
1

XCS

Structure and Function of the XCS Classifier
System

Stewart W. Wilson

Prediction Dynamics
Concord, MA

wilson@prediction-dynamics.com

2

XCS

• Learning machine (program).

• Minimum a priori.

• “On-line”.

• Capture regularities in environment.

What is it?

3

XCS

To get reinforcements (“rewards”, “payoffs”)

 (Not “supervised” learning—no prescriptive teacher.)

Environment

Payoffs

 Actions Inputs
XCS

What does it learn?

4

XCS

Inputs:

Now binary, e.g., 100101110

—like thresholded sensor values.

Later continuous, e.g., <43.0 92.1 7.4 ... 0.32>

Outputs:

Now discrete decisions or actions,

e.g., 1 or 0 (“yes” or “no”),

“forward”, “back”, “left”, “right”

Later continuous, e.g., “head 34 degrees left”

What inputs and outputs?

5

XCS

XCS contains rules (called classifiers), some of which

will match the current input. An action is chosen

based on the predicted payoffs of the matching rules.

<condition>:<action> => <prediction>.

Example: 01#1## : 1 => 943.2

Note this rule matches more than one input string:

010100
010110
010101
011111
011100
011101
011110
011111.

This adaptive “rule-based” system contrasts with
“PDP” systems such as NNs in which knowledge is
distributed.

What’s going on inside?

6

XCS

• For each action in [M], classifier predictions p
are weighted by fitnesses F to get system’s
net prediction in the prediction array.

• Based on the system predictions, an action is chosen
and sent to the environment.

• Some reward value is returned.

Environment

[P]

[M]
Match Set

Prediction
Array

Action Set
[A]

Detectors Effectors

“left”

match

action

selection

#011 : 01 43 .01 99

11## : 00 32 .13 9

#0## : 11 14 .05 52

001# : 01 27 .24 3

#0#1 : 11 18 .02 92

1#01 : 10 24 .17 15

 ...etc.

#011 : 01 43 .01 99

#0## : 11 14 .05 52

001# : 01 27 .24 3

#0#1 : 11 18 .02 92

nil 42.5 nil 16.6

#011 : 01 43 .01 99

001# : 01 27 .24 3

Reward

01

p ε F

0011

How does the performance cycle work?

7

XCS

1. By “updating” the current estimate.

For each classifier Cj in the current [A],

pj ← pj + α(R - pj),

where R is the current reward and α is the learning
rate.

This results in pj being a “recency weighted” average
of previous reward values:

pj(t) = αR(t) + α(1-α)R(t-1) + α(1-α)2R(t-2) +
... + (1-α)tpj(0).

2. And by trying different actions, according to an
explore/exploit regime.

A typical regime chooses a random action with
probability 0.5.

Exploration (e.g., random choice) is necessary in order
to learn anything. But exploitation—picking the
highest-prediction action is necessary in order to make
best use of what is learned.

There are many possible explore/exploit regimes,
including gradual changeover from mostly explore to
mostly exploit.

How do rules acquire their predictions?

8

XCS

• Usually, the “population” [P] is initially empty.
(It can also have random rules, or be seeded.)

• The first few rules come from “covering”: if no
existing rule matches the input, a rule is created
to match, something like imprinting.

Input: 11000101

Created rule: 1##0010# : 3 => 10
Random #’s and action, low initial prediction.

• But primarily, new rules are derived from existing
rules.

Where do the rules come from?

9

XCS

• Besides its prediction pj, each classifier’s
error and fitness are regularly updated.

Error: εj ← εj + α(|R - pj| - εj).

Accuracy: κj ≡ εj
-n if εj > ε0, otherwise ε0

-n

Relative accuracy: , over [A].

Fitness: Fj ← Fj + α(κj′ - Fj).

• Periodically, a genetic algorithm (GA) takes
place in [A].

Two classifiers Ci and Cj are selected with
probability proportional to fitness. They are copied
to form Ci′ and Cj′.

With probability χ, Ci′ and Cj′ are crossed to form
Ci″ and Cj″, e.g.,

1 0 # # 1 1 : 1 1 0 # # 1 # : 1
0 0 0 1 # : 1 # 0 0 0 1 1 : 1

Ci″ and Cj″ (or Ci′ and Cj′ if no crossover
occurred), possibly mutated, are added to [P].

κ
j
′ κ

j
κ

i
i

∑ 
 ⁄≡

How are new rules derived?

⇒

10

XCS

Environment

[P]

[M]
Match Set

Prediction
Array

Action Set
[A]

Detectors Effectors

“left”

match

action

selection

#011 : 01 43 .01 99

11## : 00 32 .13 9

#0## : 11 14 .05 52

001# : 01 27 .24 3

#0#1 : 11 18 .02 92

1#01 : 10 24 .17 15

 ...etc.

#011 : 01 43 .01 99

#0## : 11 14 .05 52

001# : 01 27 .24 3

#0#1 : 11 18 .02 92

nil 42.5 nil 16.6

#011 : 01 43 .01 99

001# : 01 27 .24 3

Update:

predictions,

errors,

fitnesses

Reward

01

p ε F

0011

GA(cover)

Can I see the overall process?

11

XCS

They remain in [P], in competition with their
offspring.

But two classifiers are deleted from [P] in order to
maintain a constant population size.

Deletion is probabilistic, with probability
proportional to, e.g.:

• A classifier’s average action set size aj—estimated
and updated like the other classifier statistics.

• aj/Fj, if the classifier has been updated enough
times, otherwise aj/Fave, where Fave is the mean
fitness in [P].

—And other arrangements, all with the aim of
balancing resources (classifiers) devoted to each
niche ([A]), but also eliminating low fitness
classifiers rapidly.

What happens to the “parents”?

12

XCS

Basic example for illustration: Boolean 6-multiplexer.

1 0 1 0 0 1 → → 0

1 0 1 0 0 1

F6 = x0'x1'x2 + x0'x1x3 + x0x1'x4 + x0x1x5

l = k + 2
k

k > 0

F20 = x0'x1'x2'x3'x4 + x0'x1'x2'x3x5 +

 x0'x1'x2x3'x6 + x0'x1'x2x3x7 +

 x0'x1x2'x3'x8 + x0'x1x2'x3x9 +

 x0'x1x2x3'x10 + x0'x1x2x3x11 +

 x0x1'x2'x3'x12 + x0x1'x2'x3x13 +

 x0x1'x2x3'x14 + x0x1'x2x3x15 +

 x0x1x2'x3'x16 + x0x1x2'x3x17 +

 x0x1x2x3'x18 + x0x1x2x3x19

 01100010100100001000 → 0

What are the results like? — 1

F6

13

XCS What are the results like?— 2

14

XCS

Population at 5,000 problems in descending order
of numerosity (first 40 of 77 shown).

 PRED ERR FITN NUM GEN ASIZ EXPER TST

 0. 11 ## #0 1 0. .00 884. 30 .50 31.2 287 4999

 1. 00 1# ## 0 0. .00 819. 24 .50 25.9 286 4991

 2. 01 #1 ## 1 1000. .00 856. 22 .50 24.1 348 4984

 3. 01 #1 ## 0 0. .00 840. 20 .50 21.8 263 4988

 4. 11 ## #1 0 0. .00 719. 20 .50 22.6 238 4972

 5. 00 1# ## 1 1000. .00 698. 19 .50 20.9 222 4985

 6. 01 #0 ## 0 1000. .00 664. 18 .50 23.9 254 4997

 7. 10 ## 1# 1 1000. .00 712. 18 .50 22.4 236 4980

 8. 00 0# ## 0 1000. .00 674. 17 .50 21.2 155 4992

 9. 10 ## 0# 0 1000. .00 706. 17 .50 19.9 227 4990

 10. 11 ## #0 0 1000. .00 539. 17 .50 24.5 243 4978

 11. 10 ## 1# 0 0. .00 638. 16 .50 20.0 240 4994

 12. 01 #0 ## 1 0. .00 522. 15 .50 23.5 283 4967

 13. 00 0# ## 1 0. .00 545. 14 .50 20.9 110 4979

 14. 10 ## 0# 1 0. .00 425. 12 .50 23.0 141 4968

 15. 11 ## #1 1 1000. .00 458. 11 .50 21.1 76 4983

 16. 11 ## 11 1 1000. .00 233. 6 .33 22.1 130 4942

 17. 0# 00 ## 1 0. .00 210. 6 .50 23.1 221 4979

 18. 11 ## 01 1 1000. .00 187. 5 .33 21.1 86 4983

 19. 01 10 ## 1 0. .00 168. 4 .33 19.1 123 4939

 20. 11 #1 #0 0 1000. .00 114. 4 .33 26.2 113 4978

 21. 10 ## 11 0 0. .00 152. 4 .33 23.9 34 4946

 22. 10 1# 0# 1 0. .00 131. 3 .33 21.7 111 4968

 23. 00 0# 0# 0 1000. .00 117. 3 .33 22.8 57 4992

 24. 11 1# #0 0 1000. .00 68. 3 .33 28.7 38 4978

 25. 10 #1 0# 0 1000. .00 46. 3 .33 20.6 4 4990

 26. 10 ## 11 1 1000. .00 81. 3 .33 23.9 113 4950

 27. #1 #0 #0 0 1000. .00 86. 3 .50 23.6 228 4981

 28. 01 10 ## 0 1000. .00 61. 2 .33 22.5 16 4997

 29. 01 00 ## 0 1000. .00 58. 2 .33 22.2 46 4981

 30. 10 0# 0# 1 0. .00 63. 2 .33 22.8 22 4866

 31. 11 0# #1 1 1000. .00 63. 2 .33 23.2 35 4953

 32. 00 1# #0 1 1000. .00 77. 2 .33 20.7 7 4985

 33. 10 #1 0# 1 0. .00 93. 2 .33 24.5 28 4968

 34. 11 #1 #1 1 1000. .00 59. 2 .33 21.8 12 4983

 35. 01 #1 #0 1 1000. .00 75. 2 .33 23.1 21 4944

 36. 01 #0 #1 0 1000. .00 36. 2 .33 21.7 3 4997

 37. 11 ## 01 0 0. .00 92. 2 .33 19.7 41 4948

 38. 10 ## ## 1 703. .31 8. 2 .67 22.3 10 4980

 39. #1 1# #0 0 856. .22 11. 2 .50 27.4 22 4978

What are the results like?— 3

15

XCS

Action sets [A] for input 101001 and action 0
at several epochs.

247

 PRED ERR FITN NUM GEN ASIZ EXPER TST

 0. ## ## ## 0 431. .440 8. 2 1.00 17.2 76 244

 1. ## 10 ## 0 245. .362 109. 2 .67 10.6 14 236

 2. ## 10 0# 0 893. .146 504. 5 .50 11.2 8 200

1135

 PRED ERR FITN NUM GEN ASIZ EXPER TST

 0. ## #0 #1 0 519. .419 1. 1 .67 16.5 11 1134

 1. ## #0 0# 0 510. .390 27. 2 .67 16.8 15 1119

 2. ## 1# ## 0 125. .261 0. 1 .83 21.7 18 1132

 3. #0 ## 0# 0 1000. .021 4. 1 .67 17.7 0 1117

 4. #0 10 ## 0 454. .433 2. 1 .50 14.8 53 1106

 5. #0 10 0# 0 735. .343 27. 2 .33 14.4 13 1106

 6. 1# ## #1 0 169. .282 2. 1 .67 24.4 12 1119

 7. 1# ## 0# 0 445. .418 13. 5 .67 18.6 27 1119

 8. 10 ## ## 0 1000. .000 135. 2 .67 24.2 3 1117

 9. 10 ## 0# 0 1000. .000 451. 3 .50 23.4 17 1117

1333

 PRED ERR FITN NUM GEN ASIZ EXPER TST

 0. #0 1# 0# 0 761. .336 1. 1 .50 10.6 10 1325

 1. 1# ## 0# 0 652. .387 5. 1 .67 10.9 11 1325

 2. 1# #0 #1 0 107. .197 6. 1 .50 22.0 8 1308

 3. 1# 10 0# 0 829. .228 26. 2 .33 14.3 9 1325

 4. 10 ## 0# 0 1000. .000 490. 4 .50 11.6 26 1325

2410

 PRED ERR FITN NUM GEN ASIZ EXPER TST

 0. 1# ## 0# 0 360. .394 0. 1 .67 18.1 14 2404

 1. 10 ## 0# 0 1000. .000 478. 10 .50 20.1 95 2392

2725

 PRED ERR FITN NUM GEN ASIZ EXPER TST

 0. #0 ## 0# 0 863. .237 0. 3 .67 21.1 18 2714

 1. 10 ## 0# 0 1000. .000 630. 13 .50 22.6 117 2714

 2. 10 #0 0# 0 1000. .000 49. 1 .33 22.4 9 2638

 3. 10 1# 0# 0 1000. .000 58. 1 .33 18.4 8 2693

Can you show the evolution of a rule?

16

XCS

Consider two classifiers C1 and C2 having the same action,
and let C2 be a generalization of C1. That is, C2 can be
obtained from C1 by changing some non-# alleles in the
condition to #’s. Suppose that C1 and C2 are equally
accurate. They will therefore have the same fitness.
However, note that, since it is more general, C2 will occur
in more action sets than C1. What does this mean? Since
the GA acts in the action sets, C2 will have more
reproductive opportunities than C1. This edge in
reproductive opportunities will cause C2 to gradually drive
C1 out of the population.

Example: p ε F

C1: 1 0 # 0 0 1 : 0 ⇒ 1000 .001 920

C2: 1 0 # # 0 # : 0 ⇒ 1000 .001 920

C2 has equal fitness but more reproductive
opportunities than C1.

C2 will “drive out” C1

Why accurate, maximally general rules?

17

XCS Does XCS scale up?

18

XCS

20m ~5x harder than 11m
11m ~5x harder than 6m.

⇒ D = cgp,

where D = “difficulty”, here learning time,
g = number of maximal generalizations,

p = a power, about 2.3
c = a constant about 3.2

Thus “D is polynomial in g”.

What is D with respect to l, string length?

For the multiplexers, l = k + 2k,
or l → 2k for large k.

But g = 4·2 k, thus l ~ g,

So that “D is polynomial in l” (not exponential).

What about complexity?

19

XCS

Apply ideas from multi-step reinforcement learning.

Need the action-value of each action in each state.

What is the action-value of a state more than one
step from reward?

Intuitive sketch:

What about deferred reward?

FO

1γ

γγ2

γ2

γ2

γ2

γ2γ3

γ3

γ3

 pj ← pj + α[(rimm + γ max P(x′,a′)) - pj]

where pj is the prediction of a classifier in the current
action set [A],
x′ and a′ are the next state and possible actions,
P(x′,a′) is a system prediction at the next state,

and rimm is the current external reward.

 a′∈ A

20

XCS

• Previous action set [A]-1 is saved and updates
are done there, using the current prediction array
for “next state” system predictions.

• On the last step of a problem, updates occur in [A].

Can I see the overall process?

Environment

[P]

[M]
Match Set

Prediction
Array

Action Set
[A]

Previous Action Set
[A]-1

Detectors Effectors

“left”

delay = 1discount

max

match

action

selection

(cover)

+

P

#011 : 01 43 .01 99

11## : 00 32 .13 9

#0## : 11 14 .05 52

001# : 01 27 .24 3

#0#1 : 11 18 .02 92

1#01 : 10 24 .17 15

 ...etc.

#011 : 01 43 .01 99

#0## : 11 14 .05 52

001# : 01 27 .24 3

#0#1 : 11 18 .02 92

nil 42.5 nil 16.6

#011 : 01 43 .01 99

001# : 01 27 .24 3

Update:

predictions,

errors,

fitnesses

(Reward)

01

p ε F

0011

GA

21

XCS What are the results like?— 1

*

• Animat senses the 8 adjacent cells.

F b b

O * b

Q b b

• Coding of each object:

F = 110 “food1”

G = 111 “food2”

O = 010 “rock1”

Q = 011 “rock2”

b = 000 “blank”

• “Sense vector” for above situation: 000000000000000011010110

• A matching classifier: ####0#00####00001##101## : 7

22

XCS

Two generalizations discovered by XCS in Woods1.

What are the results like?— 2

23

XCS

Inputs:

<<x1 ± ∆x1> … <xn ± ∆xn>> : <action> ⇒ p

Actions:

<<x1 ± ∆x1> … <xn ± ∆xn>> : <a ± ∆a> ⇒ p

—and combine matching rules à la fuzzy logic,
perhaps.

Time:

<<x1 ± ∆x1> … <xn ± ∆xn>> : <a ± ∆a> ⇒

—action selection based on steepest ascent of p.

td

dp

What about continuous inputs, actions, time?

24

XCS

Example (McCallum’s Maze):

* Aliased states. Optimal action not determinable
from current sensory input.

Approaches:

• “History window” — remember previous inputs

• Search for correlation with past input events

✔ • Adaptive internal state:

 ## ## #1 ## 0# ## ## ## # : 1 0 ⇒ 504

What about Non-Markov environments?

Environmental condition External action Prediction

Internal

condition

Internal

action

* *

25

XCS

Example: “if x > y for any x and y, and action a
is taken, payoff is predicted to be p.”

Cannot be represented using a single classifier with
traditional conjunctive condition, since it’s a relation.

However, it can be represented using an “s-classifier”:

(> x y) : <action a> ⇒ p

i.e., a classifier whose condition is a Lisp
s-expression.

With appropriate elementary functions, s-classifiers
can encode an almost unlimited variety of conditions.

They can be evolved using techniques of
genetic programming.

What if generalizations are not conjunctive?

26

XCS

Rule-based, not PDP (“parallel distributed processing”)

• Structure is created as needed

• Learning may often be faster because classifiers are
inherently non-linear

• Learning complexity may be less than most PDPs

• Classifiers can keep and use statistics; difficult in
a network

• Hierarchy and reasoning may be easier, since
knowledge is in subroutine-like packages

How is XCS different from other RL systems?

