology, sizing,
placement, and
routing of analog
electrical circuits

G Chapter 5 of Genetic
Programming IV

27 Synthesis of
topology for a PID
(proportional,
integrative, and
derivative) controller

A, F Section 9.2 of
Genetic
Programming IV

28
Rediscovery of
negative feedback A, E, F, G

Chapter 14 of
Genetic
Programming IV

29
Synthesis of a low-
voltage balun circuit A

Section 15.4.1 of
Genetic
Programming IV

30 Synthesis of a mixed
analog-digital
variable capacitor
circuit A

Section 15.4.2 of
Genetic
Programming IV

31
Synthesis of a high-
current load circuit A

Section 15.4.3 of
Genetic
Programming IV

32 Synthesis of a
voltage-current A

Section 15.4.4 of
Genetic

Chapter 8

 Claimed instance Basis for claim of
human-
competitiveness

Reference

conversion circuit Programming IV
33

Synthesis of a cubic
signal generator A

Section 15.4.5 of
Genetic
Programming IV

34 Synthesis of a
tunable integrated
active filter A

Section 15.4.6 of
Genetic
Programming IV

35 Creation of PID
tuning rules that
outperform the
Ziegler-Nichols and
Astrom-Hagglund
tuning rules

A, B, D, E, F, G Chapter 12 of
Genetic
Programming IV

36 Creation of three
non-PID controllers
that outperform a
PID controller that
uses the Ziegler-
Nichols or Astrom-
Hagglund tuning
rules

A, B, D, E, F, G Chapter 13 of
Genetic
Programming IV

There are now 23 instances where genetic programming has duplicated
the functionality of a previously patented invention, infringed a previously
patented invention, or created a patentable new invention (see criterion A in
Table 1). Specifically, there are 15 instances where genetic programming has
created an entity that either infringes or duplicates the functionality of a
previously patented 20th-century invention, six instances where genetic
programming has done the same with respect to an invention patented after
January 1, 2000, and two instances where genetic programming has created a
patentable new invention. The two new inventions are general-purpose
controllers that outperform controllers employing tuning rules that have been
in widespread use in industry for most of the 20th century.

7. PROMISING APPLICATION AREAS FOR
GENETIC PROGRAMMING AND OTHER
METHODS OF GENETIC AND EVOLUTIONARY
COMPUTATION

Since its early beginnings, the field of genetic and evolutionary
computation has produced a cornucopia of results.

Chapter 8

Genetic programming and other methods of genetic and evolutionary
computation may be especially productive in areas having some or all of the
following characteristics:
– where the interrelationships among the relevant variables are unknown or

poorly understood (or where it is suspected that the current understanding
may possibly be wrong),

– where finding the size and shape of the ultimate solution to the problem
is a major part of the problem,

– where large amounts of primary data requiring examination,
classification, and integration is accumulating in computer readable form,

– where there are good simulators to test the performance of tentative
solutions to a problem, but poor methods to directly obtain good
solutions,

– where conventional mathematical analysis does not, or cannot, provide
analytic solutions,

– where an approximate solution is acceptable (or is the only result that is
ever likely to be obtained), or

– where small improvements in performance are routinely measured (or
easily measurable) and highly prized.

8. GENETIC PROGRAMMING THEORY

Genetic programming is a search technique that explores the space of
computer programs. As discussed above, the search for solutions to a
problem starts from a group of points (random programs) in this search
space. Those points that are of above average quality are then used to
generate a new generation of points through crossover, mutation,
reproduction and possibly other genetic operations. This process is repeated
over and over again until a termination criterion is satisfied.

If we could visualize this search, we would often find that initially the
population looks a bit like a cloud of randomly scattered points, but that,
generation after generation, this cloud changes shape and moves in the
search space following a well defined trajectory. Because genetic
programming is a stochastic search technique, in different runs we would
observe different trajectories. These, however, would very likely show very
clear regularities to our eye that could provide us with a deep understanding
of how the algorithm is searching the program space for the solutions to a
given problem. We could probably readily see, for example, why genetic
programming is successful in finding solutions in certain runs and with
certain parameter settings, and unsuccessful in/with others.

Chapter 8

Unfortunately, it is normally impossible to exactly visualize the program
search space due to its high dimensionality and complexity, and so we
cannot just use our senses to understand and predict the behavior of genetic
programming.

In this situation, one approach to gain an understanding of the behavior
of a genetic programming system is to perform many real runs and record
the variations of certain numerical descriptors (like the average fitness or the
average size of the programs in the population at each generation, the
average difference between parent and offspring fitness, etc.). Then, one can
try to hypothesize explanations about the behavior of the system that are
compatible with (and could explain) the empirical observations.

This exercise is very error prone, though, because a genetic programming
system is a complex adaptive system with zillions of degrees of freedom. So,
any small number of statistical descriptors is likely to be able to capture only
a tiny fraction of the complexities of such a system. This is why in order to
understand and predict the behavior of genetic programming (and indeed of
most other evolutionary algorithms) in precise terms we need to define and
then study mathematical models of evolutionary search.

Schema theories are among the oldest, and probably the best-known
classes of models of evolutionary algorithms. A schema (pl. schemata) is a
set of points in the search space sharing some syntactic feature. Schema
theories provide information about the properties of individuals of the
population belonging to any schema at a given generation in terms of
quantities measured at the previous generation, without having to actually
run the algorithm.

For example, in the context of genetic algorithms operating on binary
strings, a schema is, syntactically, a string of symbols from the alphabet
{0,1,*}, like *10*1. The character * is interpreted as a “don't care'' symbol,
so that, semantically, a schema represents a set of bit strings. For example
the schema *10*1 represents a set of four strings: {01001, 01011, 11001,
11011}.

Typically schema theorems are descriptions of how the number (or the
proportion) of members of the population belonging to (or matching) a
schema varies over time.

For a given schema H the selection/crossover/mutation process can be
seen as a Bernoulli trial, because a newly created individual either samples
or does not sample H. Therefore, the number of individuals sampling H at
the next generation, m(H,t+1) is a binomial stochastic variable. So, if we
denote with α(Η,t) the success probability of each trial (i.e. the probability
that a newly created individual samples H), an exact schema theorem is
simply

Chapter 8

E[m(H,t+1)]=M α(H,t)

where M is the population size and E[.] is the expectation operator. Holland's
and other approximate schema theories (Holland 1975; Goldberg 1989;
Whitley 1994) normally provide a lower bound for α(H,t) or, equivalently,
for E[m(H,t+1)]. For example, several schema theorems for one-point
crossover and point mutation have the following form





 ×

−
×−−≥ σα

1
)(1)1)(,(),()(

N
HLpptHptH c

HO
m

where m(H,t) is number of individuals in the schema H at generation t, M is
the population size, p(H,t) is the selection probability for strings in H at
generation t, pm is the mutation probability, O(H) is the schema order, i.e.
number of defining bits, pc is the crossover probability, L(H) is the defining
length, i.e. distance between the furthest defining bits in H, and N is the
bitstring length. The factor σ differs in the different formulation of the
schema theorem: σ=1-m(H,t)/M in (Holland, 1975) (where one of the parents
was chosen randomly, irrespective of fitness), σ=1 in (Goldberg, 1989) and
σ=1-p(H,t) in (Whitley, 1994).

More recently, Stephens and collaborators (Stephens and Waelbroeck
1997; Stephens and Waelbroeck 1999) have produced exact formulations for
α(H,t), which are now known as “exact'' schema theorems for genetic
algorithms. These, however, are beyond the scope of this chapter.

The theory of schemata in genetic programming has had a slow start, one
of the difficulties being that the variable size tree structure in genetic
programming makes it more difficult to develop a definition of genetic
programming schema having the necessary power and flexibility. Several
alternatives have been proposed in the literature, which define schemata as
composed of one or multiple trees or fragments of trees. Here, however, we
will focus only on a particular one, which was proposed in (Poli and
Langdon, 1997; Poli and Langdon 1998) since this has later been used to
develop an exact and general schema theory for genetic programming (Poli
2001; Langdon and Poli 2002).

In this definition, syntactically, a genetic programming schema is a tree
with some “don’t care” nodes which represents exactly one primitive
function or terminal. Semantically, a schema represents all programs that
match its size, shape and defining (non-“don’t care'”) nodes. For example,
the schema

H = (DON'T-CARE x (+ y DON'T-CARE))
represents the programs (+ x (+ y x)), (+ x (+ y y)), (*

x (+ y x)), etc.

Chapter 8

The exact schema theorem in (Poli 2001) gives the expected proportion
of individuals matching a schema in the next generation as a function of
information about schemata in the current generation. The calculation is non-
trivial, but it is easier than one might think.

Let us assume, for simplicity, that only reproduction and (one-offspring)
crossover are performed. Because these two operators are mutually
exclusive, for a generic schema H we then have:

[]
]crossoverbyproducedisHmatchingoffspringAnPr[

onreproductiviaobtainedisHinindividualAnPr),(
+
=tHα

Then, assuming that reproduction is performed with probability pr and
crossover with probability pc (with pr+pc=1), we obtain

[]









×+

×=

H
p

HptH

c

r

matchesoffspringthethatsuchare
pointscrossovertheandparentsThe

Pr

cloningforselectedisinindividualAnPr),(α

Clearly, the first probability in this expression is simply the selection
probability for members of the schema H as dictated by, say, fitness-
proportionate selection or tournament selection. So,

[]),(cloningforinindividualanSelectingPr tHpH =

We now need to calculate the second term in α(Η,t), that is the
probability that the parents have shapes and contents compatible with the
creation of an offspring matching H, and that the crossover points in the two
parents are such that exactly the necessary material to create such an
offspring is swapped. This is the harder part of the calculation.

An observation that helps simplify the problem is that, although the
probability of choosing a particular crossover point in a parent depends on
the actual size and shape of such a parent, the process of crossover point
selection is independent from the actual primitives present in the parent tree.
So, for example, the probability of choosing any crossover point in the
program (+ x (+ y x)) is identical to the probability of choosing any
crossover point in the program (AND D1 (OR D1 D2)). This is because
the two programs have exactly the same shape. Thanks to this observation
we can write

Chapter 8









×









=










∑ ∑

Hji
lk

lkji

H

lk
lk

ji

 in offspring an produce and pointsat over crossed
 if that such , and shapes withparents Selecting

Pr

andshapesinand
pointscrossover Choosing

Pr

matchesoffspringthethatsuchare
pointscrossovertheandparentsThe

Pr

,shapesparent
ofpairsallFor

andshapes
in,points

crossoverallFor

If, for simplicity, we assume that crossover points are selected with
uniform probability, then

lklkji shapeinNodes
1

shapeinNodes
1

andshapesinand
pointscrossover Choosing

Pr ×=








So, we are left with the problem of calculating the probability of
selecting (for crossover) parents having specific shapes while at the same
time having an arrangement of primitives such that, if crossed over at certain
predefined points, they produce an offspring matching a particular schema of
interest.

Again, here we can simplify the problem by considering how crossover
produces offspring: it excises a subtree rooted at the chosen crossover point
in a parent, and replaces it with a subtree excised from the chosen crossover
point in the other parent. This means that the offspring will have the right
shape and primitives to match the schema of interest if and only if, after the
excision of the chosen subtree, the first parent has shape and primitives
compatible with the schema, and the subtree to be inserted has shape and
primitives compatible with the schema. That is:









×









=










 iHj
 l

 iHi
 k

Hji
lk

 w.r.t. ofpart lower thematches point crossover .part w.r.t
lower its that such shape hparent wit donating-subtreea Selecting

Pr

 w.r.t. ofpart upper thematches point crossover .part w.r.t
upper its that such shape hparent wit donating-roota Selecting

Pr

 in offspring an produce and pointsat over crossed
 if that such , and shapes withparents Selecting

Pr

These two selection probabilities can be calculated exactly. However, the
calculation requires the introduction of several other concepts and notation,

Chapter 8

which are beyond the introductory nature of this chapter. These definitions,
the complete theory and a number of examples and applications can be
found in (Poli 2001; Langdon and Poli 2002; Poli and McPhee 2003a; Poli
and McPhee 2003b).

Although exact schema theoretic models of genetic programming have
become available only very recently, they have already started shedding
some light on fundamental questions regarding the how and why genetic
programming works. Importantly, other important theoretical models of
genetic programming have recently been developed which add even more to
our theoretical understanding of genetic programming. These, however, go
well beyond the scope of this chapter. The interested reader should consult
Foundations of Genetic Programming (Langdon and Poli, 2002) and (Poli
and McPhee 2003a; Poli and McPhee 2003b) for more information.

9. CONCLUSIONS

In his seminal 1948 paper entitled “Intelligent Machinery,” Turing
identified three ways by which human-competitive machine intelligence
might be achieved. In connection with one of those ways, Turing (1948)
said:

“There is the genetical or evolutionary
search by which a combination of genes is looked
for, the criterion being the survival value.”

Turing did not specify how to conduct the “genetical or evolutionary
search” for machine intelligence. In particular, he did not mention the idea of
a population-based parallel search in conjunction with sexual recombination
(crossover) as described in John Holland’s 1975 book Adaptation in Natural
and Artificial Systems. However, in his 1950 paper “Computing Machinery
and Intelligence,” Turing (1950) did point out

“We cannot expect to find a good child-
machine at the first attempt. One must experiment
with teaching one such machine and see how well
it learns. One can then try another and see if it is
better or worse. There is an obvious connection
between this process and evolution, by the
identifications

“Structure of the child machine =
Hereditary material

“Changes of the child machine = Mutations

Chapter 8

"Natural selection = Judgment of the
experimenter”

That is, Turing perceived in 1948 and 1950 that one possibly productive
approach to machine intelligence would involve an evolutionary process in
which a description of a computer program (the hereditary material)
undergoes progressive modification (mutation) under the guidance of natural
selection (i.e., selective pressure in the form of what we now call “fitness”).

Today, many decades later, we can see that indeed Turing was right.
Genetic programming has started fulfilling Turing’s dream by providing us
with a systematic method, based on Darwinian evolution, for getting
computers to automatically solve hard real-life problems. To do so, it simply
requires a high-level statement of what needs to be done (and enough
computing power).

Turing also understood the need to evaluate objectively the behaviour
exhibited by machines, to avoid human biases when assessing their
intelligence. This led him to propose an imitation game, now know as the
Turing test for machine intelligence, whose goals are wonderfully
summarised by Arthur Samuel’s position statement quoted in the
introduction of this chapter.

At present genetic programming is certainly not in a position to produce
computer programs that would pass the full Turing test for machine
intelligence, and it might not be ready for this immense task for centuries.
Nonetheless, thanks to the constant technological improvements in genetic
programming technology, in its theoretical foundations and in computing
power, genetic programming has been able to solve tens of difficult
problems with human-competitive results (see Table 2) in the recent past.
These are a small step towards fulfilling Turing and Samuel’s dreams, but
they are also early signs of things to come. It is, indeed, arguable that in a
few years’ time genetic programming will be able to routinely and
competently solve important problems for us in a variety of specific domains
of application, even when running on a single personal computer, thereby
becoming an essential collaborator for many of human activities. This, we
believe, will be a remarkable step forward towards achieving true, human-
competitive machine intelligence.

SOURCES OF ADDITIONAL INFORMATION ABOUT
GENETIC PROGRAMMING

Sources of information about genetic programming include
− Genetic Programming: On the Programming of Computers by Means of Natural

Selection (Koza 1992a) and the accompanying videotape Genetic Programming: The
Movie (Koza and Rice 1992);

Chapter 8

− Genetic Programming II: Automatic Discovery of Reusable Programs (Koza 1994a) and
the accompanying videotape Genetic Programming II Videotape: The Next Generation
(Koza 1994b);

− Genetic Programming III: Darwinian Invention and Problem Solving (Koza, Bennett,
Andre, and Keane 1999) and the accompanying videotape Genetic Programming III
Videotape: Human-Competitive Machine Intelligence (Koza, Bennett, Andre, Keane, and
Brave 1999);

− Genetic Programming IV. Routine Human-Competitive Machine Intelligence (Koza,
Keane, Streeter, Mydlowec, Yu, and Lanza 2003);

− Genetic ProgrammingAn Introduction (Banzhaf, Nordin, Keller, and Francone 1998);
− Genetic Programming and Data Structures: Genetic Programming + Data Structures =

Automatic Programming! (Langdon 1998) in the series on genetic programming from
Kluwer Academic Publishers;

− Automatic Re-engineering of Software Using Genetic Programming (Ryan 1999) in the
series on genetic programming from Kluwer Academic Publishers;

− Data Mining Using Grammar Based Genetic Programming and Applications (Wong and
Leung 2000) in the series on genetic programming from Kluwer Academic Publishers;

− Principia Evolvica: Simulierte Evolution mit Mathematica (Jacob 1997, in German) and
Illustrating Evolutionary Computation with Mathematica (Jacob 2001);

− Genetic Programming (Iba 1996, in Japanese);
− Evolutionary Program Induction of Binary Machine Code and Its Application (Nordin

1997);
− Foundations of Genetic Programming (Langdon and Poli 2002);
− Emergence, Evolution, Intelligence: Hydroinformatics (Babovic 1996);
− Theory of Evolutionary Algorithms and Application to System Synthesis (Blickle 1997);
− edited collections of papers such as the three Advances in Genetic Programming books

from the MIT Press (Kinnear 1994; Angeline and Kinnear 1996; Spector, Langdon,
O’Reilly, and Angeline 1999);

− the proceedings of the Genetic Programming Conference held between 1996 and 1998
(Koza, Goldberg, Fogel, and Riolo 1996; Koza, Deb, Dorigo, Fogel, Garzon, Iba, and
Riolo 1997; Koza, Banzhaf, Chellapilla, Deb, Dorigo, Fogel, Garzon, Goldberg, Iba, and
Riolo 1998);

− the proceedings of the annual Genetic and Evolutionary Computation Conference
(GECCO) (combining the formerly annual Genetic Programming Conference and the
formerly biannual International Conference on Genetic Algorithms) operated by the
International Society for Genetic and Evolutionary Computation (ISGEC) and held
starting in 1999 (Banzhaf, Daida, Eiben, Garzon, Honavar, Jakiela, and Smith 1999;
Whitley, Goldberg, Cantu-Paz, Spector, Parmee, and Beyer 2000; Spector, Goodman,
Wu, Langdon, Voigt, Gen, Sen, Dorigo, Pezeshk, Garzon, and Burke 2001; Langdon,
Cantu-Paz, Mathias, Roy, Davis, Poli, Balakrishnan, Honavar, Rudolph, Wegener, Bull,
Potter, Schultz, Miller, Burke, and Jonoska 2002);

− the proceedings of the annual Euro-GP conferences held starting in 1998 (Banzhaf, Poli,
Schoenauer, and Fogarty 1998; Poli, Nordin, Langdon, and Fogarty 1999; Poli, Banzhaf,
Langdon, Miller, Nordin, and Fogarty 2000; Miller, Tomassini, Lanzi, Ryan, Tettamanzi,
and Langdon 2001; Foster, Lutton, Miller, Ryan, and Tettamanzi 2002);

− the proceedings of the Workshop of Genetic Programming Theory and Practice
organized by the Center for Study of Complex Systems of the University of Michigan (to
be published in 2003 by Kluwer Academic Publishers),

− the Genetic Programming and Evolvable Machines journal (from Kluwer Academic
Publishers) started in April 2000;

Chapter 8

− web sites such as www.genetic-programming.org and www.genetic-
programming.com;

− LISP code for implementing genetic programming, available in Genetic Programming
(Koza 1992a), and genetic programming implementations in other languages such as C
or Java (Web sites such as www.genetic-programming.org contain links to
computer code in various programming languages);

− early papers on genetic programming, such as the Stanford University Computer Science
Department technical report Genetic Programming: A Paradigm for Genetically
Breeding Populations of Computer Programs to Solve Problems (Koza 1990a) and the
paper “Hierarchical Genetic Algorithms Operating on Populations of Computer
Programs,” presented at the 11th International Joint Conference on Artificial Intelligence
in Detroit (Koza 1989);

− an annotated bibliography of the first 100 papers on genetic programming (other than
those of which John Koza was the author or co-author) in appendix F of Genetic
Programming II: Automatic Discovery of Reusable Programs (Koza 1994a); and

− William Langdon’s bibliography on genetic programming at
http://www.cs.bham.ac.uk/~wbl/biblio/ or
http://liinwww.ira.uka.de/bibliography/Ai/genetic.programmi
ng.html. This bibliography is the most extensive in the field and contains over 3,034
papers (as of January 2003) and over 880 authors. It provides on-line access to many of
the papers.

BIBLIOGRAPHY

Andre, David and Teller, Astro. 1999. Evolving team Darwin United. In Asada, Minoru and
Kitano, Hiroaki (editors). RoboCup-98: Robot Soccer World Cup II. Lecture Notes in
Computer Science. Volume 1604. Berlin: Springer-Verlag. Pages 346–352.

Angeline, Peter J. and Kinnear, Kenneth E. Jr. (editors). 1996. Advances in Genetic
Programming 2. Cambridge, MA: The MIT Press.

Babovic, Vladan. 1996. Emergence, Evolution, Intelligence: Hydroinformatics. Rotterdam,
The Netherlands: Balkema Publishers.

Banzhaf, Wolfgang, Daida, Jason, Eiben, A. E., Garzon, Max H., Honavar, Vasant, Jakiela,
Mark, and Smith, Robert E. (editors). 1999. GECCO-99: Proceedings of the Genetic and
Evolutionary Computation Conference, July 13–17, 1999, Orlando, Florida USA. San
Francisco, CA: Morgan Kaufmann.

Banzhaf, Wolfgang, Nordin, Peter, Keller, Robert E., and Francone, Frank D. 1998. Genetic
Programming: An Introduction. San Francisco, CA: Morgan Kaufmann and Heidelberg:
dpunkt.

Banzhaf, Wolfgang, Poli, Riccardo, Schoenauer, Marc, and Fogarty, Terence C. 1998.
Genetic Programming: First European Workshop. EuroGP’98. Paris, France, April 1998
Proceedings. Lecture Notes in Computer Science. Volume 1391. Berlin, Germany:
Springer-Verlag.

Barnum, H., Bernstein, H.J. and Spector, Lee. 2000. Quantum circuits for OR and AND of
ORs. Journal of Physics A: Mathematical and General. 33(45)8047–8057. November 17,
2000.

Blickle, Tobias. 1997. Theory of Evolutionary Algorithms and Application to System
Synthesis. TIK-Schriftenreihe Nr. 17. Zurich, Switzerland: vdf Hochschul Verlag AG an
der ETH Zuerich.

Chapter 8

Foster, James A., Lutton, Evelyne, Miller, Julian, Ryan, Conor, and Tettamanzi, Andrea G. B.
(editors). 2002. Genetic Programming: 5th European Conference, EuroGP 2002, Kinsale,
Ireland, April 2002 Proceedings.

Goldberg, David E. 1989. Genetic Algorithms in Search, Optimization, and Machine
Learning. Reading, MA: Addison-Wesley.

Holland, John H. 1975. Adaptation in Natural and Artificial Systems: An Introductory
Analysis with Applications to Biology, Control, and Artificial Intelligence. Ann Arbor, MI:
University of Michigan Press. Second edition. Cambridge, MA: The MIT Press 1992.

Iba, Hitoshi. 1996. Genetic Programming. Tokyo: Tokyo Denki University Press. In
Japanese.

Jacob, Christian. 1997. Principia Evolvica: Simulierte Evolution mit Mathematica.
Heidelberg, Germany: dpunkt.verlag.

Jacob, Christian. 2001. Illustrating Evolutionary Computation with Mathematica. San
Francisco: Morgan Kaufmann.

Kinnear, Kenneth E. Jr. (editor). 1994. Advances in Genetic Programming. Cambridge, MA:
MIT Press.

Koza, John R. 1989. Hierarchical genetic algorithms operating on populations of computer
programs. In Proceedings of the 11th International Joint Conference on Artificial
Intelligence. San Mateo, CA: Morgan Kaufmann. Volume I. Pages 768–774.

Koza, John R. 1990a. Genetic Programming: A Paradigm for Genetically Breeding
Populations of Computer Programs to Solve Problems. Stanford University Computer
Science Department technical report STAN-CS-90-1314. June 1990.

Koza, John R. 1992a. Genetic Programming: On the Programming of Computers by Means of
Natural Selection. Cambridge, MA: MIT Press.

Koza, John R. 1994a. Genetic Programming II: Automatic Discovery of Reusable Programs.
Cambridge, MA: MIT Press.

Koza, John R. 1994b. Genetic Programming II Videotape: The Next Generation. Cambridge,
MA: MIT Press.

Koza, John R. 1994c. Architecture-Altering Operations for Evolving the Architecture of a
Multi-Part Program in Genetic Programming. Stanford University Computer Science
Department technical report STAN-CS-TR-94-1528. October 21, 1994.

Koza, John R. 1995. Gene duplication to enable genetic programming to concurrently evolve
both the architecture and work-performing steps of a computer program. Proceedings of
the 14th International Joint Conference on Artificial Intelligence. San Francisco: Morgan
Kaufmann. Pages 734–740.

Koza, John R., Banzhaf, Wolfgang, Chellapilla, Kumar, Deb, Kalyanmoy, Dorigo, Marco,
Fogel, David B., Garzon, Max H., Goldberg, David E., Iba, Hitoshi, and Riolo, Rick.
(editors). 1998. Genetic Programming 1998: Proceedings of the Third Annual Conference.
San Francisco, CA: Morgan Kaufmann.

Koza, John R., Bennett III, Forrest H, Andre, David, and Keane, Martin A. 1999. Genetic
Programming III: Darwinian Invention and Problem Solving. San Francisco, CA: Morgan
Kaufmann.

Koza, John R., Bennett III, Forrest H, Andre, David, Keane, Martin A., and Brave, Scott.
1999. Genetic Programming III Videotape: Human-Competitive Machine Intelligence. San
Francisco, CA: Morgan Kaufmann.

Koza, John R., Deb, Kalyanmoy, Dorigo, Marco, Fogel, David B., Garzon, Max, Iba, Hitoshi,
and Riolo, Rick L. (editors). Genetic Programming 1997: Proceedings of the Second
Annual Conference, July 13–16, 1997, Stanford University. San Francisco, CA: Morgan
Kaufmann.

Chapter 8

Koza, John R., Goldberg, David E., Fogel, David B., and Riolo, Rick L. (editors). 1996.
Genetic Programming 1996: Proceedings of the First Annual Conference, July 28–31,
1996, Stanford University. Cambridge, MA: MIT Press.

Koza, John R., Keane, Martin A., Streeter, Matthew J., Mydlowec, William, Yu, Jessen, and
Lanza, Guido. 2003. Genetic Programming IV: Routine Human-Competitive Machine
Intelligence. Kluwer Academic Publishers.

Koza, John R., and Rice, James P. 1992. Genetic Programming: The Movie. Cambridge, MA:
The MIT Press.

Langdon, William B. 1998. Genetic Programming and Data Structures: Genetic
Programming + Data Structures = Automatic Programming! Amsterdam: Kluwer.

Langdon, W. B., Cantu-Paz, E., Mathias, K., Roy, R., Davis, D., Poli, R., Balakrishnan, K.,
Honavar, V., Rudolph, G., Wegener, J., Bull, L., Potter, M. A., Schultz, A. C., Miller, J.
F., Burke, E., and Jonoska, N. (editors). 2002. Proceedings of the 2002 Genetic and
Evolutionary Computation Conference. San Francisco, CA: Morgan Kaufmann.

Langdon, William B. and Poli, Riccardo. 2002. Foundations of Genetic Programming.
Springer-Verlag.

Luke, Sean. 1998. Genetic programming produced competitive soccer softbot teams for
RoboCup97. In Koza, John R., Banzhaf, Wolfgang, Chellapilla, Kumar, Deb, Kalyanmoy,
Dorigo, Marco, Fogel, David B., Garzon, Max H., Goldberg, David E., Iba, Hitoshi, and
Riolo, Rick. (editors). Genetic Programming 1998: Proceedings of the Third Annual
Conference, July 22–25, 1998, University of Wisconsin, Madison, Wisconsin. San
Francisco, CA: Morgan Kaufmann. Pages 214–222.

Miller, Julian, Tomassini, Marco, Lanzi, Pier Luca, Ryan, Conor, Tettamanzi, Andrea G. B.,
and Langdon, William B. (editors). 2001. Genetic Programming: 4th European
Conference, EuroGP 2001, Lake Como, Italy, April 2001 Proceedings. Berlin: Springer.

Nordin, Peter. 1997. Evolutionary Program Induction of Binary Machine Code and Its
Application. Munster, Germany: Krehl Verlag.

Poli, R. and Langdon, W.B. 1997. A new schema theory for genetic programming with one-
point crossover and point mutation. In Koza, J. R., Deb, K., Dorigo, M., Fogel, D. B.,
Garzon, M., Iba, H., and Riolo, R. L., editors, Genetic Programming 1997: Proceedings of
the Second Annual Conference, pages 278-285, Stanford University, CA, USA. Morgan
Kaufmann.

Poli, R. and Langdon, W.B. 1998. Schema theory for genetic programming with one-point
crossover and point mutation. Evolutionary Computation, 6(3):231-252.

Poli, R. and McPhee, N. F. 2001. Exact schema theorems for GP with one-point and standard
crossover operating on linear structures and their application to the study of the evolution
of size. In Miller, J. F., Tomassini, M., Lanzi, P. L., Ryan, C., Tettamanzi, A. G. B., and
Langdon, W. B., editors, Genetic Programming, Proceedings of EuroGP'2001, volume
2038 of LNCS, pages 126-142, Lake Como, Italy. Springer-Verlag.

Poli, R. and McPhee, N. F. 2003a.General schema theory for genetic programming with
subtree-swapping crossover: Part I. Evolutionary Computation, 11(1):53-66.

Poli, R. and McPhee, N. F. 2003b.General schema theory for genetic programming with
subtree-swapping crossover: Part II. Evolutionary Computation, 11(2)..

Poli, Riccardo, Nordin, Peter, Langdon, William B., and Fogarty, Terence C. 1999. Genetic
Programming: Second European Workshop, EuroGP’99. Proceedings. Lecture Notes in
Computer Science. Volume 1598. Berlin, Germany: Springer-Verlag.

Poli, Riccardo, Banzhaf, Wolfgang, Langdon, William B., Miller, Julian, Nordin, Peter, and
Fogarty, Terence C. 2000. Genetic Programming: European Conference, EuroGP 2000,
Edinburgh, Scotland, UK, April 2000, Proceedings. Lecture Notes in Computer Science.
Volume 1802. Berlin, Germany: Springer-Verlag.

Chapter 8

Ryan, Conor. 1999. Automatic Re-engineering of Software Using Genetic Programming.
Amsterdam: Kluwer Academic Publishers.

Samuel, Arthur L. 1983. AI: Where it has been and where it is going. Proceedings of the
Eighth International Joint Conference on Artificial Intelligence. Los Altos, CA: Morgan
Kaufmann. Pages 1152–1157.

Spector, Lee, Barnum, Howard, and Bernstein, Herbert J. 1998. Genetic programming for
quantum computers. In Koza, John R., Banzhaf, Wolfgang, Chellapilla, Kumar, Deb,
Kalyanmoy, Dorigo, Marco, Fogel, David B., Garzon, Max H., Goldberg, David E., Iba,
Hitoshi, and Riolo, Rick. (editors). Genetic Programming 1998: Proceedings of the Third
Annual Conference. San Francisco, CA: Morgan Kaufmann. Pages 365–373.

Spector, Lee, Barnum, Howard, and Bernstein, Herbert J. 1999. Quantum computing
applications of genetic programming. In Spector, Lee, Langdon, William B., O’Reilly,
Una-May, and Angeline, Peter (editors). Advances in Genetic Programming 3. Cambridge,
MA: The MIT Press. Pages 135–160.

Spector, Lee, Barnum, Howard, Bernstein, Herbert J., and Swamy, N. 1999. Finding a better-
than-classical quantum AND/OR algorithm using genetic programming. In IEEE.
Proceedings of 1999 Congress on Evolutionary Computation. Piscataway, NJ: IEEE Press.
Pages 2239–2246.

Spector, Lee, and Bernstein, Herbert J. 2002. Communication capacities of some quantum
gates, discovered in part through genetic programming. In Proceedings of the Sixth
International Conference on Quantum Communication, Measurement, and Computing.
Paramus, NJ: Rinton Press.

Spector, Lee, Goodman, E., Wu, A., Langdon, William B., Voigt, H. -M., Gen, M., Sen, S.,
Dorigo, Marco, Pezeshk, S., Garzon, Max, and Burke, E. (editors). 2001. Proceedings of
the Genetic and Evolutionary Computation Conference, GECCO-2001. San Francisco,
CA: Morgan Kaufmann.

Spector, Lee, Langdon, William B., O’Reilly, Una-May, and Angeline, Peter (editors). 1999.
Advances in Genetic Programming 3. Cambridge, MA: The MIT Press.

Stephens, C. R. and Waelbroeck, H. 1997. Effective degrees of freedom in genetic algorithms
and the block hypothesis. In Back, Thomas (editor). 1997. Genetic Algorithms:
Proceedings of the Seventh International Conference. San Francisco, CA: Morgan
Kaufmann. Pages 34–40.

Stephens, C. R. and Waelbroeck, H. 1999. Schemata evolution and building blocks.
Evolutionary Computation, 7(2):109-124.

Turing, Alan M. 1948. Intelligent machinery. Reprinted in Ince, D. C. (editor). 1992.
Mechanical Intelligence: Collected Works of A. M. Turing. Amsterdam: North Holland.
Pages 107–127. Also reprinted in Meltzer, B. and Michie, D. (editors). 1969. Machine
Intelligence 5. Edinburgh: Edinburgh University Press.

Turing, Alan M. 1950. Computing machinery and intelligence. Mind. 59(236)433–460.
Reprinted in Ince, D. C. (editor). 1992. Mechanical Intelligence: Collected Works of A. M.
Turing. Amsterdam: North Holland. Pages 133–160.

Whitley, L. D. 1994. A Genetic Algorithm Tutorial. Statistics and Computing, 4:65-85.
Whitley, Darrell, Goldberg, David, Cantu-Paz, Erick, Spector, Lee, Parmee, Ian, and Beyer,

Hans-Georg (editors). 2000. GECCO-2000: Proceedings of the Genetic and Evolutionary
Computation Conference, July 10–12, 2000, Las Vegas, Nevada. San Francisco: Morgan
Kaufmann.

Wong, Man Leung and Leung, Kwong Sak. 2000. Data Mining Using Grammar Based
Genetic Programming and Applications. Amsterdam: Kluwer Academic Publishers.

