Uncertainty Management

1. Fuzzy Logic
2. Dempster/Shafer’s Theory of evidence

3. Interval Approaches



Fuzzy Set

Let X denote a space of objects.

definition: A fuzzy set A in X is a set of ordered pairs

A={(z,xa(a))},zeX

where x 4(z) is termed the grade of membership of x in A, which is usually represented by
values in [0,1]. That is:
xa:X —[0,1]

The grade of membership introduces an ordering in the set A relative to X.

Examples: 1) A="Balanced AHOC-Hand”
Let X be the set of all possible AHOC hands, let xeX and let s(x), d(x), h(x) and c(x)

denote the number of spades, hearts, diamonds and clubs in x.

|s(x) =3[ + [h(x) = 3| + |d(z) — 3] + [e(x) — 3]
10

xa(z) =max(0,1 — )
remark: The definition of fuzzy set is subjective and usually requires expertise about
the use of the concept approximated by the fuzzy set.

2) B="Trump-rich AHOC-Hand”

10 — sp(x)

T

xB(x) = If sp(x) >9 then 1 else max(0,1 —

Special problems:
1) Is x trump-rich and balanced?
2) Is x trump-rich or balanced?
3) Is there a hand that is trump-rich and balanced?
4) Are all trump-rich hands unbalanced?



Why is Fuzzyness Important in AI-Research?

e Many concepts don’t have precise criteria for deciding if an object belongs to this
concept. This inexactness can be caused by:
1) The generality of the concept; frequently, the same concept is used in various
contexts.
2) The ambiguity of the concept; the same concept has more than one meaning.
3) The vagueness of the concept: there are no precise boundaries.

For example: How can we describe the meaning of: a long street,a real numbers much
greater than 1, balanced hand, fever in computers?

e Furthermore, not only the concepts itself are frequently fuzzy but also our natural
language uses a large number of fuzzy quantifiers: see for example; most, usually,
rarely, frequently, much, occasionally.

(1) Most Americans drive a car
(2) Most car drivers are aggressive.
}_

3) Usually Americans are aggressive.

(
(1) Most Swedes have blond hair.

(2) Males rarely have blond hair.

l_

(3) Male Swedes have occasionally blond hair.

The main objective of fuzzy Logic and the other approaches to uncertainty man-
agement is to provide uncertainty models and inference rules based on these models
suitable to automate the above inferences.

e The terminology used in the application area frequently involves fuzzy concepts and
the expert frequently uses fuzzy quatifiers, when he describes the domain-specific
knowledge. Therefore, its adequate representation in computers and the automation of
inference based on this fuzzyness is one of the most critical problems when developping
a knowledge based system.

e Frequently, it is much easier to approximate fuzzy concepts using funtions instead of
explicitely enumerating the degree of membership of each element of the fuzzy set.



Estimation of Membership Functions

pages 9,10 and 28



Example Fuzzy Reasoning
Let X={John, Fred, Sally, Jane}

0.9 x=John
0.8 x=Fred
0.8 x=Sally
0.3 x=Jane
1.0 x=John
0.9 x=Fred
0.7 x=Sally
0.1 x=Jane

Xintelligent (ZL‘) =

Xrich (33) =

”All intelligent persons are rich.”

Vz(intelligent(x) — rich(x))

Let z=intelligent — rich

1.0 x=John
1.0 x=Fred
0.9 x=Sally
0.8 x=Jane

Xz (7) =

That is, a certainty factor of 0.8 is assigned to the above statement.



Dempster/Shafer Belief Functions

Suppose O is a finite set, and let 2© denote the set of all subsets of ©. Suppose the
function Bel: 2 — [0, 1] satisfies the following conditions:
(1) Bel(0)=0
(2) Bel(©)=1
(3) Bel(A1U...UA,) >

ZBel )= Bel(A;NAj)+ ... — ..+ (=1)" ™ Bel(A N ... N 4,)

1<j

then Bel is called a belief function over ©.

remark: Belief function are models to approximate our patial belief in certain propo-
sitions.

Bayesian Belief Functions

(1) Bel(#)=0
(2) Bel(©)=1
(3) If AN B = () then Bel(A U B) = Bel(A) + Bel(B) — Bayes’ rule of additivity.
(4) Tf Bel(A)>0 then Bel(B|A) = Z5505)
Remarks:

e Bayesian Belief functions are a special case of Dempster/Shafer belief functions.

e In the case of a Bayesian belief function, it is impossible to assign belief to A without
assigning the remaining belief to not(A), because Bayes’ rule of additivity is assumed
to hold. That is, it cannot be expressed that let’s say mildly positive evidence for A
has been observed and nothing concerning not(A) has been observed. Bayes’ approach
has no representation for ignorance.

e Dempster’s Rule of Combination is the conterpart of Bayes’ theorem in Bayesian
approaches.



Basic Probability Assignment Functions



Example

Let © = {A, B,C}, where

e A="The Dow Jones index will rise by 2 or more percent.”
e B="The Dow Jones index will not change dramatically(by more than 2%).”
e C="The Dow Jones index will fall by 2 or more percent.”
Obviously, A, B and C are exclusive.

Bel() =
Bel({A}) =0.1
Bel({B}) = 0.0
Bel({C}) =05
Bel({A,B}) =0.2
Bel({A,C}) = 0.6
Bel({B,C}) = 0.7
Bel(©) = 1.0

The corresponding probability assignment function m is:

Subsets A of © for which m(A) > 0 are called focal elements of Bel.



Dempster’s Rule of Combination

let m(A) measure the the total portion of belief, or the total probability mass, that is
confined to A yet none of which is confined to any proper subset of A.



Example: Applying Dempster’s Rule of Combination
Let ©={A,~ A} and m1 and m2 be defined as follows:

ml(A) =0.7
mg(w A)=0.2
s & ma(A) — 0.4%0.7+0.7%0.4+04%0.2  0.64
! T T 2 01%04-02%0.7 082
0.1%0240.1%04+0.2%0.2 0.1
m1 @ ma(~ A) = 0.82 = 0.82
04%0.2 0.08
m @ ma(0) = == = e

Properties of ¢

@ is commutative and associative; that is, the order in which evidence is combined
doesn’t matter.

@ is belief-function preserving: if applied to belief functions the resulting function is
a belief function.
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Relationship to MYCIN

Combination of Non-Conflicting Evidence

Set

m1(A) = a, my(A) =b

ma(~ A) = 0, ma(~ 4) =0
m1(©)=1—a, my(©®)=1—-0

b 1—0b)+bx(1-—
ml@mz(A):a* +a*(1_0)_—5 l a)za—}—b—a*b

That is, MYCIN’s combination functions can be regarded as a special case of Dempster’s
rule of combination.

Combination of Conflicting Evidence
mi(A) =a, ma(A) =0

m1(~ A) = 0, mg(’\/ A) =b
m1(©)=1—a, my(©®)=1-0

a—ax*xb
L A
b—axb
m@ma~ A) =T
1l—a)x(1 -0
Remarks

e Obviously, by applying Dempster’s rule of combination we have received a different
combination function.

e The function is more sophisticated compared to MY CIN’s combination function, which
is not very suprising because because it uses more information; it uses a two-valued
approach in contrast to MY CIN which uses a single-valued approach: we have to store
two values m(A) and m(~A) in contrast to MYCIN which uses either one of the two.
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Dow-Jones Example continued

Independent Evidence has been received from another knowledge source expressed by
mq, which has the following focal elements:

m1({C}) =0.2
mi1({B,C}) = 0.5

After combining the evidence expressed by m; and m, we receive:

o my((c)) = 02* (0.5+02+0.1)+05%05+0.3%05 0.56
mom = —
! 1—(0.2%(0.1+0.1) + 0.5 (0.1)) 0.91

05%(0.2+0.1)+03%02 0.2
m @& m({B,C}) = 0.01 = 091

0+0+03%0.1 0.03
m & mi({A}) = 0.01 ~ 001

remark: The demominator of Dempster’s rule enforces that contradictory evidence(originally]]
assigned to my @ ms(0)) is equally distributed over the focal elements of my & ms guran-

teeing that mq @ ms(0)=0 holds and that the sum over all focal elements of m; & mq is
1.
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The Interval Approach

In this approach the belief that a certain proposition P is true is measured by assigning
an interval [a b] to P, expressing the following semantics:
(1) The probability that P is true is at least a. The confirmation of P is a: confla b] = a
(2) The probability that P is false is at least (1 —b). The disconfirmation of P is (1 — b):
disconf([a b]) =1 —b.
(3) The uncertainty of our belief concerning P is measured by (b —a): unc([a b)) = b— a.
(4) The certainty of our belief concerning P is measured by 1 — (b — a): cert([a b)) =
1 — unc([a b]).
(5) The mean value of our belief concerning P is measured using:
mu([a b]) = 2£.

For example, if we assign an interval [40 99] to P we express the following: P is
confirmed with 40%. The disconfirmation of P is 1%. That is, 40% of the probability
is assigned to P, 1% pf the probability is assigned to (not P); it is unknown how the
remaining probability(59%) is distributed: we don’t know how much of this probability is
assigned to P and how much is assigned to (not P); the uncertainty is 59%. A special case
is the interval [0 1]; it expresses the fact that we know nothing about a proposition P1;
the confirmation and the disconfirmation of P is 0%. The uncertainty is 100%.

L That is, 7unknown” can be directly be represented in the interval approach.
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2. Computing the certainty factors of the left-hand side

We distinguish the following 5 cases for computing P(A;... A ... A A,,) assuming the
certainty of A; is [a; b;] for i=1,n.
casel: correlation=1
The A; are maximally overlapping(best case)

Aq Jay by]

An[an bn]
AL N N Ay Imax(ag, ..., ap), max(by, ..., by)]

P(A1... A ... NAy) =min{P(A),..., P(A,)}

case2: correlation=0
The A; are statistically independent(~ average case) — the A; are uncorrelated.

Ay [a1b1]
Apanby]
AL AN NA, [ag * .ok ag, by ... by

cased: correlation=-1

The A; are maximally disjoint(worst case) — high negative correlation between the
A;.
Let ¢(c1,...,¢cn) =maz(0,1 — (1 —c1) — ... — (1 —¢y))

Ay [a1bq]
A1 [a1 51]

An [an bn]
AN NA, [Y(ar, . an), Y(br, .y by)]
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case4: 0 < correlation <1
Interpolate using the results received for casel and case2.

caseb: —1 < correlation <0
Interpolate using the results for case2 and case3.

For example, assuming correlation=0 we will receive for:
(and (0.4 0.9)(0.8 0.9)) = (0.32 0.81)
Assuming correlation=1, we would receive:

(and (0.4 0.9)(0.8 0.9)) = (0.4 0.9)

The negation of intervals can easily be computed using:

not(I) =not((ab))=(1-5b 1—a)

Finally, the corresponding formulas for the disjunction can easily be derived using the
formulas for the conjunction and:

P(Av B)=P(A)+ P(B) — P(ANB)

Another special problem arises when the left-hand side of a rules refers to predicates
that are not stored in the knowledge base. Two different interpretations make sense in
this case:

1) closed world assumption: P is assumed to be false([0 0]).
2) open world assumption: P is assumed to be undefined ([0 1]).
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3. Modus Ponens Generating Functions
The next problem is, how can the positive/negative evidence a rule

(R1 (if E) (then (infer H with [c d])) )

R1 provides concerning a predicate H be computed, if the certainty factor of the rule’s
left-hand side has already been computed as [a b]? Schematically:

if E then H [c d
E [a b]

What is the rule’s contribution (71 72) concerning H?

Functions that compute (71 72) are called modus ponens generating functions.
The assignment of an interval [c¢ d] to the rule’s right hand side predicate H can be
interpreted in two ways:
1) P(H|FE) is at least ¢ and at most d
2) P(E — H) is at least ¢ and at most d
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3.1 Interpretation as a conditional probability

general assumption: if E then H [c d] expresses: the probability of P(H|E) is at
least ¢ and at most d.

Using this interpretation, we can derive the following modus ponens generating func-
tion:

Using
if E then H [c d]
E [a b]
b S oA (b—a) <y°
we infer:
H[?1 22]
With
1=min(cxa+ (1 —d)*x(1—a),cxb+ (1 —d)*(1-0))

72 =min(l,max(d*xa+ (1 —c)*x (1 —a),dxb+ (1 —c)* (1 —10)))

reasons: Let E’ denote the observations that cause to suspect that E is true and let E
denote the a posteri probability of E infered taking into account the additional observations
E’. Then, the above formula can be derived as follows:

P(H|E'") = P(H A E|E") + P(H A not(E)|E') =

Making the "reasonable” assumption that ”if we know that E is present(absent),
then the observations E’ relavant to E provide no further information about H” — that is,
P(H|ENE')=P(H|E) and P(H|E Nnot(F)) = P(H|(not(E)) — we receive:

— P(E|E') * P(H|E' A E) + P(not(E)|E") + P(H|not(E) A E') =

P(H|E) x P(E) + P(H|not(E)) x P(not(E))

Unfortunately, P(H |not(FE)) is unknown — we only can say that P(H|E) > P(H|not(E))
if E and H are positively correlated and P(H|E) < P(H|not(F)) if E and H are nega-
tively correlated. Having no other clues concerning P(H |not(E)), we pragmatically set
P(H|not(E)) to P(H|E). The magnitude of the error we get by doing this is dependent
on (1-P(E)) and on |correlation(E, H)|. In order to keep the error small, rules will only
be applied, if there is some positive evidence that E is true (for example we set § = 0.55
and 1 = 0.85).

Additionally taking into account that P(E) is given as an interval [a b], Iz has to
be computed so that the lower bound becomes minimal and the upper bound becomes
maximal (varying possible values x with a < z < b of Iz) — or we can pragmatically
set P(E) to %E2). If we use the first approach, additionally taking into account that
¢ < P(H|FE) < d holds, we receive for H’s (a posterori interval) [?1 72|, decribed above.

6 The logic behind this is that we only have knowledge about the relationship of E and H, but not of
not(E) and H
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3.2 Interpretation as a probability of a disjunction

general idea: In contrast to the interpretation given before, this approach interprets
if E then H [c d] as: The probability of P(E — H) is at least ¢ and at most d. That is,
the approach assigns an uncertainty interval to:

P(A— B) = P(=AV B) =1 — P(A) + P(B) — P(~A A B)

Again, we have to distinguish at least 3 cases depending on how the conjunction in the
above formula is computed.

casel: Use the Fuzzy Logic Or-function”:

Using:

If E then H [c d]

E [a b]

(1—a)<d

infer:

if(l—a)<c

then H [c d]

else H [0 d]

case2: Use Conventional Probability Theory®:
Using:

if E then H [c d]

E [a b]
(@#O0AN(c+a>1)AN(b+d>1))
infer:

H [c+a71 b+g71]

case 3: Assuming maximal disjointness®:
Using;:

if E then H [c d]

E [a b]

(a+c)>1

infer:

H [c+a-1 b+d-1]

7 Correlation=1
8 Correlation=0

9 Correlation=-1
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Proofs of the 3 Modus Ponens Generating Functions

case 1:

maz(l — P(E),P(H)) > ¢

Depending on which of the two is smaller we receive:
if (1—P(F)) <c)then P(H) > ¢

else "nothing can be infered about P(H)”

mazx(l — P(E), P(H)) <d
Distinguishing the two cases we can infer:
if (1—P(FE))<d)then P(H) <d

else "we have run into an inconsistency”

Unfortunately, the exact value of P(E) is not known; we only know that a < P(E) < b
holds. We have to choose P(E) so that the lower bound of H becomes minimal and the
upper bound becomes maximal. Obviously, this can be achieved by setting P(E) to a,
because this maximizes the probability that the else-part of the two if-then-else-statements
is executed. By integrating the two if-then-else-statement and by setting P(E) to a, we
receive the result.

case 2:
c+PE)-1 1—c
PH) 2 =5 =1 b
d+PE)-1 _  1-d
PH) < =55 =1~ 5@

Both expressions increase monotonously depending on P(E). Therefore, we set P(E)=a
for the lower bound and P(E)=b for the upper bound. After incorperating consistency
considerations, we receive the result.

case 3:

1-PE)+PH)>c

P(H)>c+ P(E) -1

Furthermore:

PH)<d+P(E)-1

Taking the worst case(P(E)=a) for the lower bound and the best case(P(E)=b) for
the upper bound, we receive:

[a+c-1 b+d-1]
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4. Combining evidence received from several rules

Several rules can provide positive or negative evidence concerning a predicate P. As-
suming that n intervals I, ..., I, have been infered using the methods discussed in chapters
3 and 4, the overall certainty factor of P has to be computed combining the evidence ex-
pressed in the intervals I, ..., I,,. Schematically:

Ry provided evidence 11 = (ay by) for predicate P
R, provided evidence I, = (a, by,) for predicate P
Overall evidence I = (71 72) for P

That is, we are looking for functions combine that give a reasonable estimation of the
certainty I of P:

I = combine(Iy,combine(Is, ...,combine(l,_1,1,)...))

5.1 Requirements for Good Combination Functions

Unfortunately, there is an unlimited number of possible combination functions com-
bine. This brings up the question, which combination function is the best one. There is no
unique answer to this question — reasoning is performed in different contexts. However,
it is worth while to define some general requirements of good combination functions that
are capable to facilitate the selection of candidate functions:

(1) More certain clues should get a higher weight than clues that are less confirmed.

For example, the meanvalue of combine([0.5 0.9],[0.40 0.41]) should be relatively close

to 0.41, because the second interval is 40 times less uncertain than the first one.

(2) The addition of very uncertain new evidence should not at all or only slightly affect
the overall evidence concerning a predicate P. Especially, combine([a b],[0 1]) = [a b]
must hold.

(3) A higher number of clues (with a similar uncertainty) should lead to a higher certainty
of our estimates. In other words, the more evidence we have concerning a predicate
of interest P, the more certain is our prediction — the more clues we have analyzed
the more certain is the result. New evidence should never increase the uncertainty:
cert(combine([a b],[c d])) > max{cert([a b)), cert([c d])}

(4) The order in which certain evidence is combined should have no effect on the overall
result; that is, if we combine evidence in different orders, then the result should be
the same:

combine(combine([a b], [c d]),[e f])) = combine(combine([a b],[e f]),[c d]))

Remark: If this assumption is violated combining n intervals in different orders may
lead to ambiguities, which is not desirable. Furthermore, if the above condition holds,
it is sufficient to store for each proposition the current interval and not the set of
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previous intervals, which simplifies the implementation of the inference process a lot.
On the other hand, this requirement puts severe restrictions on possible combina-
tion functions, because combination functions satisfying this requirement have to be
associative.

(5) If we have recieved absolute certainty concerning a proposition, further new evidences
should not change our overall perception of the proposition; that is we can stop making
further inferences concerning P. Formally:

If b # ¢ then combine([a al, [b c]) = [a d]

Another important aspect — ignored so far in our discussions — is if the evidence
concerning a predicate P has been received by interpreting the same or different knowledge
sources.

Let’s consider the following two examples: Two medical test T1 and T2 are used to
predict the probability of P. Both tests interpret the same knowledge source (for example
an ECG). T1 comes up with [70 80] and T2 comes up with [80 90]. In this case, we would
expect the probability of P about 80% (we apply some kind of voting mechanism), because
both intervals have been received from the same knowledge source. Furthermore, if T1
and T2 come up with more or less the same mean value, we would increase the strength
of our belief in this probability.

On the hand, let’s assume the same intervals have been received concerning a predicate
P by interpreting blood cultures(T1) and the patient’s ECG(T2); that is, by interpreting
two different knowledge sources: In this case, we tend to give a much higher estimation for
the probability of P(let’s say 98%), because P has been confirmed by interpreting different
(and not only single) knowledge sources.

Obviously, we have to distinguish these two cases in our requirements.

(6a) If rules working on different knowledge sources independently provide confirming pos-
itive(negative) and reliable!® evidence, then the mean value of the combined interval
should be significantly greater(less) than the maximum mean value of the intervals to
be combined: for example,

mu(combine([0.9 1],[0.8 1])) > 0.95
mu(combine([0 0.1],[0 0.2])) < 0.05

(6b) If evidence has been received using different rules interpreting the same knowledge
source, then the combined mean value should not be significantly greater or less than
the weighted average of the mean value of the intervals to be combined — using the
uncertainty of the intervals as a weight.

10" That is, the uncertainty of the intervals should not be high, let’s say less than 0.5.
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5.2 Two Combination Functions and their Properties

Two different combination functions are used in PICASSO:

e A function mscomb that assumes that the evidence has been received independently
from different knowledge sources. That is, because of the independence assumption
mscomb will increase the overall probability of P, if confirming evidence has been
found. mscomb can be derived straight forward by applying Dempster’s rule of com-
bination ([SHA 76],[DEM 68] — for technical details see [YU 86],[GIN 84] or [DUB
85)).

e A new, so far unpublished, function sscomb that assumes that the evidence to be
combined has been received by interpretating the same knowledge source; that is, the
different intervals represent differents ”opinions” about the same subject. Therefore,
sscomb uses a weighted voting approach, that weigthts each interval to be combined by
its uncertainty: certain intervals get a higher weight compared to uncertain intervals
and confirming evidence will not increase the overall probability. For example, see the
difference in:
sscomb([0.9 11,[0.9 1])=(0.925 0.975) and mscomb([0.9 1],[0.9 1])=[0.99 1].

mscomb and sscomb are defined as follows:
mscomb([l; uq],[l2 us]) =

11XUQ+l2XU1—l1X12 U1 X Uz
1—[1X(1—U2)—Z2X(1—U1) 1—ll><(1—u2)—l2><(1—u1)

[

]

Let 7 = unc(l1) + unc(lz)
Then sscomb is defined by the following two equations:

¢ 0.5 T=2

cert(Iy)
cert(I1)+cert(Iz)

cert(Iz)
cert(I1)+cert(Is)

s mu(ly) +

xmu(ly) 1<7<2

muv(sscomb(Iy, 1)) = (I) (11)
unc(lz % mv(h) + Unci1 * m’U(IQ) 0<7<1

unc(Iy)+unc(Iz) unc(Iy)+unc(lz)
\ mv(]l)—gmv(lg) =0
(0 if =0
unc(I)xunc(lz) 0<r<1

unc(li)+unc(l.
unc(sscomb(Iy, I3)) = < . )

unc(ly) xunc(lz) 1<7<2

(1 T=2
Obviously, the lower and upper bound of the combined interval I can easily computed
using the mean value and the uncertainty.
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The two combination functions have the following properties:

In both functions the uncertainty of the combined evidence is smaller than the uncer-
tainty of the original intervals: many clues increase the certainty.

mscomb([0 1]),[a b])= sscomb([0 1],[a b])=[a b]: completely uncertain knowledge should
not change the overall evidence.

mscomb is associative; sscomb is associative when combining intervals, whose uncer-
tainty is less equal 0.5.

sscomb combines the intervals assigning a higher weight to more certain intervals;
that is, it gives preference to evidence received from rules that have a high degree of
confirmation. Mscomb does not always have this property!2.

e mscomb and sscomb are commutative.
e MYCIN’s combination function is a special case of mscomb.

In summary, dscomb satisfies the requirements (2),(3),(4) and (6a); sscomb satisfies

the requirements (1),(2),(3),(4) when combining certain intervals(r < 1), (5) and (6b).

12

see for example:
dscomb([0.2 0.3],[0.0 0.8])=[0.166 0.250]
dscomb([0.2 0.3],[0.2 0.6])=[0.179 0.231]

dscomb([0.2 0.3],]0.4 0.4])=[0.200 0.200]
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5. A small example

(r1 (if (and (cloudy-sky) (humid))) (then (infer (rain) with (0.4 0.9))) (corr 0.5))
(r2 (if (high-pressure)) (then (infer (rain) with (0.0 0.7)))
(r3 (if (and (hot) (humid))) (then (infer (rain) with (0.6 1.0))) (corr 1.0))

(r4 (if (not(high-pressure)) (then (infer (rain) with (0.3 1.0)))

Assumption: dscomb and the modus ponens g. function of 3.1 is used.

Infering (rain) casel case2 case3
cloudy-sky (0.88 0.90) (0.60 0.62) (0.90 0.92)
humid (0.88 0.90) (0.58 0.60) (0.62 0.64)
hot (0.80 0.82) (0.90 0.94) (0.65 0.67)
high-pressure (0.32 0.34) (0.80 0.82) (0.90 0.92)
evidence rl (rain) (0.35 0.86) not fired (0.28 0.78)
evidence r2 (rain) not fired (0.05 0.76) (0.02 0.73)
evidence r3 (rain) (0.48 0.89) (0.35 0.76) (0.37 0.78)
evidence r4 (rain) (0.20 0.90) not fired not fired
overall evidence (rain) (0.67 0.84) (0.32 0.64) (0.40 0.60)
Interpretation

e In the first case there is a strong suggestion that it will rain(about a 75% chance); in
the other two cases a about 50% percent of rain chance was predicted. However, for
the second test case this prediction is relatively unreliable: the uncertainty is 0.32.

e Note that in case 3 the rule r2 that provided positive evidence that balanced the
negative evidence provided by rule rl1 and r3.

e Although, the evidence we got in case 1 from rl, r2 and r4 was relatively uncertain, the
presense of 3 independent clues supporting the rain hypothesis resulted in a relatively
reliable predication of a 75% chance of rain.
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