Lecture 12: Uncertainty - 3

Victor Lesser

CMPSCI 683
Fall 2004

- Continuation of Inference in Belief Networks
- Automated Belief propagation in PolyTrees

d-separation:

Direction-Dependent Separation

- Network construction

- Conditional independence of a node and its predecessors, given its parents
- The absence of a link between two variables does not guarantee their independence
- Effective inference needs to exploit all available conditional independences
- Which set of nodes X are conditionally independent of another set Y, given a set of evidence nodes E
- $P(X, Y / E)=P(X / E) \cdot P(Y / E)$
- Limits propagation of information
- Comes directly from structure of network

d-separation

Definition: If X, Y and E are three disjoint subsets of nodes in a DAG, then E is said to dseparate X from Y if every undirected path from X to Y is blocked by E . A path is blocked if it contains a node Z such that:
(1) Z has one incoming and one outgoing arrow; or
(2) Z has two outgoing arrows; or
(3) Z has two incoming arrows and neither Z nor any of its descendants is in E.

d-separation cont.

d-separation cont.

- Property of belief networks: if X and Y are dseparated by E , then X and Y are conditionally independent given E .
- An "if-and-only-if" relationship between the graph and the probabilistic model cannot always be achieved.

d-separation example-case 1

Whether there is Gas in the car and whether the car Radio plays are independent given evidence about whether the SparkPlugs fire [ignition] (case 1).

$$
\begin{aligned}
& \mathrm{P}(\mathrm{R}, \mathrm{G} / \mathrm{I})=\mathrm{P}(\mathrm{R} / \mathrm{I}) \cdot \mathrm{P}(\mathrm{G} / \mathrm{I}) \\
& \mathrm{P}(\mathrm{G} / \mathrm{I}, \mathrm{R})=\mathrm{P}(\mathrm{G} / \mathrm{I})
\end{aligned}
$$

d-separation example-case 2

Gas and Radio are conditionally-independent if it is known if the battery works (case2).

$$
\mathrm{P}(\mathrm{R} / \mathrm{B}, \mathrm{G})=\mathrm{P}(\mathrm{R} / \mathrm{B}) ; \mathrm{P}(\mathrm{G} / \mathrm{B}, \mathrm{R})=\mathrm{P}(\mathrm{G} / \mathrm{B})
$$

d-separation example - case 3

Gas and Radio are independent given no evidence at all. But they are dependent given evidence about whether the car Starts. For example, if the car does not start, then the radio playing is increased evidence that we are out of gas. Gas and Radio are also dependent given evidence about whether the car Moves, because that is enabled by the car starting.

P(Gas/Radio)=P(Gas); P(Radio/Gas)=P(Radio)
P(Gas/ Radio,Start) not= P(Gas/Start)

Inference in Belief Networks

- BNs are fairly expressive and easily engineered representation for knowledge in probabilistic domains.
- They facilitate the development of inference algorithms.
- They are particularly suited for parallelization
- Current inference algorithms are efficient and can solve large real-world problems.

Network Features Affect Reasoning

- Topology (trees, singly-connected, sparselyconnected, DAGs).
- Size (number of nodes).
- Type of variables (discrete, cont, functional, noisy-logical, mixed).
- Network dynamics (static, dynamic).

Belief Propagation in Polytrees

Polytree belief network, where nodes are singly connected -Exact inference, Linear in size of network

Multiconnected belief network. This is a DAG, but not a polytree. -Exact inference, Worst case NP-

Reasoning in Belief Networks

$$
P(Q / E)=?
$$

Belief Network Calculation in Polytree: Evidence Above

- What is $\mathrm{p}(\mathrm{Y} 5 \mid \mathrm{Y} 1, \mathrm{Y} 4)$
- Define in terms of CPTs $=\mathbf{p}(\mathbf{Y} 5, \mathbf{Y} 4, Y 3, Y 2, Y 1)$
- p(Y5|Y3,Y4p(Y4),p(Y3|Y1,Y2), p(Y2), p(Y1)
$-\mathrm{p}(\mathrm{Y} 5 \mid \mathrm{Y} 1, \mathrm{Y} 4)=\mathrm{p}(\mathrm{Y} 5, \mathrm{Y} 1, \mathrm{Y} 4) / \mathrm{p}(\mathrm{Y} 1, \mathrm{Y} 4)$

y_{5}
- $\mathrm{p}(\mathrm{Y} 5 \mid \mathrm{Y} 1, \mathrm{Y} 4)=\mathrm{p}(\mathrm{Y} 5, \mathrm{Y} 3 \mid \mathrm{Y} 1, \mathrm{Y} 4)+\mathrm{P}(\mathrm{Y} 5$, not $\mathrm{Y} 3 \mid \mathrm{Y} 1, \mathrm{Y} 4)$
- Connect to parents of $\mathbf{Y} 5$ not already part of expression, by marginalization
- $=\operatorname{SUM}(\mathrm{Y} 3) \mathrm{p}(\mathrm{Y} 5, \mathrm{Y} 3 \mid \mathrm{Y} 1, \mathrm{Y} 4)$

Continuation of Example Above

- $=\operatorname{SUM}(\mathrm{Y} 3)(\mathrm{p}(\mathrm{Y} 5 \mid \mathrm{Y} 3, \mathrm{Y} 1, \mathrm{Y} 4) * \mathrm{p}(\mathrm{Y} 3 \mid \mathrm{Y} 1, \mathrm{Y} 4))$
$-\mathbf{P}\left(\mathbf{s}_{i}, \mathrm{~s}_{\mathrm{j}} \mathbf{j} \mathbf{d}\right)=\mathbf{P}\left(\mathrm{s}_{\mathrm{i}} \mid \mathrm{s}_{\mathbf{j}}, \mathbf{d}\right) \mathbf{P}\left(\mathrm{s}_{\mathrm{j}} \mid \mathbf{d}\right)$
- $=\mathrm{SUM}(\mathrm{Y} 3) \mathrm{p}(\mathrm{Y} 5 \mid \mathrm{Y} 3, \mathrm{Y} 4) * \mathrm{p}(\mathrm{Y} 3 \mid \mathrm{Y} 1, \mathrm{Y} 4)$
- Y1 conditionally independent of $\mathbf{Y} 5$ given Y3,
- Y3 represents all the contributions of Y1 to Y5
- Case 1: a node is conditionally independent of nondescendants given its parents
- $=\mathrm{SUM}(\mathrm{Y} 3) \mathrm{p}(\mathrm{Y} 5 \mid \mathrm{Y} 3, \mathrm{Y} 4) * \mathrm{p}(\mathrm{Y} 3 \mid \mathrm{Y} 1)$

- Y4 conditionally independent of $\mathbf{Y} 3$ given Y 1
- Case 3: Y3 not a descendant of Y5 which d-separates Y1 and Y4

Continuation of Example Above

- = SUM(Y3) p(Y5IY3, Y4) * (Sum (Y2)p(Y3, Y2 |Y1))
- Connect to parents of Y3 not already part of expression
- $=\operatorname{SUM}(\mathrm{Y} 3) \mathrm{p}(\mathrm{Y} 5 \mid \mathrm{Y} 3, \mathrm{Y} 4) *(\operatorname{Sum}(\mathrm{Y} 2)$
$p(Y 3 \mid Y 1, Y 2)$ * $p(\mathrm{Y} 2 \mid \mathrm{Y} 1))$
$-p\left(s_{i}, s_{j} \mid d\right)=p\left(s_{i} \mid s_{j}, d\right) p\left(s_{j} \mid d\right) ;$ product rule
- = SUM(Y3) p(Y5IY3, Y4) *(SUM(Y2)
 $\mathrm{p}(\mathrm{Y} 3 \mid \mathrm{Y} 1, \mathrm{Y} 2) * \mathrm{p}(\mathrm{Y} 2)$)
- Y2 independent of $\mathbf{Y} 1 ; \mathbf{p}(\mathbf{Y} 2 / \mathbf{Y} 1)=p(Y 2)$
- Definition of Baysean network

Belief Network Calculation in Polytree:

Evidence Below

- What is $\mathrm{p}(\mathrm{Y} 1 \mid \mathrm{Y} 5)$
- p(Y1|Y5) $=\mathrm{p}(\mathrm{Y} 1, \mathrm{Y} 5) / \mathrm{p}(\mathrm{Y} 5)$
- $\mathrm{p}(\mathrm{Y} 1, \mathrm{Y} 2, \mathrm{Y} 3, \mathrm{Y} 4, \mathrm{Y} 5)=$ in terms of cpt
- p(Y5|Y3,Y4)p(Y3|Y1,Y2)p(Y1)p(Y2)p(Y4)
- $\mathrm{p}(\mathrm{Y} 1 \mid \mathrm{Y} 5)=\mathrm{p}(\mathrm{Y} 5 \mid \mathrm{Y} 1) \mathrm{p}(\mathrm{Y} 1) / \mathrm{p}(\mathrm{Y} 5)$
- Bayes Rule
y_{5}

- $\quad=\mathrm{K} * \mathrm{p}(\mathrm{Y} 5 \mathrm{Y} 1) \mathrm{p}(\mathrm{Y} 1)$

Continuation of Example Below

- $\quad=\mathrm{K}^{*} \mathrm{p}(\mathrm{Y} 5 \mid \mathrm{Y} 1) \mathrm{p}(\mathrm{Y} 1)$
- $=\mathrm{K}^{*}(\operatorname{SUM}(\mathrm{Y} 3) \mathrm{p}(\mathrm{Y} 5 \mid \mathrm{Y} 3) \mathrm{p}(\mathrm{Y} 31 \mathrm{Y} 1)) \mathrm{p}(\mathrm{Y} 1)$
- Connect to Y3 parent of Y5 not already part of expression
$-\mathbf{P}\left(\mathbf{s}_{\mathbf{i}} \mid \mathrm{s}_{\mathbf{j}}\right)=\operatorname{SUM}(\mathbf{d}) \mathbf{P}\left(\mathrm{s}_{\mathbf{i}} \mid \mathrm{s}_{\mathbf{j}}, \mathbf{d}\right) \mathbf{P}\left(\mathbf{d} \mid \mathrm{s}_{\mathbf{j}}\right)$
- Y1 conditionally independent of Y5 given Y3
- p(Y5|Y3,Y1)= p(Y5|Y3)
- $=\mathrm{K}^{*}(\mathrm{SUM}(\mathrm{Y} 3)(\mathrm{SUM}(\mathrm{Y} 4) \mathrm{p}(\mathrm{Y} 5 \mid \mathrm{Y} 3, \mathrm{Y} 4) \mathrm{p}(\mathrm{Y} 41 \mathrm{Y} 3)) \mathrm{p}(\mathrm{Y} 31 \mathrm{Y} 1))$ $\mathrm{p}(\mathrm{Y} 1)$
- Connect to Y4 parent of Y5 not already part of expression
$-P\left(s_{i} l s_{j}\right)=\operatorname{SUM}(d) P\left(s_{i} \mid s_{j}, d\right) P\left(d \mid s_{j}\right)$

- $\quad=\mathrm{K} *(\operatorname{SUM}(\mathrm{Y} 3)(\mathrm{SUM}(\mathrm{Y} 4) \mathrm{p}(\mathrm{Y} 5 \mathrm{Y} 33, \mathrm{Y} 4) \mathrm{p}(\mathrm{Y} 4)) \mathrm{p}(\mathrm{Y} 31 \mathrm{Y} 1))$
p(Y1)
- Y4 independent of Y3; $\mathbf{p}(\mathbf{Y} 4 \mathbf{Y} 3)=\mathbf{p}(\mathbf{Y} 4)$

Continuation of Example Below

$$
\text { - }=\mathrm{K} *(\mathrm{SUM}(\mathrm{Y} 3)
$$

(SUM(Y4)p(Y5IY3,Y4)p(Y4))p(Y3|Y1)) p(Y1)

- = K * (SUM(Y3)
(SUM(Y4)p(Y5IY3,Y4)p(Y4))(SUM(Y2)p(Y3|
Y1,Y2)p(Y2lY1))) p(Y1)
- Connect to Y2 parent of Y3 not already part of expression
$-P\left(s_{i} \mid s_{j}\right)=\operatorname{SUM}(d) P\left(s_{i} \mid s_{j}, d\right) P\left(d \mid s_{j}\right)$

- $=\mathrm{K} *(\mathrm{SUM}(\mathrm{Y} 3)$
(SUM(Y4)p(Y5IY3,Y4)p(Y4))(SUM(Y2)p(Y3|
Y1,Y2) $\mathrm{p}(\mathrm{Y} 2)) \mathrm{p}(\mathrm{Y} 1)$
- Y2 independent of Y1
- Expression that can be calculated from cpt

Variable Elimination

- Can remove a lot of re-calculation/multiplications in expression
- K * (SUM(Y3)
(SUM(Y4)p(Y5lY3,Y4)p(Y4))(SUM(Y2)p(Y31Y1,Y2)p(Y2))) p(Y1)
- Summations over each variable are done only for those portions of the expression that depend on variable
- Save results of inner summing to avoid repeated calculation
- Create Intermediate Functions
- F-Y2(Y3,Y1)=(SUM(Y2)p(Y3IY1,Y2)p(Y2))

Evidence Above and Below for Polytrees

If there is evidence both above and below $\mathrm{P}(\mathrm{Y} 3 I \mathrm{Y} 5, \mathrm{Y} 2)$
we separate the evidence into above, ε^{+}, and below, ε^{-}, portions and use a version of Bayes' rule to write

$$
p\left(Q \mid \varepsilon^{+}, \varepsilon^{-}\right)=\frac{p\left(\varepsilon^{-} \mid Q, \varepsilon^{+}\right) p\left(Q \mid \varepsilon^{+}\right)}{p\left(\varepsilon^{-} \mid \varepsilon^{+}\right)}
$$

we treat

$$
\frac{1}{p\left(\varepsilon^{-} \mid \varepsilon^{+}\right)}=k_{2} \text { as a normalizing factor and write }
$$

$$
p\left(Q \mid \varepsilon^{+}, \varepsilon^{-}\right)=k_{2} p\left(\varepsilon^{-} \mid Q, \varepsilon^{+}\right) p\left(Q \mid \varepsilon^{+}\right)
$$

Q d-separates ε^{-}from ε^{+}, so

$$
p\left(Q \mid \varepsilon^{+}, \varepsilon^{-}\right)=k_{2} p\left(\varepsilon^{-} \mid Q\right) p\left(Q \mid \varepsilon^{+}\right)
$$

We calculate the first probability in this product as part of the top-down procedure for calculating $p\left(Q \mid \varepsilon^{-}\right)$. The second probability is calculated directly by the bottom-up procedure.

- Most probable explanation (MPE) or most likely hypothesis:

The instantiation of all the remaining variables U with the highest probability given the evidence

$$
\operatorname{MPE}(\mathrm{U} \mid \mathrm{e})=\operatorname{argmax}_{\mathrm{u}} \mathrm{P}(\mathbf{u}, \mathrm{e})
$$

- Maximum a posteriori (MAP):

The instantiation of some variables \mathbf{V} with the highest probability given the evidence

$$
\operatorname{MAP}(V \mid e)=\operatorname{argmax}_{v} P(v, e)
$$

Note that the assignment to A in MAP(Ale) might be completely different from the assignment to A in $\operatorname{MAP}(\{A, B\} \mid e)$.

- sum over values of B vs individual values of B
- Other queries: probability of an arbitrary logical expression over query variables, decision policies, information value, seeking evidence, information gathering planning, etc.

Incremental Updating of BN: Pearl's message passing algorithm

Notation:

$M_{y \mid x}$	Conditional probability matix
e	The evidence
$\operatorname{Bel}(x)=P(x \mid e)$	Posterior distribution of x

$$
f(x) \bullet M_{y \mid x}=\sum_{x} f(x) M_{y \mid x}
$$

Simple chains

$\mathrm{e}=\left\{\mathrm{e}^{+}, \mathrm{e}^{-}\right\}$
e^{+}Represents the "causal" evidence
e^{-}Represents the "evidential" evidence
Need to compute $\operatorname{Bel}(x)$

Simple Chains cont.

$$
\begin{aligned}
\operatorname{Bel}(x) & =P\left(x \mid e^{+} e^{-}\right) & & \\
& =\frac{P\left(e^{-} \mid x e^{+}\right) P\left(x \mid e^{+}\right)}{P\left(e^{-} \mid e^{+}\right)} & & \text {Bayes rule } \\
& =\alpha P\left(e^{-} \mid x e^{+}\right) P\left(x \mid e^{+}\right) & & \text {Normalization } \\
& =\alpha P\left(e^{-} \mid x\right) P\left(x \mid e^{+}\right) & & x \mathrm{~d}-\operatorname{sep} e^{+} e^{-} \\
& =\alpha \cdot \lambda(x) \cdot \pi(x) & &
\end{aligned}
$$

The $\lambda(x)$ and $\pi(x)$ Messages

$\lambda(x)$ represents the degree to which x might explain the evidential support. -- $\mathrm{P}\left(\mathrm{e}^{-/ X}\right)$
$\pi(x)$ represents the direct causal support for x. -- $P\left(X / e^{+}\right)$

Both $\lambda(x)$ and $\pi(x)$ can be calculated in terms of the λ and π values of the neighbors of x.

Computing $\lambda(x)$ based on $\lambda(y)$

$$
\begin{aligned}
\mathrm{e}^{+} & \rightarrow \mathrm{T} \rightarrow \cdots \rightarrow \mathrm{U} \rightarrow \mathrm{X} \rightarrow \mathrm{Y} \rightarrow \cdots \rightarrow \mathrm{e}^{-} \\
\lambda(x) & =P\left(e^{-} \mid x\right) \\
& =\sum_{y} P\left(e^{-} \mid x, y\right) P(y \mid x) \\
& =\sum_{y} P\left(e^{-} \mid y\right) P(y \mid x) \quad y \mathrm{~d}-\operatorname{sep} x, \mathrm{e}^{-} \\
& =\sum_{y} \lambda(y) P(y \mid x) \\
& =\lambda(y) \cdot M_{y \mid x}
\end{aligned}
$$

Computing $\pi(x)$ based on $\pi(u)$

$$
\begin{aligned}
\pi(x) & =P\left(x \mid e^{+}\right) \\
& =\sum_{u} P\left(x \mid u e^{+}\right) P\left(u \mid e^{+}\right) \\
& =\sum_{u} P(x \mid u) P\left(u \mid e^{+}\right) \quad u \mathrm{~d}-\operatorname{sep} x, \mathrm{e}^{+} \\
& =\sum_{u} P(x \mid u) \pi(u) \\
& =\pi(u) \bullet M_{x \mid u}
\end{aligned}
$$

Update scheme for chains

Belief Propagation in Trees

- Each node must combine the impact of λ messages from several children.
- Each node must distribute a separate π message to each child.

Propagation in Polytrees

Decomposing the evidence

The evidence E can be decomposed into two subsets:

- E_{i}^{+}, the subset of E that can be accessed from X_{i} through its parents.
- E_{i}^{-}, the subset of E that can be accessed from X_{i} through its children.

The current strength of the causal support, π, contributed by each incoming link $U_{i} \rightarrow x$:

$$
\pi_{x}\left(U_{i}\right)=P\left(U_{i} \mid e_{u i x}^{+}\right)
$$

The current strength of the diagnostic support, λ, contributed by each outgoing link $x \rightarrow Y_{j}$:

$$
\lambda y_{j}(x)=P\left(e_{x y j}^{-} \mid x\right)
$$

The fixed conditional probability matrix

$$
\left.P\left(x \mid u_{1}, \mathrm{~K}, u_{n}\right)\right)
$$

Propagation Process

Step 1: Belief updating: Inspect msgs from parents \& children and compute:

$$
\begin{aligned}
\operatorname{Bel}(x)= & \alpha \lambda(x) \pi(x) \text { where }: \\
& \lambda(x)=\prod_{j} \lambda y_{j}(x) \\
\pi(x)= & \sum_{u_{1} \mathrm{~K} u_{n}} P\left(x \mid u_{1} \mathrm{~K} u_{n}\right) \prod_{i} \pi_{x}\left(u_{i}\right)
\end{aligned}
$$

Step 2: Bottom-up propagation: Compute λ msgs to send up.
$\lambda x\left(U_{i}\right)$ is the msg X sends to parent U_{i}.
$\lambda_{x}=\beta \sum_{x} \lambda(\mathbf{x}) \sum_{\mathrm{U}_{k}=k=i} P\left(x \mid \mathrm{U}_{1} \ldots \mathrm{U}_{\mathrm{n}}\right) \prod_{\mathrm{k} \neq \mathrm{i}} \pi_{\mathrm{x}}\left(\mathrm{U}_{k}\right)$
β is an arbitrary constant (factor out contributions to $\operatorname{bel}(\mathbf{x})$ from $\mathbf{U}_{\boldsymbol{i}}$)

Step 3: Top-Down Propagation:

Compute π msgs to send down.

$$
\begin{aligned}
& \pi_{Y_{j}}(x) \text { is sent from } x \text { to child } Y_{j} \\
& \pi_{Y_{j}}(x)=\alpha\left[\Pi \lambda_{Y k}(x)\right] \sum P\left(x \mid U_{1} \ldots \mathbf{U}_{n}\right) \Pi \pi_{x}\left(U_{i}\right) \\
& k \text { not } j \\
& U_{1} \ldots U_{n} \quad i \\
& =\alpha \cdot \underline{\operatorname{Bel}(x)} \quad \text { (factor out contributions to bel(} x) \text { from } Y_{j} \text {) } \\
& \lambda_{\mathrm{yj}}(\mathrm{x})
\end{aligned}
$$

Boundary Conditions:

1. $\operatorname{Root} \Rightarrow \pi(x)$ is the prior prob. dist.
2. Childless node $\Rightarrow \lambda(x)=(1, \ldots, 1)$
3. Evidence node $\Rightarrow \lambda(x)=(0, \ldots, 1 \ldots, 0)$

- Approximate inference techniques
- Alternative approaches to uncertain reasoning

