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Abstract

Most existing unsteady flow visualization techniques concentrate on the depiction of geometric patterns in flow, assuming the
geometry information provides sufficient representation of the underlying physical characteristics, which is not always the case.
To address this challenge, this work proposes to analyze the time-dependent characteristics of the physical attributes measured
along pathlines which can be represented as a series of time activity curves (TAC). We demonstrate that the temporal trends
of these TACs can convey the relation between pathlines and certain well-known flow features (e.g., vortices and shearing
layers), which enables us to select pathlines that can effectively represent the physical characteristics of interest and their
temporal behavior in the unsteady flow. Inspired by this observation, a new TAC-based unsteady flow visualization and analysis
framework is proposed. The center of this framework is a new similarity measure that compares the similarity of two TACs, from
which a new spatio-temporal, hierarchical clustering that classifies pathlines based on their physical attributes, and a TAC-
based pathline exploration and selection strategy are proposed. A visual analytic system incorporating the TAC-based pathline
clustering and exploration is developed, which also provides new visualizations to support the user exploration of unsteady flow
using TACs. This visual analytic system is applied to a number of unsteady flow in 2D and 3D to demonstrate its utility. The
new system successfully reveals the detailed structure of vortices, the relation between shear layer and vortex formation, and
vortex breakdown, which are difficult to convey with conventional methods.
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1. Introduction

Vector field visualization is a ubiquitous technique that is em-
ployed to study a wide range of dynamical systems ranging from
automobile and aircraft engineering, to climate study, combus-
tion dynamics, earthquake engineering, and medicine. Many ef-
fective approaches have been developed to visualize such com-
plex data [ELC∗12, LHZP07, PPF∗11, SWJS08]. Among these
techniques, the geometric-based approaches [MLP∗10, ELC∗12,
SLC19] are commonly applied due to their intuitive representation
of flow behavior. Examples of geometric-based techniques include
various integral curve/surface based representations and integral
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curve clustering that concentrate on the geometric characteristics
of the flow (e.g., the shape or curvature of integral curves).

However, there are two limitations with the existing geometric-
based methods. First, important physically relevant features are not
always captured. For example, vector field topology –an abstract
representation of the geometric characteristics of steady flow, only
encodes hyperbolic features in the flow. Other physically relevant
information, e.g., vortices, shearing, etc., is not always captured.
Similarly, clustering methods that select integral curves to ensure
sufficient spatial coverage and to reduce cluttering typically do not
consider physical importance. Second, a geometric representation
may not intuitively reveal the physical behavior of the flow, as
shown in Figure 1. To incorporate physics into the visualization
of flows, Zhang et al. [ZNT∗17] introduced a Lagrangian accumu-
lation framework that can be used to characterize integral curves
by inspecting their respective overall attribute behaviors (i.e., each
integral curve is assigned a value by accumulating the values of an
attribute of interest along the curve). That technique was inspired
by the pathline attributes introduced by Shi et al. [STH∗09]. In the
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Figure 1: (a) Two pathlines with similar geometry derived from the
flow behind a cylinder and the vorticity field shown by the volume
rendering. (b) The corresponding profiles of the vorticity measured
along the two pathlines show different physical behaviors.

meantime, Lee et al. proposed a visualization framework to ana-
lyze time-varying data sets with a time activity curve (TAC) based
distance field [LS09b], which is used to highlight features. All the
previously mentioned research looks at the overall characteristics
(or the sum/average) of local attributes, which may not capture all
defining characteristics, e.g., the diffusion behavior of Q concentra-
tion [HWM88] during the advection of vortices over time (Figure
8), due to the suppression of local information.

To address the above limitations and incorporate more detailed
physics into the analysis and visualization of unsteady flow, we
propose a novel visual analysis framework based on the tempo-
ral behavior of local, physical attributes of interest measured along
individual pathlines. Similar to Lee et al. [LS09b], we refer to the
temporal profile of the attribute along a pathline as a time activity
curve (TAC). Unlike Shi et al. [STH∗09] and other similar meth-
ods that also compute the pathline attributes, our framework takes
into account the arbitrary movement of the observer. That is, the
physical features in our framework are computed in the optimal
reference frames; hence the geometric representation aligns with
the corresponding physical attribute field and the TAC profiles do
not vary under reference frame transformations [GT20]. The ben-
efits of analyzing the flow behavior based on TACs are two-fold.
First, they are 1D plots that are independent of the flow dimension
(i.e., applicable to both 2D and 3D data); hence processing them
is easier. Second, the geometric characteristics of TACs (e.g., as-
cending, descending, peaks, valleys, etc.) reveal the interaction of
flow particles with physical features over time. This enables us to
explain the geometric characteristics of the corresponding pathlines
and vice versa. For instance, in the 2D flow behind cylinder (Figure
8), pathlines seeded in the core area of a vortex exhibit large pos-
itive Q values and slowly change over time, matching the flat ge-
ometry of those pathlines. In contrast, pathlines seeded outside the
core of a vortex have large variation of Q values over time, match-
ing the helical behavior of the pathlines. In addition, the attribute
profile provides additional information that the geometry of path-
lines cannot convey, such as the decaying of the Q concentration
over time, indicating the loss of the rotation momentum of vortices
during transport. Such an in-depth coupling of pathline character-
istics and physical attributes has not been studied previously.

The above observations and benefits of TACs lead us to be-
lieve that TAC analysis may serve as the cornerstone of an explo-
ration framework that reveals relevant flow behavior more effec-

tively than inspecting the geometric characteristics of the integral
curves alone. Our contributions are summarized as follows.

• We propose to couple the pathline characterization with the at-
tribute profiles (i.e., TACs) measured along the pathlines to pro-
vide a more informative exploration of unsteady flow. Different
from previous work, we take into account all the sampled at-
tribute values along each pathline during their characterization.
• We introduce a number of analysis and exploration techniques

based on TACs, including a new spatio-temporal, hierarchical
clustering of pathlines based on their respective TACs (Sec-
tion 4.2) and a TAC-based pathline selection and exploration.
Central to these techniques is a comprehensive similarity mea-
sure for the comparison of two TACs, which we refer to as a
TAC similarity measure (TSM) that incorporates the global cor-
relation of pair-wise TACs and the spatio-temporal distances be-
tween them (Section 4.1).
• We develop a visual exploration system (Section 5) that inte-

grates the aforementioned TAC-based analysis and exploration
techniques with a number of novel visualizations to support an
effective user exploration of the pathline behaviors based on their
respective TACs, including a modified edge-bundling visualiza-
tion of TAC clusters and 2D stack plot for TAC behavior sum-
marization and exploration (Section 4.3.3).

We have applied our TAC-based exploration system to a number
of 2D and 3D unsteady flows. Our framework effectively reveals
the two-layer configuration of a vortex and its decay over time in
vortex shedding, which is difficult to reveal via conventional meth-
ods. We also facilitate interpretation of the temporal behavior of
vortex rings in both 2D and 3D simulations, including its interac-
tion with a wall and its breakdown. In particular, our system suc-
cessfully selects pathlines to effectively depict the temporal behav-
iors of small-scale vortices in a number of 2D unsteady flows that
was difficult to achieve previously. Furthermore, we demonstrate
the flexibility of our framework by combining it with other anal-
ysis techniques (e.g., shearing layer criterion and FTLE computa-
tion [Hal01]) to help enhance their characterizations.

2. Related Work

There is a large body of literature on the analysis and visualiza-
tion of flow data. Interested readers are referred to recent surveys
for dense and texture-based visualization techniques [LHD∗04],
geometric-based methods [ELC∗12, MLP∗10], illustrative vi-
sualization [BCP∗12], clustering-based approaches [SLC19],
topology-based methods [LHZP07, PPF∗11], and partition-based
techniques [SWJS08]. In this section, we focus on the most closely-
related work.

Topological vector field analysis. Vector field topology provides
a streamline classification strategy based on the origin and destina-
tion of the individual streamlines. Since its introduction to the visu-
alization community [HH89], vector field topology has received ex-
tensive attention. A large body of work has been introduced to iden-
tify different topological features, including fixed points [PP03,
TSH01] and periodic orbits [CML∗07, TWS04, WS01]. Recently,
Chen et al. [CMLZ08] studied the instability of trajectory-based
vector field topology and, for the first time, proposed Morse de-
composition for vector field topology computation, which leads to
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a more reliable interpretation of the resulting topological represen-
tation of vector fields. Szymczak et al. [SZ12] introduced a new
approach to converting the input vector field to a piecewise con-
stant (PC) vector field and computing the Morse decomposition on
a triangulated manifold surface.

For the topological analysis of unsteady flow, Lagrangian Co-
herent structures (LCS), i.e., curves (2D) or surfaces (3D) in the
domain across which the flux is negligible, were introduced to
identify separation structures in unsteady flow. The computation
of LCS was first introduced by Haller [Hal01] by computing the
Finite-Time Lyapunov Exponent (FTLE), whose ridges indicate the
LCS. FTLE has been compared with the separatrices in the steady
case [SP07], and its computational performance has been improved
substantially [GWT∗08]. Recently, Fuchs et al. [FKS∗10] pre-
sented an extended critical point concept to adapt the notion of
vector field topology to unsteady flows. Sadlo and Weiskopf in-
troduced a streakline-based topology based on generalized streak-
lines [SW10]. It successfully characterizes the saddle type of hy-
perbolic features and has been extended to study 3D unsteady flow
topology [ÜSE13].

Integral curve attributes. Salzbrunn and Scheuermann intro-
duced streamline predicates that classify streamlines by interro-
gating them as they pass through user-specified features, e.g., vor-
tices [SS06]. Later, this approach was extended to classifying path-
lines [SGSM08]. At the same time, Shi et al. [STH∗09] presented
a data exploration system to study the characteristics of path-
lines based on various attributes, including winding angle. Re-
cently, a statistics-based method was proposed to help select the
proper set of pathline attributes to improve interactive flow analy-
sis [PLMH12]. More recently, McLoughlin et al. [MJL∗13] intro-
duced the idea of a streamline signature based on a set of curve-
based attributes including curvature and torsion. This streamline
signature is used as a measure of the similarity between stream-
lines, pathlines, and helps domain experts place and filter stream-
lines for the creation of an informative and uncluttered depiction of
3D flow. Zhang et al. [ZCL∗16] extended Lagrangian accumulation
to define an attribute field based on the accumulated values along
integral curves. This attribute field employs an Eulerian representa-
tion of Lagrangian information in a similar fashion to texture-based
techniques. It conveys a continuous representation of the variation
associated with integral curve behavior to some extent.

Time-varying series analysis and visualization. TACs have been
studied in scientific visualization in recent years [WYM08,WS09a,
WFMF00,GRCR03,WS09b,LS09a,FMHC07]. Lee et al. proposed
a visualization framework to analyze time-varying data sets with a
TAC-based distance field [LS09b]. This field provides a visualiza-
tion to highlight the position of the features; however, it still does
not provide certain details about an individual TAC, especially the
temporal occurrence and period of an interesting feature. Wei et
al. introduced a dual-space method to analyze turbulent combus-
tion particle data, starting by clustering the time series curves in
the phase space of the data, and then visualizing the corresponding
trajectories of each cluster in the physical space [WYG∗11]. The
2D time series curves are constructed using the correlation between
temperature and mixture fraction. These curves are then clustered
using the statistical model-based method. For spatio-temporal vi-

sualization of vortex features, Ferrari et al. [FHM20] combined the
vortex core lines extracted from the maxima score correlation of
the two attributes λ2 and vorticity along the time dimension to cre-
ate an evolution surface of vortices. Ferstl et al. proposed a time-
hierarchical clustering approach for analyzing the temporal growth
of the uncertainty in ensembles of weather forecasts [FKRW17].
For a thorough overview of approaches for the time-varying data,
please refer to the surveys [EA12, Lia05]. In this work, we opt for
the AHC clustering for a consistent multi-level abstract represen-
tation of the flow. We apply a new similarity-based measure over
the statistical model as in [WYG∗11] driven by the unique require-
ments of our problem. Parts of this work have been presented as
an IEEE Visualization 2019 short paper [NZL∗19]. In comparison
with that short paper, the work presented here uses a different simi-
larity measure for TAC comparison and for pathlines selection, ap-
plies different strategies to choose candidate cut points for temporal
clustering, combines the proposed clustering framework with other
analysis (like FTLE), and provides additional experimental results
to fully demonstrate the usefulness of the proposed framework.

3. Vector Field and TAC Background

Consider a spatio-temporal domain =× where ⊂d is a d-manifold
(d = 2,3) and ⊂, a general vector field can be expressed as an or-
dinary differential equation (ODE) ẋ = V (x, t). For an unsteady
(or time-dependent) vector field V (x, t), the trajectory of a parti-
cle starting at x0 and at time t0 is called a pathline, denoted by
xx0,t0(t) = x0 +

∫ t
0 V (xx0,t0(τ), t0 + τ)dτ.

3.1. Local Attributes in Vector Field

There are a number of local attributes that are of interest to domain
experts. Given a steady vector field v, its spatial gradient ∇xv is
referred to as its Jacobian, denoted by J. J can be decomposed as
J= S+R, where S= 1

2 [J+(J)>] and R= 1
2 [J−(J)>] are the sym-

metric and antisymmetric components of J, respectively. A number
of flow attributes can be derived from v, J, S and R [PLMH12].
In the examples shown in the paper, we utilize the following local
attributes, Al , for experimentation.
• A1: vorticity magnitude, ||∇×v||.
• A2: λ2, computed as the second largest eigenvalue of the tensor

S2 +R2 [JH95].
• A3: Q = 1

2 (‖R‖
2−‖S‖2). [Hun87]

• A4: local shear rate, defined as the Frobenius norm of S.

• A5: norm of J,
√

∑i j J2
i j. [GT18]

The attributes selected in this work are widely used in fluid me-
chanics to characterize different physical properties of the flow. For
example, Q, λ2 and vorticity are the common attributes for vor-
tex characterization. Local shear rate and the norm of Jacobian are
used to study the local divergence and separation behavior in the
flow. Note that although not included in the above list, other at-
tributes provided in a given simulation (e.g., acceleration, kinetic
energy, pressure and dye) can also be used with our framework.
The correlation and dependency of these attributes has been stud-
ied in [BMLC19]. One important aspect about the derived attributes
is that they change when the reference frames change. As a result,
TACs are variant under the movement of reference frames. To make
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Figure 2: (a) An example TAC with three events. ts1 and ts2 are
two split points defined at the extrema. (b) An example of identify-
ing temporal cuts for temporal clustering. Cuts are selected at the
maxima of the density curve. (c) A similar TAC as in (a), but the
split points are defined at the maxima and minima of the derivative
curve (d).

the TACs independent from the reference frame transformation, we
utilize the hyper-objective measure from Günther et al. [GT20] to
find the optimal local reference frame in which the flow appears
near-steady. Under this reference frame, the velocity and Jacobian
become objective which means they are invariant under any smooth
affine transformations (rotation, translation and uniform scale). The
attributes computed in the near-steady field are also affine invari-
ant. For the complete explanation about the changes of reference
frames, please refer to [GT20].

3.2. Time Activity Curve (TAC)

In this section, we describe how TACs are computed based on a
given local attribute. We also introduce the concept of split points,
which are used to segment a TAC into multiple intervals.

Definition of TAC: Given a local attribute A, a Lagrangian TAC
along a pathline C of a particle, seeded at x at time t, can be ex-
pressed as:

ΓA,C [i] = A(C(x, ti), ti)|i = 1,2 . . .n (1)

where t1, t2 . . . tn are the sample times within the time window T ⊂
and C(x, ti) is the location of x on the pathline C at time ti. Similarly,
Eulerian TACs of attributes can be measured at a fixed location over
time. For the rest of the discussion, we focus on Lagrangian TACs
unless specified otherwise.

To simplify the notation, we denote a Time Activity Curve as Γ=
{Γ[i]|i = 1,2 . . .n} where Γ[i] is the local attribute value at time ti.
Figure 2(a) illustrates a TAC where the x axis indicates time indexes
and the y axis shows the local attribute values at the corresponding
times. The length of a TAC is the number of values in the TAC,
indicating the lifespan of the corresponding particle.

Split points: Since TACs are time series data, we want to analyze

their behaviors in different time intervals. To facilitate the temporal
characterization, we split a TAC into multiple sub-TACs by using
either the extrema or inflection points as shown in Figure 2(a)(c).
These split points are later used in the temporal clustering to seg-
ment all Γ in identical time intervals (Section 4.3.1).

4. TAC-based Flow Exploration Framework

Overview. Our pipeline consists of two main phases: computation
and exploration (Section 5). We concentrate on the computation
phase in this section. First, we densely and uniformly sample the
particles in the flow domain and compute pathlines. The user can
also manually select seed points in the region of interest to compute
pathlines. Depending on the attributes of interest, the corresponding
TACs are derived and segmented into multiple time intervals (Sec-
tion 4.3.1). Next, we perform a hierarchical clustering based on the
characteristics of the entire TACs (Section 4.2). Based on the global
clustering result, we perform a hierarchical temporal clustering of
TACs to capture the level-of-detail characterization of their tem-
poral behavior (Section 4.3.2). From the spatio-temporal clustering
result, flow exploration (Section 5) is conducted from the following
three perspectives: flow space, attribute space and temporal space.
In the following we detail our TAC-based clustering.

4.1. TAC-based Similarity Measure

To assist the spatio-temporal clustering of TACs, we first describe
our similarity measure for TACs. To compare the difference in the
characteristics of two TACs, the similarity measure takes both the
temporal trends and magnitude of TACs into account. The tradi-
tional distance metrics, such as the Euclidean distance and the
Pearson correlation coefficient, concentrate on either the trend or
the magnitude of the TACs and cannot satisfy our needs. Figure 3
(left column of (a) and (b)) illustrates the limitations of Euclidean
distance and Pearson correlation coefficient in characterizing the
difference in a number of representative TACs. Another metric for
measuring the similarity of two time series is Dynamic Time Warp-
ing (DTW) [LS09b]. DTW considers both shift and deformation of
the time series. However, the time stamp for each sample in the
TACs has specific meaning which requires us to align the TACs
based on the time stamps, making DTW less suitable in our cases.

To address the limitations of the existing similarity measures,
we introduce a new TAC Similarity Measure (TSM) to calculate
the similarity of TACs based on their spatial and correlation dif-
ferences. The proposed measure requires linear time to compute;
thus, it is practical to apply the measure to large data sets. TSM is
defined as follows:

Dtsm(Γ1,Γ2) = (1+Pc Dcorr(Γ1,Γ2)) De(Γ1,Γ2) (2)

Dcorr(Γ1,Γ2) = 0.5− cov(Γ1,Γ2)

2σΓ1 σΓ2

(3)

where cov is the covariance and σΓ is the standard deviation of Γ.

De(Γ1,Γ2) =

√
n

∑
i=1

(Γ1[i]−Γ2[i])2 (4)
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Figure 3: Comparison of our TAC Similarity Measure (TSM) and
(a) Euclidean distance metric and (b) Pearson correlation, respec-
tively. The TACs are computed based on the λ2 attribute on the
Double Gyre simulation. Colors represent clusters. In both cases,
the difference of TACs cannot be accurately measured by Euclidean
distance or Pearson correlation (left column). (a) De(Γbase,Γ1) =
42.32 > De(Γbase,Γ2) = 38.87, using the Euclidean distance. (b)
Dp(Γ1,Γ2) = Dp(Γ2,Γbase) = 1 using Pearson correlation, result-
ing in all of them belonging to the same group. TSM can differ-
entiate the behavior of TACs more accurately in both cases (right
column): (a) Dtsm(Γbase,Γ1) = 42.32 < Dtsm(Γbase,Γ2) = 72.45
(b) Dtsm(Γ1,Γ2) = 18.87 < Dtsm(Γ2,Γbase) = 32.61.

In the above definition, De(Γ1,Γ2) represents the Euclidean spa-
tial distance between the two TACs Γ1 and Γ2. De(Γ1,Γ2) ad-
dresses the challenges illustrated in the left column of Figure 3(a)
where TACs exhibit similar trends but a different spatio-temporal
distance measure. Dcorr(Γ1,Γ2) measures the global correlation
between TACs Γ1 and Γ2. If Dcorr(Γ1,Γ2) = 1, then the first
term in Equation 3 (1 + Pc ×Dcorr(Γ1

′
i ,Γ2
′
i)) = 2 which means

Γ1 and Γ2 have opposite trends. In contrast, if Dcorr(Γ1,Γ2) = 0,
Γ1 and Γ2 have the same trend and the value of the first term is
1. Dcorr(Γ1,Γ2) aims to resolve the ambiguity illustrated in Fig-
ure 3(a) where Γ1 and Γ2 have similar Euclidean distance, but dif-
ferent correlation distance relative to Γbase. By using Dcorr(Γ1,Γ2),
the T SM measure can differentiate Γ1 and Γ2; hence it groups Γ1
to Γbase rather than Γ2 illustrated in the right column of Figure
3(a). Dcorr(Γ1,Γ2) introduces a penalty factor Pc, which represents
a user-assigned importance for the spatial difference and the global
correlation, respectively. The higher value of Pc, the more weight
given to the global correlation. By default, we set Pc = 1.

We use multiplication instead of addition to combine the first
and second terms in Eq. 2 due to the relation between the two
terms, and their value range difference. The first term is equal to 1
when the two TACs contain similar trends. In this case, the distance
between two TACs is completely based on the second term (i.e,
Euclidean distance). If the two TACs have opposite trends, then the
distance between the TACs is expected to be large. By multiplying,
we magnify the second term by a maximum of two when the TACs
have inverse trends.

Figure 3 illustrates the advantages of TSM (right column) over
the Euclidean distance and Pearson correlation. In both cases, TSM
can differentiate the behavior of TACs more accurately.

With the above similarity measure, we can develop a TAC-based
pathline selection and exploration strategy which allows us to high-
light pathlines whose TACs exhibit certain specific characteristics
(i.e., the distance of their TACs to a reference TAC is smaller than
a threshold). We will defer the discussion of this functionality until
the results.

4.2. TAC-based Clustering

In order to provide different levels of detail for flow behavior w.r.t.
the local attributes, we perform the clustering of TACs using the
new similarity measure over all temporal samples, coupled with
the popular agglomerative hierarchical clustering (AHC). The link-
age type used in this work is the complete linkage since it is bet-
ter for finding compact clusters of approximately equal diame-
ter [Def77]. To reduce the traditional cubic time complexity, we
implement the parallel, locally-ordered AHC proposed by Walter
et al. [WBKP08], which runs in sub-quadratic time.

AHC gives rise to a hierarchical tree with each node representing
a cluster and each bifurcation representing a merging (see an exam-
ple shown in view 2 of Figure 6). The different heights of the hierar-
chical tree which correspond to the distance values of the two clus-
ters indicate the merging order. The lower the level, the sooner the
leaf nodes will be merged. A sample merging order can be found in
Figure 7 where the hierarchical tree with six leaf nodes is reduced
to three nodes. As the number of clusters represents the level of ab-
straction, increasing the number of clusters results in more details
to be revealed as shown in Figure 7 (top row). Choosing a suitable
number of clusters of pathlines to reveal the most interesting flow
behavior is not trivial, and it is a trade off between the details of
flow behavior and the clearness of the cluster structures. In practice,
it is an exploration process. Since the hierarchical tree is a natural
product of AHC, a user can interactively select the number of clus-
ters to show after the clustering computation (i.e., no re-clustering
is needed).

4.3. TAC-based Temporal AHC

Two TACs that belong to two clusters may possess local segments
having similar behavior (Figure 2(c-d)), which cannot be captured
in the above global clustering along the entire time range. To ad-
dress this, we propose a hierarchical clustering algorithm in the
temporal dimension, i.e., a temporal AHC.

We aim to address following technical challenges to achieve tem-
poral AHC: (1) identify the appropriate temporal partitioning; (2)
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perform the AHC within each time interval obtained from step one;
(3) handle the transition of AHC results between consecutive time
intervals. Solving these problems is not trivial. First, all TACs have
different temporal behavior. Even the TACs that belong to the same
cluster may exhibit slightly different behavior, which makes the se-
lection of cutting points (or cuts) for temporal partitioning difficult.
Second, the AHC performed on individual time intervals and along
the time axis should be consistent in terms of the error threshold
and similarity characterization of the clusters. Third, the AHC re-
sults obtained in consecutive time intervals may not be identical. It
is important to keep track of their transition relation (i.e., bifurcate
or merge) across the cuts. In the following, we detail our solutions
to these challenges.

4.3.1. Time Interval Segmentation of TAC

To study TACs in a level-of-detail fashion, we apply time interval
segmentation to a group of TACs. The time intervals that segment
TACs must preserve TAC characteristics. In other words, one prim-
itive trend of a TAC is not expected to be segmented into two time
intervals, which causes fragmentation. For an individual TAC, we
can simply apply 1D Morse decomposition to generate the tem-
poral sequences of TAC segments, as shown in Figure 2(b). How-
ever, for a group of TACs, it is not guaranteed that the segment
split points are identical. To address this, we utilize a 1D Gaus-
sian kernel density estimation (KDE) and choose the point with the
highest estimated density as the split point. Specifically, we first
identify the inflection points for each TAC. Let x1,x2, ...,xn be a
set of 1-dimensional inflection points on R and let H be a positive
definite bandwidth value. The univariate fixed bandwidth kernel es-
timator is defined as [Sil86]: f (x) = 1

NH ∑
N
i=1 K( x−xi

H ), where K is

the Gaussian kernel K(x) = 1√
2π

e−x2/2. Selection of the bandwidth
value H is important in KDE as it can make the density estimate
smoother or noisier. However, in our case, the value of H does not
affect the position of the point with the highest estimated density.
Thus, by default we set H to 1.

The cutting points obtained from the above KDE segment the
entire time period T into a number of intervals of varying length,
referred to as T = 〈T1,T2, ...,Tm〉. In this way, all TACs are seg-
mented by these splitting points which attempt to preserve the most
common characteristics of all TACs. An example of time interval
segmentation is illustrated in Figure 2(c).

4.3.2. Temporal Hierarchical Clustering

After performing the temporal partitioning and obtaining the local
time intervals, we now perform AHC within each interval. We ap-
ply the proposed similarity measure (Eq. 2) for temporal clustering.

Assigning the cluster number for each time interval is diffi-
cult because, on one hand, the number of time intervals in time-
hierarchical clustering varies, while on the other hand, the cluster
distances in different time intervals may be different. To show the
consistent changes across time intervals, the same treatment needs
to be applied uniformly. Therefore, we use the distance threshold
ε for the global clustering to guide the clustering within individual
time intervals. Specifically, the distance threshold εi for time inter-
val Ti is determined by the time range of the interval, i.e., εi =

|Ti|
|T | ε.

In this way, it is foreseeable that there are more clusters generated
in the time intervals where the TACs behave more diversely, i.e.,
when TACs have larger dissimilarities.

The goal of temporal clustering is to build up a hierarchical tree
of the input m time intervals obtained in the previous temporal par-
titioning, i.e., m leaf nodes of the tree, so that the level-of-detail
of a TAC’s behavior can be observed in the temporal dimension.
In contrast to the spatial hierarchical clustering, in which any two
clusters can be selected for a merging operation, in temporal hier-
archical clustering only two clusters that are contiguous in time can
be merged together, which makes the merging operation simpler. In
our implementation, starting from the initial m leaf nodes (i.e., m
initial time intervals), a distance array D ∈R(m−1) is created. Each
entry indicates the dissimilarity after a pair of consecutive time in-
tervals are merged into one. D[i] can be computed as follows.

D[i] = η(Ti)+η(Ti+1)−η(Ti∪Ti+1) (5)

where η(Tk) is the average pairwise dissimilarity within a time in-
terval Tk, Ti∪Ti+1 is the new time interval obtained by merging Ti
and Ti+1.

η(Tk) =

√√√√∑
|Tk|
i=1 ∑

|Tk|
j=i(Dtsm(Γi,Γ j))2

|Tk|(|Tk|−1)
(6)

η(Tk) reflects the compactness of the TACs in the time interval Tk.
The larger the value of η(Tk), the further the TACs in Tk are located
from the centroid.

In spatial AHC, the two clusters with the smallest distance are
selected for merging. Similarly, in temporal hierarchical clustering,
the two time intervals with the smallest dissimilarity changes are
merged together first. In other words, time interval Tk and its neigh-
boring time interval Tk+1 that satisfies D[k] ≤ D[i],∀1 ≤ i ≤ M,
are first merged together to generate a new time interval Tk +Tk+1
and then removed from the node list. Consequently, a new m− 2
dimension distance array D(m−2) is generated with the remaining
m− 1 nodes. The above merge process is iterated until only one
time interval, i.e., the entire time period, remains as the root of the
temporal hierarchical tree. The height of the temporal hierarchi-
cal tree built on m time intervals is m− 1. On the ith level of the
tree, i.e., the height is i, there are m− i time intervals. This tem-
poral clustering strategy can be applied to all TACs or a subset of
TACs grouped based on the global clustering results from Section
4.2. For the latter, different numbers of temporal cuts (and temporal
segments) may be resulted for different global clusters, depending
on the overall TAC behavior of each cluster ( see Figure 10(c) for
an example.)

4.3.3. Visualization of TAC Clusters

An improved edge bundling technique. To visualize TAC clus-
ters with less cluttering, we adapt the edge bundling technique for
parallel coordinate plot visualization by Palmas et al. [PBO∗14].
Details of our adaption can be found in the supplemental document.
To ensure the color consistency for the temporal clustering visu-
alization of TACs, we assign a color to a cluster Cp based on its
main source cluster, i.e., the cluster from which most TACs in Cp
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Figure 4: Visualization of transition between time intervals. Re-
sults before (a) and after (b) cluster ID adjustment, respectively.
(c) edge-bundling visualization of the result. (d) modified edge-
bundling visualization. Magnified views show the transition be-
tween two time intervals.
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Figure 5: The visual comparison of edge-bundling with 1D TAC
color plot. (a) Actual TACs exhibit occlusion. (b) Edge-bundling
visualization provides an overview of each group of TACs. (c) The
smooth 1D stacked color plot means that the TACs are grouped
effectively. (d) The uniform blue color in the gradient color plot
indicates the similarity among neighboring TACs in each cluster.

originate in the previous time interval. For example, in Figure 4(a),
cluster C1 in T1 is the main source of cluster C2 in T2. Thus, the
color of C2 in T2 will be set in a manner consistent with C1 in T1 (
Figure 4(b)).

Visual overlapping persists at two ends of edge bundle as shown
in Figure 4(c). To address this limitation, we offset proportionally
to clusters’ size, whose heads or tails are overlapping. As illustrated
by the red arrow in Figure 4(d), the minimum value of C2 at the tail
end is increased and the maximum value of C3 at the tail end is
decreased, eliminating the overlapping between C2 and C3 while
preserving the relative range size simultaneously. Removing over-
lapping at the tail of Tk−1 makes the boundaries of source clusters
clear. To fully resolve the connections among time intervals, we vi-
sualize both main and minor sources at the head of a cluster. From
Figure 4(d), we can easily ascertain the transition of clusters be-
tween two time intervals.

A 2D stack plot. Although edge-bundling visualization is an ef-
fective way to provide an overview about a group of TACs , the
detailed behavior of individual TACs and the difference between
TACs in the group is not conveyed effectively (see the cyan TAC
cluster shown in Figure 5(b)). To address this, we visualize each
TAC using a 1D bar, whose colors are determined by attribute val-
ues of the TAC over time. We then stack these 1D color plots to
form a 2D color plot (Figure 5(c)). Note that TACs belonging to
the same cluster are rendered next to each other. With this condense
representation, one can easily assess the clustering quality. That is,
if the color in this 2D plot is smooth, it means that the neighboring
TACs have similar characteristics, indicating a good clustering re-
sult. The distance between two neighboring TACs is also converted
to the 1D color bar to create the gradient plot. If neighboring TACs
have similar patterns, the gradient between them is small, then the
plot exhibits mostly uniform color.

5. TAC-based Flow Visualization System

A multiple coordinated view system is developed to enable visual-
ization and exploration of unsteady flows using TACs. Users can
flexibly switch between different views to perform analysis and
comparison. Our system provides visualizations in the temporal
space, attribute space and the original flow domain. Figure 6 il-
lustrates the user interface. 1© The top left view has multiple tabs
showing TACs with temporal and global clustering results. 4© The
center view is the control panel that provides functions for user in-
teraction. 3© The bottom view shows a Line Integral Convolution
(LIC) [CL93] image generated for the first time step, and enables
users to select the region of interest (ROI). 5© The top right view vi-
sualizes pathlines in the space-time domain and the detailed TACs
( 6©) in the selected region of interest. View 2© shows the hierarchi-
cal clustering tree. Users can interact with the system and explore
the clustering results in four ways: (1) The user can select a region
of interest in view 3© and inspect the behaviors of the particles
seeded within this region. A volume rendering coupled with iso-
surfacing is used to visualize the behavior of the pathlines, which
are colored based on the spatio-temporal clustering in view 5©. (2)
The user can choose a specific cluster in view 1© to analyze its
TACs’ behaviors and highlight specific TAC and its corresponding
pathline (in view 5©). (3) The user can choose a temporal cluster to
analyze TACs’ behavior within a specific time interval. (4) The user
can manipulate the error threshold or number of clusters in view 2©
to inspect the abstract flow behavior with different levels of details
(see Figure 7 for an example).

5.1. TAC-based Exploration

In addition to the TAC-based clustering framework introduced
above, which is suitable for providing the overview of the behav-
iors of the unsteady flows. Our visual analytic system also supports
a number of exploration functionality based on TACs.

TAC-based pattern search. Similar to the pattern search from a
set of integral curves based on some template curve and its geo-
metric characteristics, the TSM measure for TACs can be applied
to perform the pattern search based on TACs’ behaviors. Unlike
clustering which considers all pairwise TAC distances, the pattern
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Figure 6: User interface of our system. (1) Multiple tab views show TACs with temporal and global clustering results. (2) Hierarchical Tree
generated from the AHC and the TAC color bars. (3) the Line Integral Convolution (LIC) image generated for the first time step, allowing
users to select the region of interest (ROI). (4) The control panel providing functions for user interaction. (5) Pathlines in the flow domain
and (6) the detailed TACs in the selected region of interest.

search starts with a reference TAC that can be selected by do-
main experts. The system then returns the most similar TACs and
their corresponding pathlines. This feature provides the freedom to
users to customize the TAC characteristics interesting to them (Fig-
ure 12(b)).

Input filtering. Instead of using a set of densely placed pathlines
in the first time step of the data sets, the experts may wish to focus
on a specific subset of pathlines based on some prior knowledge
about the flow. For instance, in the study of the relation between
shear layer and the vortex formation, the users may select a subset
of pathlines seeded within the shear layer of the flow (i.e. regions
with negative Q values) and study the characteristics of their cor-
responding TACs in hope with finding the pathlines starting from
the shear layer that may participate in the formation of vortices (i.e.
entering vortex regions) in a later time (Figure 13(b)). On the other
hand, the experts may be interested in certain features arising in
a later time and wish to see the origin of the particles that enter
these features. In this case, rather than computing the pathlines us-
ing forward tracing, backward tracing can be used to compute the
pathlines starting from the feature areas. In all these ad-hoc explo-
ration, our system can perform clustering and visualization on only
a subset of pathlines.

6. Applications

We have utilized our TAC-based exploration framework to help our
experts from aerospace engineering and mechanical engineering
analyze vortex structures in different situations (Sections 6.1) and
help reveal subtle difference in the seemly symmetric flow behavior
(Section 6.2).
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Figure 7: Clustering results of the Double Gyre flow using La-
grangian TACs of attribute curl with different numbers of clusters
(K=6, 3 from top to bottom, respectively), specified by the user in
the hierarchical tree view (left column). The height levels of the
hierarchical tree indicate the merging order. The lower level, the
sooner the leaf nodes will be merged. The middle two columns show
the TAC clusters, stacked plots and their representative TAC curves.
The right column shows the clusters in the flow domain. The time
window is T = 100×0.01 with 100×50 sampling points.

6.1. Vortex Structure Analysis

In the following, we demonstrate how we apply the proposed TAC-
based clustering to help study vortex behavior in a number of 2D
and 3D unsteady flows. Vortices are one of the most important dy-
namics in flow that often relate to energy/material transport and
mixing [Lei16]. The attributes applied in the following studies are
mostly Q, λ2, and vorticity (or curl in 2D). Although these at-
tributes have different temporal trends, they often result in similar
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Figure 8: Clustering result of the 2D cylinder flow using TACs
of attribute Q reveals a three-layered configuration of the vortex
system (pc = 100). (a) FTLE field shows the Lagrangian coherent
structures. (b) The LIC texture computed from the original veloc-
ity field does not reveal the vortex structures. (c) Pathlines sampled
along a vertical line passing the center of a vortex and (e) their
corresponding TACs. The TAC (red) of the pathline seeded in the
center region decreases monotonically over time, indicating the dif-
fusion of the concentrated vorticity, which gradually increases the
vorticity in the outer regions of the shedded vortices (TACs 2-4).
TAC 5 corresponds to the pathline seeded outside of vortex region,
which exhibits stable characteristic. (d) The two iso-contours (blue
and green) with Q values of 17 and 24, respectively, cannot fully
capture the vortex configuration. The LIC texture is computed from
the velocity in the optimal reference frame (f) TAC profiles of our
clustering results.

clustering results as shown in the supplemental document. In the
following, we only provide the representative result for each data
set using one of these attributes. In practice, the user should explore
different attributes to identify the attribute that best reveals the flow
behavior of interest.

2D flow behind a cylinder. Next, we apply our technique to a 2D
simulation of the flow behind a square cylinder with a Reynolds
number of 160 [WT10]. The simulation covers a subset of the
spatio-temporal domain, [−0.5,7.5]× [−0.5,0.5]× [15,23], where
the vortex shedding is fully formed. According to the domain ex-
perts, the core region of a vortex in this flow has a motion close to
that of a rigid body rotation, which helps to preserve the shape of
the vortex. However, the concentrated vorticity in the vortex cores
will diffuse due to viscosity (i.e., friction) and the absence of an ex-
ternal forces to maintain the rotation [Lei16]. The diffused vorticity
will reach the outer layer of vortices where it interacts with vorticity
from other vortices, thus losing the coherent character. The overall
structure of the vortices is stable due to interleaving and somewhat
symmetric configuration of the counter-rotating vortices.

We choose the first 250 time steps of this simulation and use

T1

T2 TAC View Stacked Plot
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Figure 9: Temporal clustering results of the 2D vortex ring (pc =
1). TACs are computed by using the λ2 attribute. The split points
for the KDE computation are selected at the extrema values. The
temporal cut indicates the moment when the main vortex impacts
the wall.

a spatial resolution of 1200× 150 to compute pathlines and mea-
sure the attributes along them. As demonstrated in Figure 8(a), our
framework identifies three regions using the TACs of the Q attribute
without significant user intervention: the viscous vortex core where
the vorticity is concentrated, the outer layer of the vortices where
vorticity diffuses and grows and the region outside of the vortices
where the flow is irrotational. In addition, the TACs’ visualization
in Figure 8(d) informatively characterizes the attribute behaviors
within different flow regions. Specifically, the decay of the rota-
tional momentum of the vortex core as expected by the experts is
clearly depicted by the monotonic decrease of the orange TAC that
illustrates the vortex core behavior. In contrast, the traditional iso-
contouring (or iso-surfacing in the space-time domain) has a dif-
ficult time to depict this configuration. For instance, Figure 8 (c)
shows two iso-surfaces computed with two different Q values. Due
to the decrease of Q concentration from left to right in space, the se-
lected thresholds may not lead to iso-surfaces to depict the behavior
of vortices in the far right of the flow, whose Q concentration may
be similar to other regions without a vortex.

In a detailed study of the above behavior of vortices, we sam-
ple 5 pathlines along a vertical line passing the center of a vortex
(Figure 8 (a-b). Clearly, we see three different types of TAC behav-
iors: (1) the decaying of Q concentration over time along the core
(the red TAC/pathline); (2) the increasing and shifting of the peak
Q values of the TACs corresponding to the pathlines seeded at lo-
cations gradually moving away from the vortex core (blue, green,
and orange TACs/pathlines); and (3) a flat TAC/pathline (purple).
While types (1) and (3) are easily understandable, the behavior of
the TACs in group (2) is interesting. On the one hand, one can see
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(b) Volume rendering of Q (b1-b2) and temporal clustering results on core vortex region (red) (b3-b5)

(b2) (b3) (b4)

(a) TAC and gradient view on the global clustering result
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Figure 10: Clustering results of the vortex ring (pc = 1). TACs are computed by using the Q attribute. (a) Global clustering result.(a1) - TAC
view, (a2) - Stacked plot (a3) - LIC texture view (a4) - The temporal clustering results on the core vortex region (red). (b1) Original volume
rendering of Q. (b2) Volume rendering of Q with two temporal cuts generated by our methods. The second temporal segment aligns with the
shear layer when the main vortex collides and sticks with the boundary wall before the secondary vortex is created. (b3-b5) Pathline view of
the temporal clustering results computed based on pathlines and their respective TACs in the core vortex region (a4) reveals the behaviors
of the two main vortices in the simulation.

the correlation of the peak locations of these TACs with the chang-
ing direction (or turning) of their respective pathlines. This is im-
portant, as it associates the geometric characteristics of pathlines
with relevant physics. On the other hand, the shifting of the peaks
in part indicates the propagation of the rotation momentum out-
wardly from the vortex core. The increase from negative Q values
to positive Q values for the green and orange TACs also associate
the shearing layer (Q < 0) with its corresponding vortex region.
Such a detailed behavior, though known by experts, has not been
studied for the flow behind cylinder in the visualization community
and cannot be easily obtained with other methods alone.

2D vortex ring. The next 2D data set simulates a vortex ring hit-
ting a wall with a Reynolds number of 2000. During the interaction,
the vortex ring approaches the wall and causes a boundary layer to
appear. As the vortex slides against the wall, the boundary layer
becomes unstable and is lifted up as a secondary vortex, which
in turn lifts up the primary vortex. This data set helps us analyze
the role of coherent structures interacting with boundaries, and the
generation of turbulence in wall-bounded flows. Our temporal seg-
mentation result using the λ2 attribute is shown in Figure 9, which

demonstrates that our method can detect the moment when the vor-
tex impacts the wall, and automatically generates a temporal cut at
that time. The candidate cuts for each TAC are determined based
on the extrema of the TAC. The global clustering results with the Q
attribute are shown in Figure 10(a1). The 2D stack color plot in Fig-
ure 10(a2) allows us to assess the quality of the clustering results,
which is hidden in the edge-bundling visualization. The patterns of
TACs in each cluster looks alike. In particular, the red group has
stronger positive Q values indicating the vortex core area, while
the yellow group corresponds to the particles having negative Q.
Also, the peak location of the yellow group indicates the appear-
ance of the shear layer when the secondary vortex is induced and
lifted from the wall.

To separate the two vortices in this simulation, we apply the tem-
poral clustering to the dark red group which corresponds to the vor-
tex core region. The results shown in Figure 10(b) illustrate that
we can extract the main vortex (pink) and the secondary vortex
(red) thanks to the difference in their respective TAC profiles. In
comparison with traditional techniques such as volume rendering
(b1-b2) or iso-surfacing, our method requires fewer selections of
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(a1) Splitting behavior of TACs in two time intervals (a2) Stacked Plot (a3) Sample points in the region of interest 

(b2) Pathlines near the core of the newly-formed vortex (b1) The vortex merging events are captured by our temporal result 

Figure 11: Temporal clustering result of the Boussinesq flow using Lagrangian TACs of the attribute λ2 (pc=1). (a1) The TAC view shows
the splitting behavior of TACs in the two contiguous time intervals. (a2) The stacked plot. (a3) Sample points from four clusters in the region
of interest. The close up view on the right focus on three clusters enclosing the vortex regions. (b1) Pathline visualizations show the vortex
merging events. (b2) Pathlines near the core of the newly formed vortex.

thresholds to produce the similar result. In addition, pathlines can
provide more detail behaviors of the vortices (e.g., the rotation de-
gree and direction (b4)). It also illustrates the origins of the par-
ticles that involve in the generation of the secondary vortex (i.e.,
the small cluster of pathlines in Figure 10 (b3,b4)), which has not
been shown previously for this flow. Knowing this is important to
understand the dynamics of boundary shear layer of the flow. The
three generated temporal segments (of TACs) in Figure 10(a4,b)
reveal three main physical events that domain experts care about:
before/during/after the main vortex hitting the wall. Here, the tem-
poral cuts were generated based on the split points determined by
the derivative curve of the TACs (Figure 2(c-d)). In particular, the
event of impact starts with the occurrence of the shear layer (shown
in (b1-b2) as well as indicated by the yellow cluster in (b1)) and
ends with this shear layer becomes the secondary vortex.

Boussinesq Figure 11 shows the temporal clustering results of
TACs based on the λ2 attribute for the Boussinesq flow [GT20].
This flow has numerous vortices with varying sizes that in part ro-
tate around and collide with each other. The simulation has a di-
mension of 150× 450, and we used 1000 time slices which cor-
respond to one half of the time window. Figure 11(a1) shows two
temporal segmentations of four TAC clusters. The multi-layered

vortex structure is also revealed here. According to the λ2-criterion,
a region is considered as a vortex if its λ2 value is smaller than
zero [GT18]. Thus, the green and violet clusters correspond to the
core regions of the vortices, while the orange cluster captures the
outer vortex regions. The yellow TACs are outside of the vortex
region. For the small-scale vortices, the core areas are encoded in
the violet cluster because of their smaller negative λ2 values. The
positions of the vortices are highlighted in (a3). Three nearby vor-
tices in the violet clusters coalesce into a new vortex in a later time.
Our temporal segmentation can not only capture the moment the
event happens as shown in (b1), but also reveal the physical trans-
portation of particles in the simulation. In particular, the splitting
behavior of TACs in (a1) indicates that some particles from the
core region (violet) remain in the core, others move to the outer
vortex core region (orange) or exit the vortex area (yellow). Such
a detailed temporal behavior of small-scale vortices is not easy to
obtain with the previous techniques (e.g, geometric-based pathline
clustering or thresholding).

3D vortex tube simulation. We also performed experiments using
a 3D vortex tube simulation, which simulates two parallel, counter-
rotating vortex tubes at a circulation-based flow with Re = 3500
and a distance of 2.5 radii apart. The two vortex tubes undergo
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(a) Global clustering result

(b) Pattern search results based on two TAC profiles
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Figure 12: (a) Global clustering result of the 3D vortex tube sim-
ulation with TACs of the vorticity attribute that reveals a three-
layered structure (pc=1). (b) Pattern search results: Given two
groups of TACs with opposite trends, we can find a group of sim-
ilar TACs and their corresponding pathlines that have symmet-
ric geometric configuration. The attribute used in (b) is dye, a
tracer simulated as a passive scalar with a Schmidt number of
unity [BMLC19].

an elliptical instability [SLD10] that ends with a vortex disintegra-
tion. The two vortices interact with each other mainly through the
strain produced by the differential velocities induced. The simu-
lation has dimensions of 360× 360× 360× 120 in a volume of
[0,2]× [0,2]× [0,2]. The total size of this simulation is 36GB.
Again, the pathlines are seeded at the left boundary plane, and vor-
ticity is used here. The results shown in Figure 12 reveal a three-
layered structure. The blue cluster includes particles with higher
vorticity residing in the two vortex core areas. The green cluster
involves particles residing in the outer layer of the two vortices.
Their respective TACs are relatively stable. The orange cluster cor-
responds to particles seeded in the region between two vortices
which becomes turbulent at a later time. Accordingly, the vortic-
ity values for this group of particles increase substantially at later
times when the flow becomes turbulent.

6.2. Exploration of Other Flow Features

In addition to the above analysis of the temporal behaviors of vortex
structures within various 2D and 3D unsteady flows, we also apply
our framework to study other flow behaviors.

Study subtle difference in axis-symmetric flows. Figure 13
shows the clustering results using TACs of the attribute Q for the
3D simulated flow behind a cylinder [vFWTS08] with dimensions
of 192× 64× 48 in the volume of [−12,20]× [−4,4]× [0,6] with
101 time steps. Considering the transitional nature of this flow, we
select a seeding plane near the left boundary (i.e., X = −11) with
64× 48 uniform samples. Pathlines that leave the domain earlier
are discarded. From the result, we see that the symmetric pathline
behavior is captured by the clustering (i.e., the orange and fern clus-
ters in Figure 13 (a1-a2)). In addition, their TACs reveal a clear

(a) 

(b) 

(1) (2) (3) 

Figure 13: Clustering result of the 3D Cylinder flow (pc = 1).
(a) Global clustering result with TACs computed from the Q at-
tribute. The TAC profiles corresponding to the two symmetry path-
line groups at the center location show a shifting, indicating parti-
cles in these two regions exhibit vortex shedding at different times.
(b) Temporal clustering result with TACs computed from the local
shear rate. The pathline view focuses on the green cluster whose
corresponding pathlines have different behaviors in the second time
interval (i.e., splitting into three clusters). From the physics point,
the vortex regions (i.e., with high positive Q values) usually have
little or no shearing flow (i.e., with low local shear rate), and vice
versa. This negative correlation can be also observed with our
TACs in which the moments that TACs have negative Q are iden-
tical to the moments that they have high positive local shear rate.

shifting in their temporal trends, indicating that their similar path-
line configurations occur at different times. This information can-
not be easily obtained by inspecting only pathlines.

In the example shown in Figure 12(b), our domain experts ob-
serve two interesting TACs that have opposite trends. They select
two sample TACs and perform the pattern search. Note that the
pattern search is a commonly used operation in the integral curve
analysis [WESW17] as it helps to locate similar features in a dense
and visual cluttered set of curves. The obtained results show an
intrigued pattern. The two set of TACs are symmetric and the di-
rections of their corresponding pathlines are opposite. Figure 15
demonstrates another use case with the 3D flow behind a cylinder
where our users can find a group of particles that move stably and
form loops after the flow collides with the cylinder.

Studying separation behaviors in flow. Flow separation in un-
steady flows is an important dynamic that experts are interested.
Finite Time Lyapunov Exponent (FTLE) [Hal01] is typically used
for highlighting the locations where flow separation is the strongest.
However, it cannot reveal the cause of the separation. To demon-
strate how our framework can help explain this to some extent, we
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FTLE ridges 

Global view

Temporal view Pathline view

Main vortex

Figure 14: FTLE filtering on the 2D vortex ring simulation. The
seeding points are placed in the FTLE ridges and TACs are gen-
erated by using the local shear rate attribute. It can be seen from
both global and temporal views that the TAC analysis results based
on our clustering method highlight three groups of particles in the
high FTLE value region. The yellow particles have high separa-
tion degrees near the wall boundary. The light blue group indicates
the separation around the boundary of vortices. The red group has
large shear values indicating the separation between the main and
secondary vortices. Here, the blue iso-surface of the main vortex is
provided as a reference.

(a) Temporal Segmentation (b) Candidate TAC

(c) Pathlines (d) Similar TACs
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Figure 15: Based on the segmentation result (a), users can choose
an interesting TAC (b) and perform the pattern search which results
in the similar TACs (d) and their corresponding pathlines(c).

compute the FTLE field on the 2D vortex ring simulation, and use
the obtained FTLE ridge (i.e., with top 20% FTLE values) to se-
lect a set of pathlines for study. Specifically, we perform both the
global and temporal clustering of this set of pathlines based on their
TACs of the local shear rate attribute. Figure 14 shows the results,
which highlight three groups of particles having high degrees of
separation: the red group indicates the separation between the main
and secondary vortices, the light blue particles move to the vortex
boundaries, while the yellow particles transport to the physical wall
boundary locations. That said, there are at least three different path-
line behaviors that cause the same FTLE ridge. Our technique can
help reveal this more effectively.

Table 1: Performance of AHC clustering on four datasets

Simulations Numbers
of TACs

Time
steps

Running
Time

Flow behind Cylinder 2D [WT10] 20000 500 48.6s
Vortex Ring [OV93] 16384 80 12.4s
Boussinesq 2D [GT20] 67000 1000 144.8s
Flow behind Cylinder 3D [vFWTS08] 30720 102 30.5s
Tube 3D [SLD10] 129600 52 182.7s

Studying relation between shearing layer and vortex formation.
To reveal the relation between shearing layer and vortex formation,
we apply the Q < 0 criterion on the 3D cylinder flow to select a
set of pathlines that have negative Q values in the earlier time. We
then perform clustering on these pathlines based on their TACs of
the local shear rate attribute. The results are shown in Figure 13(b).
As can be seen, there is a strong correlation between the negative Q
and local shear rate since the highest shearing values align with the
lowest Q values right after the flow encounters the cylinder, where a
shearing layer is formed. In a later time, pathlines with strong shear
rate participate the vortex shedding formation behind cylinder (i.e.,
the green and violet groups).

6.3. Performance and Comparison with Other Methods

Performance. All numerical experiments are carried out on a
PC with an Intel Core i7-3537U CPU and 128GB RAM with a
NVIDIA Quadro 4000 graphic card. The most time consuming task
in the system is the AHC clustering. The detailed average running
time of AHC clustering on five unsteady flow simulations is re-
ported in Table 1.

Comparison with the model-based clustering. For time-series
data (e.g., TACs) clustering, both similarity-based methods and
model-based methods are usually applied. Our approach belongs
to similarity-based strategy. In contrast to similarity-based meth-
ods, model-based methods assume that the data is generated by
a mixture of underlying probability distributions, from which
expectation-maximization (EM) learning algorithms can be derived
for clustering, eliminating the need of a distance metric [GGW07].
However, model-based methods may not capture the important dif-
ference between two time-series. Figure 16 shows the comparison
between the two clustering methods. From the comparison, we see
that the model-based method tends to classify TACs only based on
the magnitude while AHC considers both magnitude and shapes of
TACs. For our purposes both the trend (or shape) and the magni-
tude of the TACs are important in characterizing their similarity.
The proposed AHC method successfully capture both aspects. For
more detailed discussion between these two different clustering ap-
proaches, please refer to the supplemental document.

7. Conclusion

In this work, we propose an interactive visualization framework for
analysis and exploration of unsteady flow based on TACs. Given
a vector field, we first compute the TACs over the entire flow do-
main and apply time interval segmentation to all TACs. To describe
the behavior of a TAC, a sub-TAC extraction method is introduced
to identify one or more interesting temporal trends. To measure
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Figure 16: Comparison between AHC and model-based clustering.
Model-based method classifies TACs only based on the magnitude
while AHC considers both magnitude and shapes of TACs.

the similarity of two TACs properly, we introduce a new similar-
ity measure, called the TAC Similarity Measure (TSM) to calculate
the dissimilarity of TACs based on their events.

We implement the Agglomerative Hierarchical Clustering algo-
rithm with the new TSM measure for the clustering of Lagrangian
TACs on different temporal intervals. The clustering results pro-
vide different levels of details for flow behavior in both space and
time, which facilitates data exploration. We also improve an edge-
bundling technique to better represent the general behavior of TACs
in a cluster and the connection of clusters among different time in-
tervals. We introduce a 2D stack plot to visualize the TAC clusters
without occlusion. Our framework has been evaluated on multiple
unsteady flow simulations, and helps domain experts analyze vor-
tex structures and other flow features.

Limitations: There are a number of limitations of our current sys-
tem. First, the clustering computation is the most time consum-
ing task as we haven’t fully optimized the AHC algorithm. Sec-
ond, our current TAC-based framework concentrates on scalar at-
tributes. However, it may be extended to other attribute types, such
as vector-valued and tensor-valued attributes. The supplemental
document provides a couple examples on the extension to vector-
valued attributes (e.g., velocity vectors). Nonetheless, the visual-
ization of the clustering results in the TAC space needs to be ad-
dressed. Third, the 2D stack plots can provide a summary view
of the global clustering results, but they cannot properly visual-
ize the transition between neighboring temporal clusters, which we
plan to address. Fourth, our framework has been evaluated via the
vortex structure analysis and the exploration of other relevant fea-
tures such as shearing layers and symmetric behavior, and the flows
shown in this paper have relatively simple configurations (except
for the Boussinesq flow). In the future, it is important to apply our
framework to more complex turbulent flows for the study of energy
transport to further evaluate it’s scalability. Finally, it would be in-
teresting to extend our framework for the clustering of path surfaces
to provide a more informative visualization for the study of 3D un-

steady flow behaviors. However, to achieve that, effective path sur-
face seeding and placement to achieve sufficient spatial coverage
while reducing overlap needs to be addressed, as well as the de-
sign of an effective similarity measure for the comparison of two
surfaces, which we plan to explore in the future.
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