
Auton Robot (2009) 27: 55–73
DOI 10.1007/s10514-009-9120-4

Reinforcement learning for robot soccer

Martin Riedmiller · Thomas Gabel · Roland Hafner ·
Sascha Lange

Received: 7 November 2008 / Accepted: 4 May 2009 / Published online: 15 May 2009
© Springer Science+Business Media, LLC 2009

Abstract Batch reinforcement learning methods provide a
powerful framework for learning efficiently and effectively
in autonomous robots. The paper reviews some recent work
of the authors aiming at the successful application of rein-
forcement learning in a challenging and complex domain.
It discusses several variants of the general batch learning
framework, particularly tailored to the use of multilayer
perceptrons to approximate value functions over continu-
ous state spaces. The batch learning framework is success-
fully used to learn crucial skills in our soccer-playing robots
participating in the RoboCup competitions. This is demon-
strated on three different case studies.

Keywords Learning mobile robots · Autonomous learning
robots · Neural control · RoboCup · Batch reinforcement
learning

1 Introduction

Reinforcement learning (RL) describes a learning scenario,
where an agent tries to improve its behavior by taking ac-
tions in its environment and receiving reward for performing
well or receiving punishment if it fails. Since RL enables an
agent to learn autonomously from its own experience, it is
a highly attractive framework for learning behaviors of au-
tonomous robots.

A current line of research is to establish efficient RL
algorithms that are able to solve real-world problems. In

M. Riedmiller (�) · T. Gabel · R. Hafner · S. Lange
Department of Computer Science, Albert-Ludwigs-Universität
Freiburg, Freiburg, Germany
e-mail: martin.riedmiller@informatik.uni-freiburg.de

this paper, we focus on the application of learning meth-
ods within the RoboCup robotic soccer domain. RoboCup
was founded in 1997 to establish a challenging testbed for
autonomous intelligent systems (Kitano 1997). In various
leagues, where each one is focusing on different aspects of
the complex overall problem, teams of robots are competing
in a soccer-like setting. In 1998, our research group estab-
lished the Brainstormers project, aiming at building highly
competitive robot soccer teams that make extensive use of
machine learning, in particular reinforcement learning meth-
ods. Since then, many of the crucial skills and behaviors of
our agents have been learned from scratch and been applied
in our competition teams, both in simulation league and in
MidSize league.

The following reviews some of our recent work on the
(neural) batch RL framework that constitutes the core con-
cept of learning in our agents. Our concept is based on the
idea of learning value functions by the application of dy-
namic programming methods. Due to the typical continuous
nature of state spaces, multilayer perceptrons are used as
function approximators that represent the value functions.
We found them particularly powerful with respect to gener-
alization and robust in their learning behavior, in particular
when used in the batch RL framework.

The purpose of this paper is not to claim that batch re-
inforcement learning methods are necessarily superior to
any other existing reinforcement learning algorithms. This
would require a careful empirical investigation of various al-
ternative learning approaches, which is far beyond the scope
of this paper. Rather, the purpose of this paper is to give ev-
idence to the thesis that batch reinforcement learning meth-
ods are a valuable piece in the growing toolbox of practically
useful reinforcement learning algorithms and to show how
the basic framework can be adapted to varying requirements
in different application scenarios.

mailto:martin.riedmiller@informatik.uni-freiburg.de

56 Auton Robot (2009) 27: 55–73

Fig. 1 Scene from a game in the RoboCup middle size league

The article is organized as follows: first, we will give a
description of the batch RL framework and in particular de-
scribe three variants that have been proven useful for the
application to challenging RL problems. Further, we will
shortly discuss the concrete setup of neural batch RL con-
trollers and the embedding within our software control ar-
chitecture. Then we will discuss the concrete application of
the concept exemplified in three case studies. Case Study
I demonstrates the application for learning a complex and
highly effective behavior for the simulation league from
scratch. Case Study II shows the application for learning a
low-level motor control directly on a real DC motor, and fi-
nally Case Study III discusses the learning of an effective
dribbling behavior directly on our MidSize robot. At the
end, we give an overview of the skills that we have learned
so far, discuss their application within our competition team
and then we present our conclusion.

2 Related work

Recently, reinforcement learning has drawn a lot of attention
for becoming more relevant to solving real-world problems.
The introduction of new fast policy search and policy gra-
dient methods (Sutton et al. 2000; Peters and Schaal 2008b)
has led to the development of several impressive real-world
demonstrators including autonomously flying artistic ma-
neuvers with a helicopter (Bagnell and Schneider 2001;
Ng et al. 2004), teaching a robot to hit a baseball (Peters and
Schaal 2006), operational space control (Peters and Schaal
2008a) and learning ball-in-a-cup with a robot arm (Kober
et al. 2008).

In this paper, we advocate the value-function-based ap-
proach to reinforcement learning. Despite some promising
early successes (Tesauro and Sejnowski 1989; Crites and
Barto 1995), the rather small number of published applica-
tions to real-world problems has often led to skepticism re-
garding the practical relevance of these methods. Recently

proposed fitted value iteration algorithms (Gordon et al.
1995), like Fitted Q-iteration (Ernst et al. 2006), Neural Fit-
ted Q (NFQ) (Riedmiller 2005) and Least Squares Policy
Iteration (LSPI) (Lagoudakis and Parr 2003), make more ef-
ficient use of the gathered experience by adapting the expe-
rience replay technique (Lin 1992). By drastically decreas-
ing the number of necessary interactions with the system,
these kinds of algorithms allow for solving more complex
problems than have been feasible so far using only standard
value-function-based methods. Some positive results of ap-
plying these methods to real-world problems already have
been reported, for example naming steering an automobile
(Riedmiller et al. 2007), controlling power systems (We-
henkel et al. 2005) and solving job-shop scheduling tasks
(Gabel and Riedmiller 2007). In this paper, we present addi-
tional examples in the RoboCup domain.

The robot soccer competitions organized by the RoboCup
Federation form an interesting and very challenging domain
for the application of machine learning algorithms to real-
world problems. Research groups have applied a variety of
different machine learning methods to many aspects of au-
tonomously soccer playing multirobot systems. Examples
include evolutionary algorithms for gait optimization (Cher-
nova and Veloso 2004; Röfer et al. 2004) or optimization of
team tactics (Nakashima et al. 2005), unsupervised and su-
pervised learning in computer vision tasks (Kaufmann et al.
2004; Li et al. 2003; Treptow and Zell 2004) and lower level
control tasks (Oubbati et al. 2005). RL methods have been
used to learn cooperative behaviors in the simulation league
(Ma et al. 2008) as well as for real robots (Asada et al. 1999)
and to learn walking patterns on humanoid robots (Ogino
et al. 2004). Furthermore, Stone’s keep-away-game is a pop-
ular standardized reinforcement learning problem derived
from the simulation league (Stone et al. 2005).

A lot of learning tasks inspired by or directly derived
from RoboCup have been used in proof-of-concepts of rein-
forcement learning methods (Asada et al. 1999; Stone et al.
2005). The goal of our efforts in RoboCup always has been
to go a step further, learning skills that can be employed
during the competition itself, ideally outclassing any other
available hand-crafted or learned behavior.

3 Reinforcement learning for soccer robots

Reinforcement learning (Sutton and Barto 1998) follows the
idea that an autonomously acting agent obtains its behavior
policy through repeated interaction with its environment on
a trial-and-error basis. In the following, we will delineate
how and why this learning methodology can be profitably
employed in the context of learning soccer robots.

Auton Robot (2009) 27: 55–73 57

3.1 Reinforcement learning background

In each time step an RL agent observes the environmental
state and makes a decision for a specific action, which, on
the one hand, may incur some immediate costs (also called
reinforcement) generated by the agent’s environment and,
on the other hand, transfers the agent into some successor
state.

Basic reinforcement learning problems are usually for-
malized as Markov Decision Processes (Puterman 2005).
A Markov Decision Process (MDP) is a 4-tuple M =
[S,A,p, c] where S denotes the set of environmental states
and A the set of actions the agent can perform. Function
c : S × A × S → R denotes immediate costs c(s, a, s′) that
arise when taking action a ∈ A in state s ∈ S and transition-
ing to s′ ∈ S. The probability pss′(a) = p(s, a, s′) of ending
up in state s′ when performing action a in state s is specified
by the probability distribution p : S × A × S → [0,1].

The agent’s goal is not to minimize its immediate, but
rather its long-term, expected costs. To do so, it must learn a
decision policy that is used to determine the best action for a
given state. Such a policy is a function π : S → A that maps
the current state the agent finds itself in to an action from a
set of viable actions.

3.1.1 Value iteration

When interacting with the MDP, an RL agent passes through
a sequence of states s(t) that are coupled to one another
by the transition probabilities pst ,st+1(at) and the actions
at = π(st) the agent takes, and the agent experiences a se-
quence of immediate costs c(st , at , st+1) incurred. The goal
of the reinforcement learning agent is to minimize the ex-
pected value of the discounted sum

ct =
∞∑

k=0

γ kc(st+k, at+k, st+k+1)

of costs incurred over time, where γ ∈ [0,1] is a factor
that determines to which amount future costs are discounted
compared to immediate ones.

When conditioned on some specific state s ∈ S, the ex-
pected value E[ct |π, s] is called the cost-to-go Jπ(s) of state
s under policy π and it is recursively defined as

Jπ(s) =
∑

s′∈S

pss′(π(s))(c(s,π(s), s′) + γ Jπ(s′)). (1)

Accordingly, function Jπ is called the cost-to-go function
or value function for policy π .

The goal of learning is to find an optimal policy π� that
has less accumulated costs than all other policies π . It has
been shown (Bertsekas and Tsitsiklis 1996) that for each
MDP there exists an optimal policy π� such that for any
policy π , it holds that Jπ�

(s) ≤ Jπ(s) for all states s ∈ S.

Given the optimal cost-to-go function J �, it is known that
an optimal policy is given by greedily exploiting J � accord-
ing to

π�(s) = arg min
a∈A

{∑

s′∈S

pss′(a)(c(s, a, s′) + γ J �(s′))
}
. (2)

So, the crucial question is how to obtain the optimal cost-
to-go function. To perform this task, dynamic programming
methods may be employed, such as value iteration (Bellman
1957) which converges under certain assumptions to the op-
timal cost-to-go function J �. Value iteration is based on suc-
cessive updates to the cost-to-go function for all states s ∈ S

according to

Jk+1(s) = min
a∈A

{∑

s′∈S

pss′(a)(c(s, a, s′) + γ Jk(s
′))

}
, (3)

where index k denotes the sequence of approximated ver-
sions of J , until convergence to J � is reached.

3.1.2 Q Learning

Similar to Eq. 1, the expected cost-to-go Qπ(s, a) of a state-
action pair is defined, which is meant to express the expected
costs arising after having taken action a in state s and fol-
lowing policy π subsequently:

Qπ(s, a) =
∑

s′∈S

pss′(a)(c(s, a, s′) + γ Jπ(s′)).

Using this relation and knowing that Bellman’s equation can
be interpreted as J �(s) = mina∈A(s) Q

�(s, a), the value iter-
ation algorithm from above can be written as

Qk+1(s, a) =
∑

s′∈S

pss′(a)

×
(
c(s, a, s′) + γ min

b∈A(s′)
Qk(s

′, b)
)
. (4)

If there is no explicit transition model p of the environ-
ment and of the cost structure c available, Q learning is one
of the reinforcement learning methods of choice to learn a
state-action cost function for the problem at hand (Watkins
and Dayan 1992). In its simplest version, it directly updates
the estimates for the costs-to-go of state-action pairs accord-
ing to

Q(s, a) := (1 − α)Q(s, a)

+ α
(
c(s, a, s′) + γ min

b∈A(s′)
Q(s′, b)

)

where the successor state s′ and the immediate costs
c(s, a, s′) are generated by simulation or by interaction
with a real process. For the case of finite state and action

58 Auton Robot (2009) 27: 55–73

spaces where the Q function can be represented using a
look-up table, there are convergence guarantees that say
that Q learning converges to the optimal cost-to-go func-
tion Q�, assumed that all state-action pairs are visited infi-
nitely often and that the learning rate α diminishes appro-
priately. Given convergence to Q�, the optimal policy π�

can be induced by greedy exploitation of Q according to
π�(s) = arg mina∈A(s) Q

�(s, a).

3.1.3 Policy iteration

Policy iteration aims at finding the optimal policy by repeat-
edly evaluating the current policy and, after that, improving
it. The former corresponds to the determination of the cost-
to-go function Jπ according to Eq. 1, which may be done in
an interactive manner or, for larger-sized problems, based on
simulation. Policy improvement refers to the determination
of a new, improved policy π ′ that is greedy with respect to
the current cost-to-go function Jπ and is done in accordance
to Eq. 2,

π ′(s) = arg min
a∈A

{∑

s′∈S

pss′(π(s))(c(s,π(s), s′) + γJπ(s′))
}
.

(5)

The policy improvement theorem (Bertsekas and Tsitsik-
lis 1996) ensures that Jπ ′

(s) ≤ Jπ(s) for all states. If this
process is iterated, the agent’s policy is successively im-
proved. Note that the value iteration algorithm described
above can be interpreted as a version of policy iteration
where the policy evaluation step is truncated and involves
only one backup for all states.

3.2 Batch-mode reinforcement learning

For reasonably small state spaces, the above iteration meth-
ods (Eqs. 3, 4, 5) can be implemented using a table-based
representation of the value functions. However, interesting
RL problems typically have large and often continuous state
spaces, where table-based methods are not applicable any
more. One way to deal with that problem is to use func-
tion approximation to approximate the value function. Mul-
tilayer perceptrons (MLPs) are known to be a very useful
and robust regression method to approximate value func-
tions in a broad range of different applications (Riedmiller
et al. 2007; Hafner and Riedmiller 2007). However, some
peculiarities have to be considered in order to make them
work properly in practical applications. One important char-
acteristic results from the fact that they approximate the
function in a global way, which means that—in contrast to
local approximation schemes (like e.g. lookup tables or RBF
networks)—changing the value at one point might well have
impacts on the outcome of arbitrary other points far away in

Fig. 2 A graphical sketch of the batch RL framework. It consists
of three modules (sample experience, generate pattern set, apply
batch-mode supervised learning) that are called sequentially in re-
peated loops. The core idea is to produce a training pattern set accord-
ing to Dynamic Programming methods. Depending on the concrete
realization, the implementation of the respective modules is adapted
(see text for explanation)

the input space. Therefore, we consider it as a crucial point
for the successful application of multilayer perceptrons for
RL, that they are used in a batch-mode type of method,
where always a whole set of points is updated simultane-
ously.

Besides the argument of a simultaneous update of all
samples, the batch learning scenario for MLPs additionally
has the advantage that advanced learning algorithms exist
that are typically much more powerful than the commonly
used gradient descent technique. The method we use is the
Rprop algorithm (Riedmiller et al. 1993), which aside from
being very fast with respect to learning time, has also proven
to find very good solutions and to be very robust with respect
to its parameter settings.

Figure 2 shows a general framework for doing batch RL.
It consists of three main steps, namely sampling experi-
ence, generating a training pattern set by the use of dy-
namic programming methods, and finally doing batch su-
pervised learning to approximate the function represented
by the training patterns. It is important to note that the in-
dividual components might look very different for each par-
ticular realization of a batch RL algorithm. We will describe
the components in more detail for three batch RL algorithms
in the following. The only component that is the same in all
variants is the batch supervised training module.

We found batch RL algorithms in conjunction with multi-
layer perceptrons in general to be very effective with respect
to the amount of training experience needed. All of our skills
learned in the simulation league and middle size league are

Auton Robot (2009) 27: 55–73 59

based on one of the here described variants of the batch RL
scheme (for an overview, see Sect. 7).

3.2.1 Neural fitted value iteration

The core idea of the fitted value iteration scheme is to iter-
atively compute new approximations of the value function,
J̃k+1, for a given set of points in the input space (Gordon
et al. 1995). Therefore, the set of experiences just consists of
different states. The states can, in principle, be determined
completely without interaction with the system, e.g. lying
on a regular grid or being drawn randomly. Alternatively,
they might be recorded along actual trajectories, e.g. to fo-
cus on interesting parts of the state space. To generate the
training pattern set, the according module here requires the
model pss′(a) of the system and the current estimate of the
value function, J̃k . Input patterns consist of the states of the
experience set, while the respective target for each state is
computed using the value function operator applied to the
current value function estimate J̃k . Thus, for all s ∈ I :

J
target

k+1 (s) := min
a

{∑

s′
pss′(a)(c(s, a, s′) + γ J̃k(s

′)
}
.

Hence, the training data set is given by

Pk+1 := {(s, J target

k+1 (s))|s ∈ I }.
This training set is then taken by the batch supervised

learning module, which generates a new estimate for the
value function.

The inner loop is repeated (index k counts inner loop it-
erations) until a satisfying policy has finally been learned.
The outer loop is not necessarily required; however it can be
used optionally, e.g. to sample states using a policy greedily
exploiting the current value function. In many cases, this has
turned out to be useful in order to focus on states in interest-
ing regions of the state space.

3.2.2 Neural fitted Q-iteration (NFQ)

In the model-free case, the situation is quite similar to the fit-
ted value iteration scheme described above. There are three
major changes that characterize the Neural Fitted Q-iteration
(NFQ) scheme (Riedmiller 2005). First, the set of experi-
ences I are now triples of the type (state, action, successor
state). Second, they are sampled by interaction with the sys-
tem, and finally the value function uses the action as an addi-
tional argument. The target values are then computed by the
application of the Q-learning operator to all (s, a, s′) ∈ I 1:

Q
target

k+1 (s, a) := c(s, a, s′) + γ min
a∈A(s)

Q̃k(s
′, a).

1We usually adopt a definition, where the immediate cost c is not stored
as part of the experience set I , thus is not an attribute of the environ-

The training data set is given by

Pk+1 := {((s, a),Q
target

k+1 (s, a))|(s, a, ·) ∈ I }.
As before, the training pattern set is now used by the

batch supervised learning module to generate a new Q func-
tion. Also as before, the inner loop is repeated, until a sat-
isfying policy has been learned, and the outer loop can be
used optionally to generate experience triples in interesting
regions of state-action space.

As a crucial point, please note that the validity of the ex-
perience set does not depend on the policy with which it is
sampled. Therefore, the set can simply be aggregated over
multiple passes of the outer loop. No sampled data has to be
invalidated and disregarded. This fact makes the fitted meth-
ods particularly data-efficient.

3.2.3 Neural fitted policy iteration

In contrast to the above schemes, fitted policy iteration as-
sumes the existence of a policy π to sample experiences.
The general idea is to learn a value function of the policy,
and then to improve the policy by greedily exploiting the
value function—corresponding to one pass through the outer
loop in Fig. 2.

We start with the description of a model-based version
that works by sampling complete trajectories. This version
is also used in Case Study I. Variants of this scheme, e.g.
for the model-free case, will be discussed at the end of this
section.

Sampling experience is done by repeatedly doing trajec-
tories, in general from different starting points, following the
current policy πk (here, index k counts outer loop iterations).

Let I be the set of all states that occur within all of the
collected trajectories. Then, for all states within I , the result-
ing accumulated path costs are computed by following the
recorded trajectory and adding up the costs. This is called
Monte Carlo policy evaluation in (Bertsekas and Tsitsiklis
1996),

J
target
k (s) := E

{∑

t

c(st , πk(st), st+1)|s0 = s

}
, (6)

where the number of time steps t varies with the differing
lengths of the trajectories. Accordingly, we obtain a pattern
set

Pk := {(s, J target
k (s))|s ∈ I }

ment but more related to the definition of the particular control-task
and therefore is calculated within the agent. Actually, the environment
very seldom delivers a cost signal that is distinct from the state signal
in practice. Nevertheless, this is more a question of definitions and not
a strict dogma; an attribution of the immediate costs to the environ-
ment may be absolutely reasonable and in some cases even necessary.
All algorithms presented here are applicable in both cases.

60 Auton Robot (2009) 27: 55–73

that is used as input to the batch supervised learning process
which produces as output an approximated version J̃ π

k of
the true cost-to-go function of the current policy πk . Since
the training target values, as computed by Eq. 6, do not de-
pend on the estimate of the value function, the inner loop is
meaningless in this case.

To prepare the next pass through the outer loop, a new
policy has to be derived. In the model-based case, the next
policy πk+1, is computed by greedily exploiting J̃ π

k accord-
ing to

πk+1(s) := arg min
a∈A(s)

∑

s′∈S

pss′(a)(c(s, a, s′) + γ J̃ π
k (s′)). (7)

Having determined the new policy, a new pass through
the outer loop can be started by sampling experience accord-
ing to πk+1. A significant difference to the fitted value itera-
tion schemes above is that the experience must be collected
every time from scratch, and it cannot be added to the expe-
rience already sampled. This is due to the fact that the expe-
rience collected is only useful for evaluating the correspond-
ing policy. This means that this method is, in principle, less
data-efficient than the fitted value and Q-iteration methods
described above. However, in many cases very good poli-
cies can already be found within only a few iterations of
the outer loop. This method has turned out to be particularly
useful in cases where sampling many experiences is not a
problem, e.g. because a fast simulator of the environment is
available. We will further explore this point in Case Study I
(Sect. 4).

The fitted policy iteration method can be modified in var-
ious ways. A model-free variant of this algorithm can be re-
alized by following the idea of rollout policies (Tesauro and
Galpering 1995; Bertsekas and Tsitsiklis 1996). In another
variant, one may use iterative backups of the value functions
instead of Monte Carlo evaluations to approximate J̃ π

k or
Q̃π

k respectively (Bertsekas and Tsitsiklis 1996). Doing so
then makes multiple passes through the inner loop reason-
able again. This variant has the advantage, that experiences
do not have to be provided in complete trajectories, but one
can in principle deal with partial trajectories or even with
single transitions.

3.3 Setting up the neural RL controller

Here, we provide an overview on some issues that are char-
acteristic for our work on neural RL controllers in the ro-
botic domain.

The learning task is formulated either as a terminal-goal-
state problem or as a setpoint-regulation problem. In the first
case, we assume that a successful controller can control the
system to a goal state, and then the control task is termi-
nated. Accordingly the agent then receives terminal costs of
zero (see Case Studies I and III). In the setpoint-regulation

problem, no terminal goal state exists, but the agent has to
actively keep the system within the set of goal states. This
is specified by giving immediate zero costs for every transi-
tion, where the state is within the target region (Case Study
II). In contrast to the terminal-state framework, the episode
here is not terminated and no terminal costs are given. In
general, we consider the setpoint-regulation problem to be
more difficult to learn, since the agent not only has to reach a
certain target, but also has to take into account that the state
can be held there in the future. Also, since no state is ex-
plicitly evaluated with terminal costs of zero, some precau-
tions have to be taken to avoid that the output of the neural
network always tends to increase. We tackle that problem
by introducing artificial training patterns, where we know
the value function is equal to 0 (’hint-to-goal’ heuristic, see
Riedmiller 2005).

As optimization criterion, we typically use a minimum
time formulation, since it results in a very simple and task-
independent choice of the immediate cost function, i.e.

c(s, a, s′) :=
{

0.0, if s ∈ S+,

c, else
(8)

where S+ denotes the set of goal states and c is some small
positive real number, e.g. c = 0.01. In the case of explicit
constraints for the states that must not be violated (S−, fail-
ures), the above definition is extended by c(·, ·, s′) = 1.0 if
s′ ∈ S−. The reason for choosing the low costs for regular
transitions and equal to 1 for transitions into failure states,
is that the output function of the multilayer-perceptron is a
sigmoid with range (0,1) (empirically, we found learning
with a sigmoidal output to be considerably more robust than
when using a linear activation function). Input values to the
neural network are always normalized to have zero mean
and a standard deviation of 1. Typically, in our experiments
we use no discounting, i.e. γ = 1.

The neural network used is a multilayer-perceptron, with
the number of input units corresponding to the number of
state variables plus the number of action variables in the Q-
learning case. Typically, we use two hidden layers with sig-
moidal activation functions and a single output neuron. No
shortcuts were used here. Although not shown in this paper,
in several studies we found that learning behavior is very
robust with respect to the concrete choice of the network
structure (see e.g. Riedmiller 2005).

For the purpose of training neural networks, we exclu-
sively make use of the Rprop algorithm (Riedmiller et al.
1993), which is considerably faster than ordinary gradient
descent. Moreover, its robustness with respect to the choice
of its learning parameters allows us to employ Rprop us-
ing its standard settings for a wide range of RL applica-
tions and, in particular, in all the case studies described
below.

Auton Robot (2009) 27: 55–73 61

Fig. 3 Sequential processing of the different control modules during
one cycle of the control loop (MidSize robot). The control loop is
repeated 30 times a second. The overall delay from sensing to the first
physical effects of the robot’s reaction has been determined empiri-
cally to measure about 150 ms. In order to establish a state description
resembling the Markov property as close as possible, the world model

uses robust regression techniques to predict, from the measurements
and previously selected actions, the state of the environment when the
reaction has its first effect. In this architecture, the strategy module
works on the predicted state information only, allowing the decision-
making to neglect any delays

In the applications presented here, discrete action sets are
used. If the restriction of the amount of training experience
is an issue (as it typically is when learning on a real system,
see Case Study II and III), we try to keep a balance between
a small action set and the quality of the resulting policy. If
collecting experiences is easy, e.g. because a fast simulator
is available, the action set can become quite large (e.g. in the
range of 50–100 actions or more; see Case Study I) in order
to learn a highly optimized policy.

3.4 An architecture for soccer-playing robots

Using reinforcement learning on real robots has several im-
portant implications on the overall architecture of the con-
trol software. A prerequisite for standard RL methods is the
modeling of the learning task as a Markov Decision Process
(MDP). Accordingly, we introduced a (closed) control loop
with discrete time steps, as proposed in classical digital con-
trol theory. During each step of the control loop all modules
are processed sequentially (see Fig. 3).

Another issue is providing an internal representation of
the environment’s state that has the Markov property. In or-
der to provide reliable estimates, the robots’ world model
deals with noisy measurements (imprecision, vibration) and
partial observability (field of view, occlusions, bad lighting
conditions) implementing a sensor fusion process specifi-
cally tailored to our needs. An overview can be found in
(Gabel et al. 2006).

Having only non-stationary sensors available, a precise
estimate of the robot’s own position on the field (self-
localization) is especially important, since all other esti-
mates are directly affected by errors in this position estimate
and the derived robot velocity. A newly developed precise
and very efficient self-localization method using the Rprop
algorithm (Riedmiller et al. 1993) for locally fitting a posi-
tion estimate to sensory data (Lauer et al. 2005) forms the

solid basis of our world model that all other estimators are
built on.

To overcome the problem of non-neglectable temporal
delays (typically 150 to up to 200 ms, see Fig. 3), we imple-
mented a predictive world model utilizing robust regression
techniques and testing of alternate hypotheses. This world
model allows for extrapolating the movement of all relevant
objects into the future (Lauer et al. 2006). MLPs for pre-
dicting parts of the world model have been included as well,
following an idea of (Behnke et al. 2003). Thus, decision-
making in our architecture never works on the state of the
environment as it was sensed by the sensors, but always uses
the state extrapolated to the moment in future when a deci-
sion actually will become active.

Establishing this virtual state description that approxi-
mates the Markov property as close as possible proved a nec-
essary prerequisite for successfully applying value-function-
based RL methods to the soccer robots.

The structuring of the decision-making module is another
important aspect. We followed a behavior-based approach
for implementing this module, adapting it to the specific
needs of reinforcement learning. Fundamental skills like
dribbling and shooting are implemented in distinct behavior
modules. Higher levels of this hierarchical architecture real-
ize more abstract tactical abilities, making use of lower level
behaviors. This decomposition allows (a) for learning on all
levels of the hierarchy, including individual skills like drib-
bling, but also including higher level tactical abilities and
(b) for easily isolating learnable sub-tasks from the overall
strategy. Furthermore, learned modules can be easily com-
bined with other learned or hand-coded modules and inte-
grated into the soccer robot’s strategy.

In the following sections, we present three different ex-
amples of learning complex real-world problems using the
techniques described here.

62 Auton Robot (2009) 27: 55–73

4 Case study I: learning an aggressive defense behavior

The focus of this case study is laid upon RoboCup’s 2D sim-
ulation league, where two teams of simulated soccer-playing
agents compete against one another using the Soccer Server
(Noda et al. 1998), a real-time soccer simulation system.

4.1 The environment

The Soccer Server allows autonomous software agents to
play soccer in a client/server-based style. The server simu-
lates the playing field, communication, the environment and
its dynamics, while the clients—eleven agents per team—
are permitted to send their intended actions (e.g. a parame-
terized kick or dash command) once per simulation cycle
to the server via UDP. Then, the server takes all agents’
actions into account, computes the subsequent world state
and provides all agents with (partial and noisy) information
about their environment via appropriate messages over UDP
(cf. Fig. 4). The simulation is based on discrete time steps of
100 ms length.

The special challenge in soccer simulation is its complex-
ity. Rules and simulation constraints are geared to make the
simulation resemble real soccer as much as possible. Conse-
quently, a large number of complex tasks arises, when devel-
oping simulated soccer agents. These range from handling
imperfect and noisy (simulated) vision and the difficulties
in creating low-level soccer skills of high technical quality
to aspects of team tactics and strategies. Moreover, multia-
gent coordination, cooperation, and reasoning in a decentral-
ized and partially observable environment represent special
challenges. Additionally, the intricacy of developing pow-
erful components for a simulated soccer player is signifi-
cantly magnified by the fact that the simulation environment
has remained stable for a number of years. By now, most
teams possess numerous very strong hand-tuned behaviors
into whose development and steady improvement months or
even years of effort have been invested.

Accordingly, the utilization of learning approaches in this
context is very appealing. On the one hand, given the high
degree of competitiveness in soccer simulation, human de-
velopment efforts may sometimes not suffice to outperform

Fig. 4 Soccer simulation environment. The events on the 2D playing
field are simulated by a standard software; the course of action during
a match can be visualized using an additional monitor program

certain capabilities some opponent team has implemented.
Therefore, the usage of machine learning may be the only
viable option to get ahead. On the other hand, given that
a simulation is available, the utilization of reinforcement
learning algorithms is not complicated, for example, by ex-
pensive interaction between robot hardware and the envi-
ronment. Nevertheless, the state and action space sizes to
be dealt with, when learning for autonomous soccer agents,
render the problems we are focusing on here as very hard
ones.

The case study at hand addresses a defense scenario of
crucial importance: We focus on situations where one of our
players must interfere and disturb an opponent ball leading
player in order to thwart the opponent team’s attack at an
early stage and, even better, to eventually get possession
of the ball and, thus, initiate a counter attack. In so do-
ing, we rely on batch-mode RL for enabling our players to
autonomously acquire such an aggressive defense behavior
(ADB), we carefully test it, and integrate it into our compe-
tition team’s defensive strategy.

4.2 Task description & learning system setup

The task of the agent is to disturb the opposing agent having
the ball, in particular, to prevent it from moving ahead, and,
if possible, to steal the ball. A general strategy to achieve
these goals is difficult to implement because

• the task itself is far beyond trivial and its degree of diffi-
culty heavily depends on the respective adversary,

• there is a high danger of creating an over-specialized be-
havior that works well against some teams, but performs
poorly against others, and

• duels between players (one without and the other with
the ball in his possession) are of high importance to the
team as a whole, since they may bring about ball pos-
session, but also bear some risk, if, for example, a de-
fending player loses his duel, is overrun by the dribbling
player, and thus opens a scoring opportunity for the op-
posing team.

Within the RL framework, we model the ADB learning task
as a terminal state problem with both terminal goal S+ and
failure states S−. Intermediate steps are punished by con-
stant costs of c = 0.05, whereas J (s) = 0.0 for s ∈ S+ and
J (s) = 1.0 for s ∈ S− by definition (cf. Eq. 8).

The state space is 9-dimensional and covers, in a com-
pressed form, information about positions and velocities
of both players involved as well as of the ball. Addition-
ally, some information is incorporated to indicate where
on the playing field the current situation is located. The
learning agent is allowed to use dash(x) and turn(y) com-
mands where the domains of both commands’ parameters
(x ∈ [−100,100], y ∈ [−180◦,180◦]) are discretized such

Auton Robot (2009) 27: 55–73 63

that in total 76 actions are available to the agent at each time
step (60 turn actions and 16 dashes of differing power).

We have to distinguish between different types of goal
and failure states.

Successes A dueling episode can be considered successful,
i.e. finished by reaching a terminal state s ∈ S+

1 , if the ball
has been brought into the learning player’s kickable area.
Moreover, in soccer simulation there is the so-called tackle
command which is meant to simulate a straddle and only
succeeds with a certain probability, depending on the rela-
tive position of the ball to the player. Thus, we also consider
an episode successful, if the learning agent has managed to
position itself in such a manner that issuing a tackle com-
mand yields a successful tackle for the ball with very high
probability.

It may also happen that the opposing agent having the
ball simply kicks it away (usually forwards) as soon as
the ADB learning agent has approached or hassled him too
much, or if it simply considers his situation to be too hope-
less to continue dribbling. Consequently, if an opponent exe-
cutes such a panic kick, the episode under consideration may
be regarded as a semi-success, since the learning agent has
managed to effectively interfere with the dribbler, though it
has not secured the ball (goal state set S+

2).

Failures The ADB player is said to fail (entering a failure
state s ∈ S−) if the opponent has remained in ball posses-
sion, has overrun the learning agent and escaped at least 7 m
from him, or approached the goal such that a goal shot might
become promising.

For the learning statistics we report on below, we also dis-
tinguish episodes without a clear winner that were ended by
a time-out (maximal episode duration of 35 time steps). We
will refer to such duels as semi-failures, because the learn-
ing agent was not effective in interfering with the dribbling
player—in a real match the player advancing the ball may
have had the chance to play a pass to one of his teammates
within that time.

4.3 Special features

In soccer simulation, the transition model p is given, since
the way in which the Soccer Server simulates a match is
known. We exploit this advantage to the largest degree pos-
sible by using model-based instead of model-free learning
methods and, thus, simplifying the learning task (e.g. by
having to represent a cost-to-go function over S only, instead
of over S ×A). For the ADB learning task at hand, however,
the situation is aggravated due to the presence of an adver-
sary whose next actions cannot be controlled and hardly be
predicted. Consequently, the heretofore known model rep-
resents merely an approximation p̃ of the true model of the
process.

Of course, we might enhance the accuracy of p̃ by incor-
porating knowledge about the opponent’s behavior, such as
building an opponent model or assuming an optimally drib-
bling adversary. As it turns out, however, assuming an idle
opponent that does not contribute to state transitions at all is
a very robust approach. This no-op assumption is appropri-
ate, because a single opponent action only has a minor influ-
ence on the transition of the state and because the cost-to-go
function for the problem at hand is rather flat over wide re-
gions. As a consequence, an approximate prediction of the
successor state is possible and, therefore, also the realiza-
tion of a policy improvement step by greedily exploiting the
current cost-to-go function according to Eq. 7.

For the calculation of Ĵ π
k , i.e. for the evaluation of the

current policy, we rely on Monte Carlo-based estimation
methods as described in Sect. 3.2.3. This matches very well
with the fact that in soccer simulation an arbitrary number of
evaluative episodes based on the current policy can be easily
performed, thanks to the availability of a fast simulator.

4.4 Learning procedure

We designed a specialized set of starting states S0 for the
learning agent (|S0| = 5000), which is visualized in Fig. 5a.
It basically consists of two semicircles across which the op-
posing agent having the ball is placed randomly, whereas
our learning player resides in the center. While the semi-
circle that lies in the direction towards our goal (defensive
direction) has a radius of 3.0 m, the one in the opposite (of-
fensive) direction is larger (5.0 m). The intention behind this
design of starting situations is that, on the one hand, an agent
possessing the ball typically starts immediately to dribble
towards our goal, whereas the ADB learning agent must in-
terfere and try to hinder him from making progress. On the
other hand, the intended aggressive defense behavior shall
be primarily applied in situations where our player is closer
to our goal or where the opponent only has a small head
start. Regarding the remaining state space dimensions, the
ball is always randomly placed in the opponent’s kickable
area with zero velocity, and the velocities of both players as
well as their body angles are chosen randomly, as well.

Moreover, we defined four training regions on the play-
ing field, as sketched in Fig. 5b. The midfield training region
is situated at the center of the field, the central defensive re-
gion is halfway towards our goal. Finally, there are a left
wing and a right wing defensive region that are placed near
the corners of the field with a distance of 25 meters to our
goal. The idea behind this definition of different training and
testing places is that dribbling players are very likely to be-
have differently, depending on where they are positioned on
the field. As a consequence, a duel for ball possession may
proceed very differently, depending on the current position
on the field. To this end, the exploitation of symmetries in

64 Auton Robot (2009) 27: 55–73

Fig. 5 Customized sets of
training start situations and
training regions

Fig. 6 This figure shows the
ADB learning progress (against
team WrightEagle). The right
part opposes the resulting
performance of our hand-coded
dueling behavior and the learned
ADB policy. The share of
episodes where our player
manages to steal the ball from
the opponent is almost doubled,
whereas there is only one in 42
episodes where the dribbling
opponent still overruns the
learning player

the tasks turned out to be problematic, as opponent drib-
bling players behaved differently in seemingly symmetric
situations, e.g. in defensive left and right scenarios.

The learning agent starts with a cost-to-go function J0,
represented by a randomly initialized multilayer perceptron
neural network with one hidden layer consisting of 18 units
with sigmoidal activation functions (9:18:1-topology). Dur-
ing interaction with the environment, this function is always
exploited greedily, i.e. realizing policy πk+1, and simulated
experience is collected. New estimates for Ĵ π

k+1(s) are cal-
culated according to Eq. 6 for successful episodes, failure
states s ∈ S− ∩ I in the experience set are associated with
maximal costs of 1.0, and semi-success as well as semi-
failure episodes (which play a negligible role as learning
moves on) are disregarded for evaluating πk+1.

Central to the learning process is that we perform neural
network training in batch-mode. After having simulated a
larger number of training episodes and, in so doing, hav-
ing built up a set of representative states I ⊂ S, where for
each s ∈ I we have an estimated value Ĵ π

k+1(s), the next
cost-to-go function is determined by invoking the underly-

ing batch supervised learning process. For neural network
training, we employ the back-propagation variant Rprop us-
ing default parameters. Performing this step completes one
iteration of fitted policy iteration (one pass through the outer
loop of Fig. 2).

As can be seen in Fig. 6, the learning process is quite ef-
fective. After about 700 training episodes (corresponding to
16 fitted policy iterations and, hence, as many batch-mode
neural net trainings), the agent consistently succeeds in cap-
turing the ball with a probability of about 80%. The fact
that the learned ADB policy tremendously outperforms our
hand-coded behavior can be read from the right part of this
figure. While successes and failures used to be in balance
when employing the hand-coded policy, after learning, suc-
cesses now outweigh failures at the rate of 9:1.

Figure 7 visualizes the cost-to-go function acquired after
30000 training episodes for a small, two-dimensional frac-
tion of the 9-dimensional state space. While zero object ve-
locities and constant player body angles are assumed, the
plot shows how desirable each position on the pitch would
be for the learning agent. Obviously, positions where the

Auton Robot (2009) 27: 55–73 65

Fig. 7 Learned value function for the dueling behavior, see the text
for a detailed explanation

learning player blocks the dribbler’s path towards the goal
are of high value, whereas high costs are to be expected if
the opponent has already overrun our player. From the shape
of J̃ and the resulting equi-cost lines, it can be concluded
that—from the learning agent’s perspective—the most desir-
able direction into which to move is the one indicated by the
gray-colored arrow. Accordingly, this kind of greedily ex-
ploiting J̃ (cf. Eq. 2) by following the steepest ascent brings
the ADB learner onto a promising interception course (as-
suming a rational, i.e. forward-moving opponent).

4.5 Final performance

Table 1 summarizes the performance of the learned aggres-
sive defense behavior, when fighting against a selection of
adversary teams, subject to various test situations at different
places on the playing field. Although we performed a num-
ber of series of learning experiments with differing training
opponents, we report here on results only that were obtained
when training against team WrightEagle which features a
rather strong dribbling skill.

For reasons of readability, failures and semi-failures as
well as successes and semi-successes are not distinguished.
We note, however, that the rate of (full) failure episodes for
the learned policy is only about 8.2%, compared to 19.7%
by the hand-coded policy. If we compare the success rates
(leaving out semi-successes, i.e. only considering succeed-
ing in obtaining the ball) of the learned and the hand-coded
policy, we find a significant performance boost. Their share
has been incremented from 38.1% to 62.3% (averaged over
5 opponent teams and 4 different test regions on the pitch).
What can also be read from Table 1 is that WrightEagle ob-
viously has the most highly developed dribbling behavior
against which our hand-coded routine for interfering with

Table 1 This table opposes the performance of our hand-coded duel-
ing behavior, which we used during competitions until 2006, and the
new RL-based aggressive defense behavior ADB. The latter signifi-
cantly outperforms the former for all test opponent teams considered
and varying test situation sets

Hand-Coded Learned

Test Region-Specific Performance

DefL DefR DefC Midf DefL DefR DefC Midf

Success Rate 56% 56% 55% 53% 84% 83% 85% 84%

Failure Rate 44% 44% 45% 47% 16% 17% 15% 16%

Opponent Opponent-Specific Performance (Success:Failure)

CZU 57.2% : 42.8% 90.2% : 9.8%

STEP 61.0% : 39.0% 79.1% : 20.9%

TokyoTech 61.2% : 38.8% 80.9% : 19.1%

UvA 43.2% : 56.8% 85.9% : 14.1%

WrightEagle 41.5% : 58.5% 82.9% : 17.1%

Joint Average 52.8% : 47.2% 83.8% : 16.2%

the dribbler performed worst.2 After learning, however, the
acquired ADB policy clearly outperforms any opponent at
any place on the pitch.

During the run of a standard game (6000 time steps), our
team players start on average 66 dueling episodes. There-
fore, even under the very conservative assumption that only
about half of all attempts are successful, we can draw the
conclusion that the learned behavior allows for stealing the
ball at least 30 times per game.

During competition matches, any agent utilizes the ac-
quired policy for dueling with opponents in possession of
the ball on average in about 14.8% of the time our team is
defending (for obvious reasons, it is not employed when at-
tacking). This is quite a considerable usage share, when tak-
ing into account that most of the time a defending player has
to pursue different tasks, such as covering opponents or ob-
structing potential pass lanes. Taking the perspective of the
dribbling player, the situation is even clearer. An opponent is
being disturbed by one of our players employing the learned
aggressive defense behavior during approximately 41.2% of
the time he is in ball possession.

The deployment of the learned ADB policy in our com-
petition team, Brainstormers, clearly improved its defense
capabilities and had a strong impact on winning the world
championships tournaments RoboCup 2007 and 2008. Fur-
ther details on the learning procedure, system set-up, and
experimental results for the learning task examined in this
case study can be found in (Gabel et al. 2008).

2The performance gain brought about by utilizing ADB was of special
subtlety, insofar as we faced team WrightEagle both in the final match
of the world championships 2007 and 2008.

66 Auton Robot (2009) 27: 55–73

5 Case study II: learning motor speed control

5.1 The environment

Fast, accurate and reliable motor speed control is a cen-
tral requirement in many real world applications, especially
for mobile, wheel-based robots. In most applications, this
low level motor control behavior is a crucial prerequisite for
higher level tasks to be efficient and successful. Especially
changing load situations, dependent on the overall system
behavior, are challenging for general control schemes and
are often dedicated to immense effort of designing an ap-
propriate control law with its structure and parameters.

The RoboCup MidSize league provides a competitive
testbed for a broad range of autonomous mobile robot con-
trol tasks. While Sect. 6 presents a case study for learning
a competitive skill for the MidSize league, the objective of
this case study is to learn the low level control of our omni-
directional MidSize robot (see Fig. 13) and is therefore not
only specific to RoboCup. To be more precise, the goal is to
learn reliable and accurate speed control of the DC motors
that operate the robot. On the omnidirectional robot, we have
three DC motors in a specific configuration, each driving an
omnidirectional wheel. The motion and dynamics of the ro-
bot depend directly on the speeds of the three motors. This
gives the robot a high maneuverability and avoids nonholo-
nomic constraints in motion planning. On the other hand, the
interaction of the three motors causes highly changing load
situations which a motor controller has to cope with.

5.2 Task description & learning system setup

Our goal is to learn a fast, accurate and reliable controller
for regulating the speed of each DC motor of the omnidirec-
tional mobile robot, solely by interaction with the real robot.

Instead of learning a specialized controller for each mo-
tor, we show a setup where we learn a single controller that
operates independently on each of the three motors. From
the point of view of the controller, it gets the state informa-
tion and set point of a single motor and answers with an ac-
tion that will regulate this motor from its current state to the
desired speed. In other words, there is only one single DC
motor in the view of the controller that has to be controlled
in a broad range of dynamical load situations. On the other
hand, from the point of view of the robot, there is one con-
troller that can take an action for each of the three motors
separately in each time step. This procedure is legitimate,
since the three motors and wheels are of the same type of
construction. In the following, we will describe the learn-
ing system setup in more detail. For doing so, we take the
viewpoint of the controller, so the task is DC motor speed
regulation, based on the state information of a single motor,
to arbitrary set points under a broad range of load situations.

The control problem considered can be described as a
Markovian Decision Problem (MDP). As our goal is to learn
in interaction with the real motor, we use Neural Fitted Q-
iteration to have a fast and robust learning setup.

The input to the RL controller must represent the current
state of the DC motor, such that the Markovian property of
the task is captured. The state of a general DC motor can
be sufficiently described by two variables, namely the cur-
rent motor speed ω̇ and the armature current I . Since our
final controller has to deal with arbitrary target speeds, the
information about the desired speed must also be incorpo-
rated into the input. In principle, we can do this by directly
using the value of the target speed. However, here we are us-
ing the error between the actual speed and the target speed,
E := ω̇d − ω̇.

The immediate cost function c : S × U → R defines the
control behavior eventually desired. Here, we are facing a
set point regulation task, since no terminal states exist, but
instead regulation is an ongoing, active control task. The
control objective here is to first bring the motor speed close
to the target value as fast as possible and then to actively
keep it at the desired level. In terms of the immediate cost
function, this can be expressed by the following choice of c:

c(s, a, s′) = c(s) =
{

0 if |ω̇d − ω̇| < δ,
0.01 else.

(9)

The first line denotes the desire to keep the motor velocity
ω̇ close to its target value ω̇d , where the allowed tolerance is
denoted by δ > 0.

The second line expresses the desire for the minimiza-
tion of the time of the system being not close to its tar-
get value. The above framework specifies our demand for a
time-optimal controller to a region close to the target value,
which reflects our desire for a fast and accurate control be-
havior.

5.3 Special features

The accurate regulation of the motor speed at arbitrary target
values would, in principle, require the output of continuous
voltages by the controller. Therefore, even if we accept a
certain tolerance in accuracy, a very large action set of con-
trol voltages is needed. However, dealing with large action
sets means having a large number of potential candidates for
each decision, and this drastically increases the complexity
of learning an appropriate control policy.

This is a very common problem for many control tasks,
not only in robotics. To overcome this problem, we use an
integrating output, i.e. a special form of a dynamic output el-
ement (Riedmiller 1997). The idea is that the controller does
not output the voltage directly, but instead just decides about
the decrease or increase of the voltage by a certain amount

Auton Robot (2009) 27: 55–73 67

Fig. 8 Scheme of the reinforcement learning controller for the speed
control of a DC motor

�U . By applying this trick, a wide range of resulting volt-
ages can be produced, whereas the set of actions available to
the RL controller remains relatively small. The final action
set of the controller is

�U ∈ {−0.3,−0.1,−0.01,0.0,0.01,0.1,0.3}.
As a consequence, the state of the MDP that the con-

troller sees is increased by the current state of the integrating
output U . This adds one additional component to the input
vector of the RL controller.

The final input to the controller consists of the four-
dimensional continuous vector (I,U,E, ω̇). Finally, Fig. 8
shows the overall structure of the RL controller.

5.4 Learning procedure

To train the controller, we use NFQ, described in Sect. 3,
with a multilayer perceptron (MLP) whose topology con-
sists of 5 neurons in the input layer (4 as a state description,
one for the action), 2 hidden layers with 10 neurons each,
and a single output neuron (denoting the Q-value of the re-
spective state-action pair).

As a proof of concept for the presented structure of the
RL controller, we conducted a first experiment with a single,
free-running and therefore load-free real DC motor. For this
experiment, we choose a transition sampling procedure that
interleaves learning phases and data collection, starting with
a randomly initialized neural Q-function. In the data collec-
tion phase, the DC motor is controlled by exploiting the cur-
rent Q-function in an ε-greedy manner (exploration is done
in 20% of time steps) for 100 time steps. Afterwards, the
NFQ-procedure is executed on the set of all transition sam-
ples collected so far, and a new data collection phase begins
with a randomly selected set point. In Fig. 9, the system be-
havior in the initial learning phase is shown. Learning was
achieved very efficiently, i.e. after only 198 s (little more
than 3 minutes) of interaction time with the real system, an
effective RL controller was learned from scratch. The result-
ing performance of the learned reinforcement learning con-
troller is highly satisfying, both with respect to speed and
accuracy (Figs. 10 and 11).

This first experiment showed a good performance in the
special case of a single free-running motor. The learned con-
troller, however, fails in controlling the motors of the real
robot. This is mainly because it has never seen dynamically

Fig. 9 (Color online) Behavior of the reinforcement learning con-
troller in the early stages of learning. The behavior of the motor speed
is rather arbitrary, since the controller has not yet learned a useful pol-
icy. All the transition data is collected, stored and used for training. The
small figure shows how the integration of the RL actions works. The
green lines denote the actions that are selected by the RL controller,
which are integrated to result in the voltage finally applied to the motor
(black signal)

Fig. 10 Performance of the learned controller on the free running real
DC motor. Different set points are reached quickly and accurately

changing load situations. In addition the dynamics of the
load free motor is almost noise free, allowing smooth control
and a very small steady state error. This changes drastically
on the real robot, where the interaction of the omnidirec-
tional wheels with the ground cause severe noise due to the
shape of the omnidirectional wheels. The interaction of the
three motors causes dynamic changing loads for the motors.

To collect data with typical load situations for the con-
troller in its final working range, we have to collect them di-

68 Auton Robot (2009) 27: 55–73

Fig. 11 A trajectory with changing set point. The controller reaches
each set-point solely by learning through interaction with the real DC
motor

rectly in interaction with the real omnidirectional robot. This
was done by putting the robot on the ground and driving it
around by applying the controller structure independently
of the three motors of the robot. Following this approach,
we can collect three different transition samples in different
load conditions in each time step. In contrast to the transition
sampling procedure that interleaves learning phases and data
collection, we decided to pursue another strategy here. Data
was collected completely at random, i.e. random control sig-
nals were emitted to each of the three motors on trajectories
of an episode length of 150 time steps. A new set point was
randomly selected for each motor after each data collection
episode in order to collect a broad range of set points. Af-
ter all data-collecting episodes are finished, the controller is
trained by NFQ in a purely off-line manor. Using random
sampling exclusively is a valid procedure, since NFQ does
not require that samples are collected in a certain fashion.

For the application of the controller on the real omnidi-
rectional robot, we ran 50 data collection episodes (each cor-
responding to a duration of 5 seconds), applying purely ran-
dom control signals. This gave an overall of 50 · 150 = 7500
transition samples collected for each motor. Since the data
was collected simultaneously for all three motors, this re-
sulted in an overall of 3 · 7500 = 22500 transition samples
that can be used for training the controller within the NFQ
framework. The whole process of data collection on the real
robot needed only 50 · 5 s = 250 s, which is little more than
4 minutes. After only 30 iterations through the NFQ loop, a
highly effective controller was learned.

5.5 Final performance

In Fig. 12, the learned controller is shown running on the
real robot. The global drive commands used as a demonstra-
tion here are ‘drive forward with 0.5 m/s’ and then ‘rotate by

Fig. 12 The learned controller tested on a follow-up control on the
real robot. The robot was driven forward with 0.5 m/s changing to a
rotational velocity of 2 rad/s. The controller is able to achieve the ve-
locities for all three motors under the presence of noise generated from
the wheels

2 rad/s’. The inverse kinematics are used to deliver the re-
spective target speeds for each motor. The task of the learned
controller is then to regulate each motor to the desired motor
speed.

As shown in Fig. 12, the neural controller has learned to
control the motors very quickly and reliably to their desired
target speeds. A highly satisfying fact is that the learned
speed controller works reliably under the wide range of ac-
tual loads that occur within the real robot movement. It has
even learned to deal with the considerable noise that occurs
in the measured data due to the shape of the wheels. For
the complete setup and more information, see (Hafner and
Riedmiller 2007).

6 Case study III: learning to dribble on a MidSize robot

6.1 The environment

In the MidSize league, two teams of 6 robots play on a
12 m × 18 m field. The robots are completely autonomous,
doing all sensing, information-processing and decision-
making on board. Our robot (see Fig. 13) uses a camera
as its main sensor and has an omnidirectional drive based on
three motors. The sense-act loop is carried out with 30 Hz,
which means that a new motor command is sent every 33 ms.
A motor command consists of three values denoting v

target
y

(target forward speed relative to the coordinate system of
the robot), v

target
x (target lateral speed) and v

target
θ (target

rotation speed). These values are then transformed into the
target motor speeds of the three motors by the use of the
inverse kinematics model of the robot.

Auton Robot (2009) 27: 55–73 69

Fig. 13 Brainstormers MidSize league robot. The difficulty of drib-
bling lies in the fact that, according to the rules, at most one-third of
the ball may be covered by the robot. Not losing the ball while turning,
therefore requires a sophisticated control of the robot motion

In our framework, robot skills (such as driving to a cer-
tain position, intercepting a ball, dribbling a ball) are imple-
mented as discrete-time closed-loop controllers. The con-
ventional way to design such a skill is to program a base-
controller and then fine-tune parameters until the skill works
satisfactorily. Obviously, reinforcement learning in this case
is highly attractive, not only that computer power can be
used instead of man power to develop a skill, but also the
learning results can be expected to be superior, even more
so if learning is based on an optimization approach.

Learning directly on a real robot has the additional advan-
tage that the controller is directly tuned to the behavior of the
actual hardware instead of an idealized model. This is partic-
ularly true here, since some real-world effects are extremely
difficult to model, e.g. the interaction of the ball with the ro-
bot’s dribbling device. On the other hand, learning on real
robots requires highly data-efficient learning methods, since
collecting experience is usually expensive with respect to
both time and abrasion of material. The following describes
the application of a neural RL controller that directly learns
to dribble a ball on a real robot from scratch.

6.2 Task description & learning system setup

Dribbling in the context of this experiment means keep-
ing the ball in front of the robot, while turning to a given
target. Since according to the rules of the MidSize league,
only one-third of the ball may be covered by a dribbling de-
vice, this is quite challenging. The dribbling behavior must
carefully control the robot such that the ball does not role
away when the robot changes direction. In previous years,
we used a hand-coded and carefully hand-tuned routine for
this, which was already quite successful (e.g. using it, we
won the world championship in 2006 and several European

titles). However, it showed weaknesses by failing to execute
turns sharply and by occasionally losing the ball.

Within the RL framework, we model the dribbling prob-
lem as a terminal state problem with both a terminal goal
state and terminal failure states. Intermediate steps are pun-
ished by constant costs of c = 0.01. We use the Neural Fitted
Q Iteration method as the core learning algorithm. The com-
putation of the target value for the batch training set thus
becomes:

Qtarget (s, a) :=
⎧
⎨

⎩

1.0, if s′ ∈ S−,
0.01, if s′ ∈ S+,
0.01 + minb Q̃(s′, b), else

(10)

where S− denotes the states, where the ball is lost, and S+
denotes the states, where the robot has the ball and heads
towards the target. State information for the real robot is
computed from the camera input and the internal odome-
try sensors of the robot (see Sect. 3.4). For dribbling, we use
a six-dimensional vector with the following real valued en-
tries: speed of the robot in relative x and y direction, rotation
speed, x and y ball position relative to the robot and finally
the heading direction relative to the given target direction.
A failure state s ∈ S− is encountered if the ball’s relative x
coordinate is larger than 50 mm or less than −50 mm, or
the relative y coordinate exceeds 100 mm. A success state is
reached whenever the absolute difference between the head-
ing angle and the target angle is less than 5 degrees.

The robot is controlled by a three-dimensional action
vector, denoting target translational and rotational speeds.

6.3 Special features

When dealing with a real-world system, data acquisition
typically becomes a non-trivial issue. Most important, the
learning problem has to be formulated such that good solu-
tions can be found while reasonably restricting the degrees
of freedom to keep the number of interactions with the real
system at a reasonable amount.

Following the above argumentation, we implemented an
‘intelligent’ interpretation of the rotation value. If the differ-
ence between the current body angle and the target direction
was negative, the rotation speed was automatically set to a
negative value. Therefore, we could restrict the action set to
positive rotation speeds. In the same, way the lateral target
speed v

target
x switched its sign if the rotation speed is neg-

ative. Here, however, also negative values for v
target
x were

allowed.
Overall, 5 different action triples have been used,

U = {(2.0, 0.0, 2.0), (2.5, 0.0, 1.5), (2.5, 1.5, 1.5),

(3.0,1.0,1.0), (3.0,−1.0,1.0)}, where each triple denotes
(v

target
x , v

target
y , v

target
θ) (see Fig. 14).

Actions are selected greedily according to the neural Q
value function. For dribbling, it turned out that it suffices
if actions are reconsidered every second time step. This re-

70 Auton Robot (2009) 27: 55–73

Fig. 14 Action set of the
dribbling controller. 5 different
combinations of forward and
lateral speed (vxy) and rotation
speed (vθ) are available for
choice

duces the number of decisions per trajectory and therefore
simplifies the learning problem.

Input to the Neural Fitted Q-iteration method is a set of
transition triples of the form (state, action, successor state).
A common procedure to sample these transitions is to alter-
natively train the Q function and then sample new transitions
episode-wise by greedily exploiting the current Q function.
However, on the real robot, this means, that between each
data collection phase one has to wait until the new Q func-
tion has been trained. This can be annoying, since putting the
ball back on the field requires human intervention. There-
fore, we decided to go for a batch-sampling method, which
collects data over multiple trials without relearning.

At the beginning of each trial, the robot waits until the
ball is put onto the middle of the field, before moving to a
starting position 2 m away from the ball. Next, it drives to-
wards the ball and as soon as it gets there, the dribbling trial
is started. In every trial, a different target direction is given.
Here, we collected batches of 12 trials each without retrain-
ing the neural controller within a batch. After each batch,
the sampled transitions are added to the data set, and learn-
ing is started. If the set of target values used for the 12 trials
are the same for each batch, then concurrently to data sam-
pling, the performance of the controllers can be evaluated
and compared. This was the case here. An extension of this
method is to do some exploration in one part of the batch and
be greedy in another part. Then, performance can be judged
when the controller is greedily exploited, and seeing a diver-
sity of data is guaranteed by the exploration part. However,
for this study, always greedily following the value function
turned out to be sufficient.

6.4 Learning procedure

For learning, we use the Neural Fitted Q framework de-
scribed in Sect. 3. The value function is represented by a
multilayer perceptron with 9 input units (6 state variables
and 3 action variables), 2 hidden layers of 20 neurons each
and 1 output neuron. After each batch of 12 trials, we did
10 NFQ iterations, where in each iteration we computed the
target values according to equation 10. Learning the target
values was done in 300 epochs of supervised batch learning,
using the Rprop learning method with standard parameters.
After learning was finished, the new controller was used to
control the robot during the next data collection phase. After

Fig. 15 Comparison of hand-coded (outer trajectory, red) and neural
dribbling behavior (inner trajectory, blue) when requested to make a
U-turn. The data was collected on our real robot. When the robot gets
the ball, it typically has an initial speed of about 1.5 to 2 m/s in forward
direction. The positions of the robot are displayed every 120 ms. The
U-turn of the neural dribbling controller is much sharper and faster

11 batches (= 132 trials), a very good controller was learned.
The complete learning procedure took about one and a half
hour, including the time used for offline updating of the
neural Q function. The actual interaction time with the real
robot was about 30 minutes, including preparation phases.

6.5 Final performance

The neural dribbling controller is implemented as an au-
tonomous skill within our robot control architecture. The be-
havior is called with a certain target direction and the current
state information. It returns a three-dimensional drive vector
consisting of rotation speed vθ , the relative forward speed
vy , and the relative lateral speed vx . It was the first behav-
ior in our MidSize robot that was completely learned on the
real robot. For intercepting the ball, we also use a learned
behavior, but it was learned by the use of a simulator. The
neural dribbling skill performed significantly better than the
previously used hand-coded and hand-tuned dribbling rou-
tine, especially in terms of space and time needed to turn to
the desired target direction (see Fig. 15).

Auton Robot (2009) 27: 55–73 71

The neural dribbling skill has been successfully used in
our competition team since 2007. With its help, we won the
world championship 2007 in Atlanta and became third at the
world championship in 2008 in Suzhou, China.

7 RL in Brainstormers’ competition teams

The Brainstormers project was started in our research group
in 1998 with the goal to develop autonomous soccer robots
that are able to learn to act by the extensive use of ma-
chine learning techniques, with a particular focus on rein-
forcement learning methods. By participating in the annual
RoboCup championships, we aim at demonstrating the ef-
fectiveness of learning approaches in a highly competitive
field. We see this competitive evaluation as one important
contribution for reaching maturity of learning methods with
respect to practical applicability.

The skills that have been learned (see Table 2 for an
overview) range from direct motor control skills (like motor
speed control, Case Study II) to individual skills (like drib-
bling, Case Study III or intercepting the ball), to skills inter-
fering with opponents (like the aggressive-defense behavior,
Case Study I) and complex multiagent behaviors (like co-
operative attack play, considering 7 attacking team players
and 8 defending opponent players, Riedmiller et al. 2003).
In order to finally yield a competitive software agent, the
individual skills must also prove their superiority to alterna-
tive approaches. Therefore, all the learned skills that made

Table 2 Overview of a selection of behaviors that were learned by
neural reinforcement learning methods for the Brainstormers’ simu-
lation league and MidSize league teams over the years from 2000 to
2008. Filled dot denotes the application in the competition team, empty
dot denotes that the skill was successfully learned, but finally did not
make it into the competition team. Many of the skills have been im-
proved from year to year

’00 ’01 ’02 ’03 ’04 ’05 ’06 ’07 ’08

Simulation League

NeuroKick • • • • • • • • •
NeuroIntercept • • • • ◦ ◦
NeuroGo2Pos • • • • •
NeuroADB • •
NeuroAttack ◦ • • • • • • •
NeuroPenalty • • • • • •
Rank 2 2 3 3 2 1 2 1 1

MidSize League

NeuroMotorSpeed ◦ ◦
NeuroGo2Pos ◦ ◦ ◦
LmapIntercept • • •
NeuroDribble • •
Rank 1 1 3

it inside our competition code have proven their superior-
ity compared to previous hand-coded versions. When all the
learned skills are activated in our simulation league agent,
up to 80 percent of the decisions in a game are triggered
by neural networks (e.g. when activating all neural skills in
our 2005 agent, a neural network is involved in decision-
making on average in 56.8% (defender), 73.0% (sweeper),
84.4% (midfielder), 82.6% (attacker), of its total number of
actions).

In almost all cases, we used neural networks for repre-
senting the value function, using the batch RL framework
described in Sect. 3 as the general learning framework. The
state dimension typically ranges from 5 to 10 real valued
state variables, the number of discrete actions is typically in
the range of up to 10 for real robot learning and up to sev-
eral hundreds of actions for learning in the simulation league
agent.

8 Conclusions

Real-world applications of reinforcement learning methods
require highly data-efficient and robust learning algorithms.
The batch RL paradigm discussed in Sect. 3 provides a use-
ful framework that can be adapted in various ways accord-
ing to the concrete requirements of the learning task to be
solved. We demonstrated the concrete application of this
concept in three case studies, all within the context of our
Brainstormers’ robotic soccer project. Learned skills have
been vastly and successfully applied over more than 8 years
in our competition teams. The learning tasks faced typically
have continuous state spaces, a considerable amount of state
dimensions and rich action sets.

The success of the Brainstormers project is not only doc-
umented by the record of rankings in the competitions (we
won 5 world championships, several European titles, and
multiple 2nd and 3rd places), but also by the development
of the learning methods with respect to their increased prac-
tical applicability. While at the beginning of our project, of-
ten hundreds of thousands of episodes had to be done to
learn a successful policy, the increased robustness and data-
efficiency of the algorithms has lead to learning systems that
are now able to actually learn on real robots from scratch.

Acknowledgements Thanks to Christian Müller for helping with the
neuro dribbling experiments on our MidSize league robot. We great-
fully acknowledge the support of our industrial sponsors, in particular
Harting Technology Group, who substantially supports our work both
technically and financially. This work was sponsored in part by a DFG-
grant within the SPP 1125.

References

Asada, M., Uchibe, E., & Hosoda, K. (1999). Cooperative behavior ac-
quisition for mobile robots in dynamically changing real worlds

72 Auton Robot (2009) 27: 55–73

via vision-based reinforcement learning and development. Artifi-
cial Intelligence, 110(2), 275–292.

Bagnell, J., & Schneider, J. (2001). Autonomous helicopter control us-
ing reinforcement learning policy search methods. In Proceedings
of the 2001 IEEE international conference on robotics and au-
tomation (ICRA 2001) (pp. 1615–1620), Seoul, South Korea. New
York: IEEE Press.

Behnke, S., Egorova, A., Gloye, A., Rojas, R., & Simon, M. (2003).
Predicting away robot control latency. In D. Polani, B. Brown-
ing, A. Bonarini, & K. Yoshida (Eds.), LNCS. RoboCup 2003:
robot soccer world cup VII (pp. 712–719), Padua, Italy. Berlin:
Springer.

Bellman, R. (1957). Dynamic programming. Princeton: Princeton Uni-
versity Press.

Bertsekas, D., & Tsitsiklis, J. (1996). Neuro dynamic programming.
Belmont: Athena Scientific.

Chernova, S., & Veloso, M. (2004). An evolutionary approach to
gait learning for four-legged robots. In Proceedings of the 2004
IEEE/RSJ international conference on intelligent robots and sys-
tems (IROS 2004), Sendai, Japan. New York: IEEE Press.

Crites, R., & Barto, A. (1995). Improving elevator performance us-
ing reinforcement learning. In Advances in neural information
processing systems 8 (NIPS 1995) (pp. 1017–1023), Denver,
USA. Cambridge: MIT Press.

Ernst, D., Geurts, P., & Wehenkel, L. (2006). Tree-based batch mode
reinforcement learning. Journal of Machine Learning Research,
6(1), 503–556.

Gabel, T., & Riedmiller, M. (2007). Adaptive reactive job-shop
scheduling with learning agents. International Journal of Infor-
mation Technology and Intelligent Computing, 2(4).

Gabel, T., Hafner, R., Lange, S., Lauer, M., & Riedmiller, M. (2006).
Bridging the gap: learning in the RoboCup simulation and mid-
size league. In Proceedings of the 7th Portuguese conference on
automatic control (Controlo 2006), Porto, Portugal.

Gabel, T., Riedmiller, M., & Trost, F. (2008). A case study on improv-
ing defense behavior in soccer simulation 2D: the NeuroHassle
approach. In Iocchi, L., Matsubara, H., Weitzenfeld, A., & Zhou,
C. (Eds.), LNCS. RoboCup 2008: robot soccer world cup XII,
Suzhou, China. Berlin: Springer.

Gordon, G., Prieditis, A., & Russell, S. (1995). Stable function approx-
imation in dynamic programming. In Proceedings of the twelfth
international conference on machine learning (ICML 1995)
(pp. 261–268), Tahoe City, USA. San Mateo: Morgan Kaufmann.

Hafner, R., & Riedmiller, M. (2007). Neural reinforcement learning
controllers for a real robot application. In Proceedings of the IEEE
international conference on robotics and automation (ICRA 07),
Rome, Italy. New York: IEEE Press.

Kaufmann, U., Mayer, G., Kraetzschmar, G., & Palm, G. (2004).
Visual robot detection in RoboCup using neural networks.
In D. Nardi, M. Riedmiller, C. Sammut, & J. Santos-Victor
(Eds.), LNCS. RoboCup 2004: robot soccer world cup VIII
(pp. 310–322), Porto, Portugal. Berlin: Springer.

Kitano, H. (Ed.). (1997). RoboCup-97: robot soccer world cup I.
Berlin: Springer.

Kober, J., Mohler, B., & Peters, J. (2008). Learning perceptual cou-
pling for motor primitives. In Proceedings of the 2008 IEEE/RSJ
international conference on intelligent robots and systems (IROS
2008) (pp. 834–839), Nice, France. New York: IEEE Press.

Lagoudakis, M., & Parr, R. (2003). Least-squares policy iteration.
Journal of Machine Learning Research, 4, 1107–1149.

Lauer, M., Lange, S., & Riedmiller, M. (2005). Calculating the per-
fect match: an efficient and accurate approach for robot self-
localization. In A. Bredenfeld, A. Jacoff, I. Noda, & Y. Taka-
hashi (Eds.), LNCS. RoboCup 2005: robot soccer world cup IX
(pp. 142–153), Osaka, Japan. Berlin: Springer.

Lauer, M., Lange, S., & Riedmiller, M. (2006). Motion estimation of
moving objects for autonomous mobile robots. Kunstliche Intelli-
genz, 20(1), 11–17.

Li, B., Hu, H., & Spacek, L. (2003). An adaptive color segmentation al-
gorithm for Sony legged robots. In The 21st IASTED international
multi-conference on applied informatics (AI 2003) (pp. 126–131),
Innsbruck, Austria. New York: IASTED/ACTA Press.

Lin, L. (1992). Self-improving reactive agents based on reinforcement
learning, planning and teaching. Machine Learning, 8(3), 293–
321.

Ma, J., & Cameron, S. (2008). Combining policy search with plan-
ning in multi-agent cooperation. In L. Iocchi, H. Matsubara,
A. Weitzenfeld, & C. Zhou (Eds.), LNAI. RoboCup 2008: robot
soccer world cup XII, Suzhou, China. Berlin: Springer.

Nakashima, T., Takatani, M., Udo, M., Ishibuchi, H., & Nii, M. (2005).
Performance evaluation of an evolutionary method for RoboCup
soccer strategies. In A. Bredenfeld, A. Jacoff, I. Noda, & Y. Taka-
hashi (Eds.), LNAI. RoboCup 2005: robot soccer world cup IX,
Osaka, Japan. Berlin: Springer.

Ng, A., Coates, A., Diel, M., Ganapathi, V., Schulte, J., Tse, B., Berger,
E., & Liang, E. (2004). Autonomous inverted helicopter flight via
reinforcement learning. In Experimental robotics IX, the 9th in-
ternational symposium on experimental robotics (ISER) (pp. 363–
372), Singapore, China. Berlin: Springer.

Noda, I., Matsubara, H., Hiraki, K., & Frank, I. (1998). Soccer server:
a tool for research on multi-agent systems. Applied Artificial In-
telligence, 12(2–3), 233–250.

Ogino, M., Katoh, Y., Aono, M., Asada, M., & Hosoda, K. (2004).
Reinforcement learning of humanoid rhythmic walking para-
meters based on visual information. Advanced Robotics, 18(7),
677–697.

Oubbati, M., Schanz, M., & Levi, P. (2005). Kinematic and dynamic
adaptive control of a nonholonomic mobile robot using a RNN. In
Proceedings of the 20005 IEEE international symposium on com-
putational intelligence in robotics and automation (CIRA 2005)
(pp. 27–33). New York: IEEE Press.

Peters, J., & Schaal, S. (2006). Policy gradient methods for robotics. In
Proceedings of the IEEE/RSJ international conference on intelli-
gent robots and systems (IROS), Beijing, China. New York: IEEE
Press.

Peters, J., & Schaal, S. (2008a). Learning to control in operational
space. The International Journal of Robotics Research, 27(2),
197–212.

Peters, J., & Schaal, S. (2008b). Reinforcement learning of motor skills
with policy gradients. Neural Networks, 21(4), 682–697.

Puterman, M. (2005). Markov decision processes: discrete stochastic
dynamic programming. New York: Wiley-Interscience.

Riedmiller, M. (1997). Generating continuous control signals for re-
inforcement controllers using dynamic output elements. In Pro-
ceedings of the European symposium on artificial neural networks
(ESANN 1997), Bruges, Belgium.

Riedmiller, M. (2005). Neural fitted Q iteration—first experiences with
a data efficient neural reinforcement learning method. In Machine
learning: ECML 2005, 16th European conference on machine
learning, Porto, Portugal. Berlin: Springer.

Riedmiller, M., & Braun, H., (1993). A direct adaptive method for
faster backpropagation learning: the RPROP algorithm. In H.
Ruspini (Ed.), Proceedings of the IEEE international conference
on neural networks (ICNN) (pp. 586–591), San Francisco.

Riedmiller, M., & Merke, A. (2003). Using machine learning tech-
niques in complex multi-agent domains. In I. Stamatescu, W.
Menzel, M. Richter, & U. Ratsch (Eds.), Adaptivity and learning.
Berlin: Springer.

Riedmiller, M., Montemerlo, M., & Dahlkamp, H. (2007). Learning to
drive in 20 minutes. In Proceedings of the FBIT 2007 conference,
Jeju, Korea. Berlin: Springer.

Auton Robot (2009) 27: 55–73 73

Röfer, T. (2004). Evolutionary gait-optimization using a fitness func-
tion based on proprioception. In Nardi, D., Riedmiller, M., Sam-
mut, C., & Santos-Victor, J. (Eds.), LNCS. RoboCup 2004: ro-
bot soccer world cup VIII (pp. 310–322), Porto, Portugal. Berlin:
Springer.

Stone, P., Sutton, R., & Kuhlmann, G. (2005). Reinforcement learning
for RoboCup-soccer keepaway. Adaptive Behavior, 13(3), 165–
188.

Sutton, R., & Barto, A. (1998). Reinforcement learning. An introduc-
tion. Cambridge: MIT Press/A Bradford Book.

Sutton, R., McAllester, D., Singh, S., & Mansour, Y. (2000). Policy
gradient methods for reinforcement learning with function ap-
proximation. In Advances in neural information processing sys-
tems 12 (NIPS 1999) (pp. 1057–1063), Denver, USA. Cambridge:
MIT Press.

Tesauro, G., & Galpering, G. (1995). On-line policy improvement us-
ing Monte Carlo search. In Neural information processing systems
(NIPS 1996) (pp. 206–221), Denver, USA. Berlin: Springer.

Tesauro, G., & Sejnowski, T. (1989). A parallel network that learns to
play backgammon. Artificial Intelligence, 39(3), 357–390.

Treptow, A., & Zell, A. (2004). Real-time object tracking for soccer-
robots without color information. Robotics and Autonomous Sys-
tems, 48(1), 41–48.

Watkins, C., & Dayan, P. (1992). Q-learning. Machine Learning, 8,
279–292.

Wehenkel, L., Glavic, M., & Ernst, D. (2005). New developments in
the application of automatic learning to power system control. In
Proceedings of the 15th power systems computation conference
(PSCC05), Liege, Belgium.

Martin Riedmiller studied com-
puter science at the University of
Karlsruhe, Germany, where he re-
ceived his diploma in 1992 and
his PhD in 1996. In 2002 he be-
came a professor for Computational
Intelligence at the University of
Dortmund. From 2003 to 2009 he
was heading the Neuroinformat-
ics Group at the University of Os-
nabrueck. Since April 2009 he is
a professor for Machine Learning
at the Albert-Ludwigs-University
Freiburg. His research interests are
machine learning, neural networks,
reinforcement learning and robotics.

Thomas Gabel (diploma degree in
Computer Science 2003 at the Uni-
versity of Kaiserslautern) is a re-
searcher at the Machine Learning
Group at the University of Freiburg.
He works in the fields of machine
learning and reinforcement learn-
ing, with a focus on multi-agent sys-
tems, as well as in knowledge man-
agement and case-based reasoning.
He is involved in RoboCup activ-
ities as team leader of the robotic
soccer simulation team Brainstorm-
ers, and won several world cham-
pionships. He is organizing chair
of the RoboCup 2009 simulation
league in Graz.

Roland Hafner studied computer
science at the University of Karl-
sruhe, Germany, where he received
his diploma in 2002. In 2009 he will
finish his PhD at the University of
Osnabrueck. His research interests
are Reinforcement Learning in feed-
back control applications, Neural
Networks and autonomous robots.

Sascha Lange studied Cognitive
Science at the University of Gothen-
burg and at the University of Os-
nabrueck, where he received his
master degree in 2004. Currently he
is a research assistant in the Neu-
roinformatics Group at the Univer-
sity of Osnabrueck. His research
topics include machine learning,
computer vision and autonomous
robots.

	Reinforcement learning for robot soccer
	Abstract
	Introduction
	Related work
	Reinforcement learning for soccer robots
	Reinforcement learning background
	Value iteration
	Q Learning
	Policy iteration

	Batch-mode reinforcement learning
	Neural fitted value iteration
	Neural fitted Q-iteration (NFQ)
	Neural fitted policy iteration

	Setting up the neural RL controller
	An architecture for soccer-playing robots

	Case study I: learning an aggressive defense behavior
	The environment
	Task description & learning system setup
	Successes
	Failures

	Special features
	Learning procedure
	Final performance

	Case study II: learning motor speed control
	The environment
	Task description & learning system setup
	Special features
	Learning procedure
	Final performance

	Case study III: learning to dribble on a MidSize robot
	The environment
	Task description & learning system setup
	Special features
	Learning procedure
	Final performance

	RL in Brainstormers' competition teams
	Conclusions
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

