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ABSTRACT

In this supplemental document, we provide additional information of
the neural network architectures that we trained for vortex boundary
extraction. We also provide the error plots of the training of the three
architectures on the synthetic flow data set generated based on the
fitted parameter ranges and distributions for the simulation of the
2D flow behind a cylinder. Finally, the full resolution results of the
2D flow behind cylinder simulation are provided.
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1 ARCHITECTURES

In this section, we provide the details of the three network architec-
tures that we evaluate.

CNN We build our first network as a form of typical CNN, as
illustrated in Figure 1. The first part of our CNN consists of 2D
convolutional layers. In this part, the dimensionality is reduced and
feature maps are extracted with a convolution kernel size of 3 x 3
and with strides of 2 x 2, followed by a batch normalization and a
rectified linear unit (ReLLU) activation. The number of features is
doubled starting from 64 to 128. The second part of the network
exploits fully connected layers instead of convolutional filters for
the final inference from the identified high level flow features. Batch
normalization and a ReL.U activation follow in the same fashion as
in the convolutional layers, and a dropout with the probability of
0.5% is used to avoid overfitting. The number of neurons of the last
layer is set to match the target resolution, here, the initial 64 x 64
target patch.
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Figure 1: Our CNN architecture. The numbers below each box
denote the dimensionality of the feature maps.

Resnet Our Resnet model is based on the Resnet20 architecture by
He et al. [2]. The core idea of ResNet is to introduce an identity
shortcut connection or skip connection that skips one or more layers,
as shown Figure 2. The motivation behind that is that deeper model
should not produce a training error higher than its shallower counter-
parts. The authors in [2] hypothesize that letting the stacked layers fit
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Figure 2: One residual block in the Resnet20 architecture.

a residual mapping is easier than letting them directly fit the desired
underlying mapping. And the residual block above explicitly allows
it to do precisely that. In our implementation, we use a learning
rate 0.001 and place 6 residual blocks. Each block includes three
convolutional layers.

Unet Our Unet model is based on the original model proposed by
Ronneberger et al. [4]. In addition to skip connection, it also includes
a concatenation with the correspondingly cropped feature map from
the contracting path. In the end, a 1 x 1 convolutional layer is used
to make the number of feature maps equal to the number of segments
which are desired in the output. Unet uses a loss function for each
pixel of the image. This helps in easy identification of individual



cells within the segmentation map and it could generate the results
with higher accuracy in comparison to ResNet. We use a depth of
three and a dropout of 1%. The activation function is set to ReLu
and we use max pooling between the layers. Figure 3 shows the
structure of our model.
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Figure 3: Our Unet architecture. We used three layers of depth. The
numbers above each box represent the number of feature maps.

2 PARAMETER SPACE FITTING AND TRAINING FOR CYLIN-
DER FLOW

We performed simulated annealing to optimize the parameter ranges
for our parametric synthesis framework. The optimized ranges
for the individual parameters for the CYLINDER flow were shown
in Figure 4. Next, based on these optimized parameter ranges,
we generate synthetic flow patches using the proposed parametric
synthesis with the combinations of the parameter values sampled
with the probability based on the distribution shown in Figure 4.
For this flow, we generate 100k synthetic flow patches to train the
three neural networks as described earlier, including the velocity
field and the binary segmentation for each patch. We use a binary
cross entropy as loss function, which is plotted in Figure 5 for the
three networks. The loss of the training and testing set reduce in
well-behaved manner. For Unet, individual spikes on the testing loss
can be seen, which are due to the mini batch gradient descent in
the ADAM optimizer. We terminated the training after 100 epochs,
since further improvements were small enough.

3 RESULTS FOR CYLINDER FLOw

Figure 6 provides the extracted vortex boundaries of the CYLINDER
flow using the three architectures described above (a—c), the IVD
field) [1] (d), and the 2D Q attribute field [3] (e), respectively.
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Figure 5: Loss plots of the training and testing set for 100 epochs for
all three network architectures. Initially, the loss decreases quickly.
From 20 to 30 epochs onwards, further training effort is rewarded
by only slow improvements.
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Figure 6: Comparison of boundary extraction with cnn (a), Resnet (b), and Unet(c) using the CYLINDER flow. The input of networks are
velocity patches. Our method shows Unet outperforms the other networks. (d) shows the IVD result with threshold value of £0.03. (e) shows
the iso-contours of the Q attribute field of the flow with threshold value of 0.019.
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