
Vortex Boundary Identification using Convolutional Neural Network
Marzieh Berenjkoub*

University of Houston and Nvidia Inc.
Guoning Chen†

University of Houston
Tobias Günther‡

FAU Erlangen-Nürnberg

ABSTRACT

Feature extraction is an integral component of scientific visualiza-
tion, and specifically in situations in which features are difficult to
formalize, deep learning has great potential to aid in data analysis.
In this paper, we develop a deep neural network that is capable of
finding vortex boundaries. For training data generation, we employ
a parametric flow model that generates thousands of vector field
patches with known ground truth. Compared to previous methods,
our approach does not require the manual setting of a threshold in
order to generate the training data or to extract the vortices. After
supervised learning, we apply the method to numerical fluid flow
simulations, demonstrating its applicability in practice. Our results
show that the vortices extracted using the proposed method can
capture more accurate behavior of the vortices in the flow.

Keywords: Vortex boundary, convolutional neural network

1 INTRODUCTION

Vortex dynamics plays a crucial role in determining the behaviour
of fluid flows across a wide range of Reynolds numbers ranging
from laminar to highly turbulent regimes. They are easy to observe
around us, for instance in the wake behind cars or on the wingtip
of aeroplanes. However, as noted by Haller [15], “few pause to
examine what vortex strictly means.” In laymen terms, we can
envision them as fluid parcels that rotate coherently, which is, how-
ever, not a concise definition lending itself to the implementation
of an extraction algorithm. In fluid dynamics, vortices are nowa-
days referred to as elliptic Lagrangian coherent structures (LCS).
They are either characterized through scalar measures such as the
instantaneous or Lagrangian-averaged vorticity deviation [16], or as
regions enclosed by curves that maximize an energy functional [15].
The threshold-based extraction from region-based measures is rarely
practical, because vortices dissipate and transfer energy within the
inertial subrange, resulting in various sizes and angular momenta.
Overcoming the numerical challenges of accurately locating the
boundary of a vortex is rewarded by valuable insight about the vor-
tex behavior. For instance, a wiggly vortex boundary is a sign of
an imminent vortex breakdown – an important physical event often
studied in the energy cascades of turbulence flow. In addition, the
extent and area of a vortex can be more accurately computed with
the vortex boundary detected, which allows for quantification, and
thereby the creation of summaries to compare time steps or ensem-
ble members. Further, such information can be important in the
study of eddies in the oceans – large ocean current structures that
transport nutrition and heat. Recently, deep learning methods have
been proposed to identify vortices in ocean currents, for instance
from sea surface height [29] or from the Okubo-Weiss criterion [9].
Similarly, the training on IVD for a binary segmentation of a vortex
required a threshold to be set on the training data [8, 41]. In this
work, we identify vortices directly from the velocity field and utilize
an experimentally acquired vortex model [40] to characterize the
location of the vortex boundary. In contrast to previous work, our

*e-mail: mberenjkoub@cs.uh.edu
†e-mail: chengu@cs.uh.edu
‡e-mail: tobias.guenther@inf.ethz.ch

method does not require the setting of thresholds and is therefore
able to identify weak and strong vortices alike.

To train the neural network, a large training set with example
flows that contain vortices with different configurations that may
be seen in the real-world flow is needed. To generate such a large
training set, we employ a parametric flow model that allows us to
precisely specify the configuration of a vortex, including its center,
shape, orientation, and size. With this model, we generate thousands
of synthetic flow patches with ground truth vortex labels for the
neural network to learn. We used this set of synthetic flows to train
and compare multiple models with different architectures including
a CNN, a Resnet, and a Unet, which take the velocity information as
input. After supervised learning, we apply these trained networks to
real-world flow to demonstrate their effectiveness. Our results show
that among all three network architectures tested, the Unet extracts
the most accurate vortex boundaries from synthetic flow. When ap-
plied to real-world flow, all three networks extract vortex boundaries
of strong and weak vortices alike. In contrast, existing thresholding
methods (e.g., IVD), require different manual thresholds.

2 RELATED WORK

Vortex Extraction and Boundary Identification. Vortex extrac-
tion remained an active field of research in fluid dynamics and scien-
tific visualization despite decades of work [12,22,34,36]. Extraction
methods are generally characterized into region-based techniques
that calculate scalar fields, such as λ2 [24] or the Q-criterion [23],
and line-based techniques that compute the vortex coreline around
which the particles rotate [4, 32, 39, 42]. Recently, objective meth-
ods [14, 15] shifted back into focus, aiming for a steady reference
frame [2, 11, 13].

In this paper, we extract vortex boundaries. In their seminal work,
Banks and Singer [4] proposed a predictor-corrector method that
constructs a vortex coreline. Starting from this coreline, they per-
formed a region-growing until a vorticity or pressure threshold was
reached. Bauer et al. [5] terminated the region-growing once the
swirling strength, i.e., the imaginary part of the Jacobian’s eigenval-
ues, falls below a threshold. Inspired by the velocity profile of the
Rankine vortex model, Garth et al. [10] identified the vortex bound-
ary as surface with largest tangential velocity magnitude. For steady
flows, Lagerstrom [28] extracted isolated closed streamlines, which
was extended by Petz et al. [33] to vortex hierarchies formed from
nested closed streamlines. Recently, Haller [15] characterized vortex
boundaries objectively as the largest nested elliptic LCS, which is a
material line that preserves arc length in incompressible flow.
Deep Learning for Vortex Extraction. In recent years, several
deep learning approaches appeared for vortex extraction. The clas-
sification approach of Bin and Li [6] categorized flow patches into
rotating (cw/ccw), saddles and others. More specific features have
been searched with the classification network by Ströfer et al. [38],
looking for recirculation, boundary layers and a horse shoe vortex.
Similar to the methods above, Deng et al. [8, 41] applied supervised
training, for which they derived a vortex groundtruth from the veloc-
ity field by applying a user-defined threshold to the instantatenous
vorticity deviation (IVD) [16] in order to produce a binary mask,
identifying vortices and non-vortices. This threshold is chosen at
training time and will generally depend on the angular momentum
of the vortices. If vortices decay, there will not be a unique threshold
that works in the entire data set. Given the sea surface height, Lguen-
sat et al. [29] extracted ocean eddies. Franz et al. [9] detected ocean

eddies by training a neural network that receives a vortex measure
as input, namely the Okubo-Weiss criterion [31, 43]. To track the
vortices over time, they applied a recurrent neural network (RNN)
afterwards. Bai et al. [3] sent images of streamlines into a CNN to
detect ocean eddies. Kim and Günther [26] developed a CNN that
extracts a reference frame in which an unsteady flow becomes steady,
enabling vortex coreline extraction. The network was trained with
noisy synthetic data to improve the robustness. In another related
approach, Liu et al. [30] extracted shock waves using CNNs.

Deep learning techniques have also been applied to other scien-
tific visualization problems, such as viewpoint selection for volume
rendering [21], streamline/surface selection [17], vector field recon-
struction [18], and temporal information reconstruction [19].

3 OUR METHOD

Our framework first trains a suitable neural network then applies the
trained network to the real-world flow to extract vortex boundaries.
In order to effectively train the selected neural network, a training
flow data set that is sufficiently representative for the real-world
flow is needed, that is, the flow configuration of each sample (with
or without vortices) should be similar to what may be seen in the
real-world flows. In addition, the ground truth vortex boundary
should be known for each sample, which is not always possible
in real-world flow as described earlier. To address this challenge,
we adopt the synthetic flow generation framework introduced by
Kim and Günther [26] with a few modifications so that the vortex
boundary can be labeled precisely (Section 3.1). This synthetic flow
generation framework relies on the setting of a number of parameters
to generate flows with various vortex configurations. To ensure that
the generated flows are representative, we fit these parameters so that
they result in the synthetic flows that are as similar to the patches
obtained from the real-world flow as possible (Section 3.2). After
generating training sets, we apply them to train three representative
network architectures to study their capability of learning vortex
boundary characteristics (Section 3.4).

3.1 Synthetic Generation of Training Vector Fields
Since we aim to train the neural network for vortex boundary iden-
tification in a supervised manner, the ground truth distance to the
vortex boundary is required during training. In order to obtain the
exact boundary of a vortex in our synthetic model, we modify the
parametric model of Kim and Günther. In our model, the velocity at
any point x = (x,y) is given by the following formula:

v(x) = Si ·x ·
v0(‖x‖)
‖x‖

, with v0(r) =
r

2πr2
c

(
(r

rc
)2n +1

) 1
n

(1)

where v0(r) is Vatistas’ experimentally measured velocity pro-
file [40], rc is the radius with maximum velocity and n controls
the shape of the velocity profile. The parameter n controls the shape
of the velocity profile. We refer to Figure 2 of the work [26] for
more information about the effect of n. Matrix Si with i ∈ {1,2,3}
defines one of the following three base shapes:

S1 =

(
1 0
0 −1

)
︸ ︷︷ ︸

saddle

S2 =

(
0 1
−1 0

)
︸ ︷︷ ︸

center (cw)

S3 =

(
0 −1
1 0

)
︸ ︷︷ ︸
center (ccw)

(2)

Among these three base shapes, only S2 and S3 contain vortices.
Similar to [10], we formally characterize vortex boundaries as loca-
tions with maximal tangential velocity. Thus, the signed distance to
the boundary of a vortex in each of these two cases is:

d(x) = rc−‖x‖ (3)
The positive distance indicates locations inside the vortex, while
negative distance means outside. Since S1 does not contain vortices,
the signed distance in this example flow is set to an arbitrary and
large enough negative value, e.g., -10 in our experiment.

To introduce variations to the location, orientation, and size of
the vortex, we define a random linear transformation matrix A and
a random translation vector t to transform the domain from x to x′,

sx = sy = 1, tx = ty = 0,
rc = 0.5, n = 2, θ = 0

sx = 2, sy = 0.5, tx =−ty =
0.5, rc = 2.5, n = 6, θ = 0

sx = 1, sy = 0.5, tx = ty = 0,
rc = 0.5, n = 2, θ = π/4

Figure 1: Examples of synthetically generated vector field patches.
The velocity magnitude is color-coded from blue (0) to red (0.23).

and the velocity from v(x) to v′(x′):
x′ = A ·x+ t (4)

v′(x′) = A ·v(x) = A ·v(A−1 · (x′− t)) (5)

d′(x′) = d(A−1 · (x′− t)) (6)
To control the shape of the deformed vortices, we compose the linear
transformation from a rotation θ and a non-uniform scaling (sx,sy):

A(θ ,sx,sy) =

(
sx cos(θ) −sy sin(θ)
sx sin(θ) sy cos(θ)

)
(7)

In our experiments, θ and t, sx, sy, rc and n are chosen from a
Gaussian distribution given their respective value ranges. See Fig. 1
for examples of patches. The range and distribution of the values of
these parameters will be determined in Section 3.2. The sign of the
distance field d′(x′) identifies the interior and exterior of a vortex.
Note that the above synthesis framework poses a strong constraint
to the generated flow, i.e., the synthetic flow can contain at most
one vortex. This is because if more than one vortex exists, they
may interact with each other (e.g., two vortex regions overlap and
merge), making their boundary difficult to prescribe precisely. Al-
though such a multi-vortex configuration often arises in real-world
flows, we demonstrate later that for certain flows where vortices are
sufficiently far away from each other, we can subdivide the flow
domain into small regions (i.e., patches), each of which contains at
most one vortex. This way our subsequent fitting processing (see
next section) will be able to compute the ideal combination of the
above parameters to generate a synthetic flow that is as close to a
subdivided patch as possible.

3.2 Parameter Space Fitting
The above synthesis framework requires to set the values of some
parameters (i.e., θ , tx, ty, sx, sy, rc and n) to generate an analytic
flow. To ensure that the generated flows are physically authentic
and representative for the real-world flows, we fit these parameters
(especially their ranges) to the real-world flows. Given a real-world
flow, we sub-divide the flow into small patches so that each patch
contains at most one vortex (or part of a vortex). Then, we utilize
the simulated annealing process as described in [26] to obtain a com-
bination of the values of the above parameters so that the generated
flow has minimal distance from the reference patch. We fit vortices
and saddles separately. Based on the fitted parameter values for
all patches, we compute the distribution of the values of individual
parameters. We model the distributions with Gaussians, which can
later be sampled to generate more training data patches, which will
have characteristics similar to the real data. For angle θ , we apply a
uniform distribution to not prefer any orientation. The distribution
of the fitted parameter spaces and the error plots of the fitting for
vortices and saddles are provided in the supplemental document.

3.3 Training Data Generation
A key ingredient to a successful training is the adequate prepara-
tion of the input data. Aside from the raw size of the (possibly
augmented) training data, the shape of the data requires equally care-
ful consideration. Many of the more recent network architectures,
such as CNNs, ResNets and Unets utilize the spatial relationships of
the input pixels, i.e., they operate on image data that is laid out on

regular grids. For this reason, we similarly preserve the spatial em-
bedding of the inputs by sampling the synthetically generated vector
field patches onto regular grids. Each vector field patch is thereby
represented as a 3D array, where the third dimension contains the
velocity vector components. The training data is generated by using
the parametric vector field synthesis (Section 3.1). As described
earlier, we applied a linear transformation including scaling and ro-
tation to generate enough training data for the network to generalize
from, in total 25,000 flows, with some examples shown in Fig. 1. To
evaluate how well the network generalizes, we split the data into a
training and testing set by a ratio of 9:1.
Normalization of Patches The training data was generated on a
physical domain of size X ×Y = [−2,2]2 with velocity compo-
nents in the range [−2,2]. Since unseen data might be given on
a different domain size with velocity magnitudes in very different
orders of magnitude, we follow [26] and normalize the input data
to the same domain that was used during training by applying an
appropriate scaling and shifting.

3.4 Deep Learning for Vortex Boundary Identification
We aim to compare three common convolutional neural network ar-
chitectures, i.e., a conventional convolutional neural network (CNN),
a Resnet [20], and a Unet [37], that are trained to generate a binary
segmentation from a given velocity field. This section describes the
three networks and their respective hyper-parameters used in our
study. We assume that the velocity field is given in a near-steady
reference frame, which can be achieved by estimating a feature
flow field [42] (Galilean invariant), by linear optimization [2, 11, 13]
(objective) or by deep learning [26].
CNN Our first network is a conventional convolutional neural net-
work. Through the course over multiple convolutional layers (kernel
size 3×3 and stride 2×2), the patch resolution is reduced while the
number of feature maps increases from 64 to 128. As activation, we
chose a rectified linear unit (ReLU) and applied batch normalization.
Once the feature maps are calculated, we combine the feature maps
using fully-connected layers. As before, batch normalization and
ReLU activations are applied. Finally, to avoid overfitting, a dropout
layer with 0.5% chance is added to the network. The number of
neurons of the last layer is set to match the target resolution, here,
the initial 64×64 target patch.
Resnet Our Resnet model is based on the Resnet20 architecture by
He et al. [20]. The core idea of ResNet is to introduce an identity
shortcut connection or skip connection that skips one or more layers.
In our implementation, we use a learning rate 0.001 and place 6
residual blocks. Each block includes three convolutional layers.
Unet Our Unet model is based on the original model proposed by
Ronneberger et al. [37]. In addition to skip connection, it also
includes a concatenation with the correspondingly cropped feature
map from the contracting path. In the end, a 1× 1 convolutional
layer is used to make the number of feature maps equal to the number
of segments which are desired in the output. We use a depth of three
and a dropout of 1%. The activation function is set to ReLu and we
use max pooling between the layers.
Implementation We implemented all of our models using Keras [7]
with Tensorflow [1] as backend. We applied the Adam optimizer [27]
and trained for 100 epochs with a learning rate of 0.001. As loss
function, we applied a binary cross entropy loss. For Resnet, the
learning rate is varied based of the epoch number. We set the learning
rate equal to 0.001 until epoch number 80 and after that it decreased
to 1e-4. Throughout the training, we set the batch size to 256. During
training, the loss may temporarily increase. Thus, we eventually
select the model with the smallest testing error. We used ParaView
to create the visualizations shown in this paper.

4 RESULTS

We evaluate the method on both synthetically generated and numer-
ically simulated data that has not been seen during training at the

(a) Ground truth (b) CNN (c) Resnet (d) Unet
Figure 2: Vortex boundary extraction results on two test split sam-
ples (rows), i.e., unseen patches of our synthetic vector field. The
L2 errors are 0.12 (CNN), 0.06 (Resnet) and 0.02 (Unet) for all
three architectures, respectively. The result of the Unet architecture
matches the ground truth best.

CNN Resnet Unet
TP 0.24015 (0.04508) 0.23388 (0.04395) 0.24236 (0.04571)
TN 0.75435 (0.04657) 0.71564 (0.04063) 0.75582 (0.04611)
FP 0.00288 (0.00003) 0.04160 (0.00317) 0.00142 (0.00002)
FN 0.00237 (0.00023) 0.00864 (0.00016) 0.00016 (0.00000)

Table 1: Average true positives (TP), true negatives (TN), false
positives (FP), and false negatives (FN) for 200 random samples
of the test set. The standard deviation is reported in brackets. The
scores of the best network are highlighted bold.

task of vortex boundary extraction. Subsequently, we analyze the
performance.

4.1 Testing on Synthetic Data

We used our synthetic vector field patches to train a CNN, a Resnet,
and a Unet, as discussed in Section 3.4, using the velocity vectors as
the input. To evaluate their accuracy, we applied these three trained
networks to the extraction of the vortex boundaries from a number
of unseen synthetic flows, generated with our model. Figure 2
compares the results obtained from these three networks. From these
results, we see that the Unet obtains a boundary closer to the ground
truth (i.e., the white ellipses) than the other two networks. This is
also supported by the quantitative evaluation where the L2 errors
for CNN, Resnet, and Unet are 0.12, 0.06 and 0.02, respectively,
and their F-scores are 0.990, 0.924, and 0.997, respectively. The
average true positive (TP), true negative (TN), false positive (FP),
and false negative (FN) vortex detections for 200 random samples
of the test set are reported in Table 1. Unet achieved the highest TP
rate, whereas Resnet achieved the highest TN rate. Differences were
minimal. In contrast to the neural network approaches, region-based
approaches such as the IVD method [16] require a threshold to be
set. The threshold that leads to an isoline that matches the ground
truth, i.e., the tangential velocity extremal line, is different for each
synthetic patch, since the angular momentum of the vortices varies.
Thus, there is no single threshold that works for all vortices.

4.2 Testing on Numerical Data

Since the network was trained on synthetic data, we will now test
our method on unseen numerical data. For this, we report our results
on the 2D flow behind a cylinder, referred to as the CYLINDER
flow. The simulation was carried out with Gerris [35] and contains a
viscous fluid that was injected from the left into a domain bounded
by solid walls with slip boundary condition. The flow has a Reynolds
number of Re= 160, which causes the flow to form the characteristic
von-Kármán vortex street. Since vortices move with almost constant
speed, we could subtract a constant ambient motion to obtain a near-
steady reference frame. In our analysis, we took a time step where
the vortex shedding is fully formed. The core region of a vortex in
this flow has a motion close to that of a rigid body rotation, which
helps to preserve the shape of the vortex. However, the concentrated
vorticity in the vortex cores will diffuse due to viscosity (i.e., friction)
and the absence of external forces to maintain the rotation. Standard
threshold-based vortex measures are unable to faithfully capture

(a) CNN

(b) Resnet

(c) Unet

(d) IVD
Figure 3: Comparison of boundary extraction with cnn (a), Resnet
(b), and Unet(c) using the CYLINDER flow. The input of networks
are velocity patches. Our method shows Unet outperforms the other
networks. (d) shows the IVD result with threshold value of ±0.03.

the size of the vortices throughout the entire domain, when using a
single threshold.

For this flow, we generate 100k synthetic flow patches using the
fitted parameter ranges and distributions to train the three neural
networks (Section 3.4), including the velocity field and the binary
segmentation for each patch. We use a binary cross entropy as loss
function. The training error plots of the three networks are provided
in the supplemental document. We terminated the training after 100
epochs, since further improvements were negligible.

Next, we apply the three trained neural networks to the CYLIN-
DER flow. Fig. 3 shows the results obtained using the three networks.
The identified vortex boundaries are represented by the white curves,
while the color plots show the classification of the individual points
in the domain – red stands for inside the vortices while blue for
outside. From these results, we can see that all three networks can
highlight flow regions overlapping with places with possible vortical
flow as suggested by the patterns of the LIC texture but with varying
shapes. Visually, the vortex boundaries identified by the trained
Unet are smoother than the other two results, and their shapes are
more aligned with the expected shapes of the vortices for this flow
based on our knowledge. More importantly, the small vortices right
behind the cylinder are well separated in the Unet result, while in the
other two results, they are not separable and form rather unnatural
shapes. Further, the Resnet model generated small false positives at
the right end of the domain.
Comparison with the thresholding method. Thresholding of
certain attribute fields is a popular approach to identify vortices.
Regions with values above (or below) certain threshold values are
considered within vortices. The attributes that are often used for
vortex extraction include vorticity, Q-criterion [23], and λ2 [24].
In what follows, we compare our results with an objective vortex
measure, named instantaneous vorticity deviation (IVD) [16].

Fig. 3 (d) shows the iso-contours computed based on the IVD of
this flow. For IVD, we used a local neighborhood of 5×5 voxels.
As mentioned earlier, our method not only captures all vortices
behind the cylinder, it also reveals more accurate physics of the
vortex shedding of this flow. In particular, the vortices extracted
using our trained Unet exhibit increasing sizes when moving to the
right of the domain. This accurately represents the diffusion of the
vorticity concentration (also shown in [25]). In contrast, the vortices
identified using the iso-contours of the vorticity field are shrinking
when moving to the right end due to the decrease of the vorticity
concentration caused by the diffusion. In addition, the vortices
obtained using the iso-contouring of the IVD field exhibit shearing
behavior around the cylinder, indicated by their shapes with small
tails. In contrast, the vortices extracted using our method have more
elliptical shape behind the cylinder.

Model Training time [hrs] Inference time [secs]
CNN 0.9 62

Resnet 9.6 42
Unet 17.6 42

Table 2: Training time of the networks (left column) and inference
time of 500 patches (64×64) (right column). The Unet trains almost
twice as long as Resnet, but achieves equal inference time.

We also wish to point out that Deng et al. [8] trained a CNN for
binary vortex classification by predicting a thresholded IVD field
using a threshold that was arbitrarily selected at training time. If
the network is trained well, they inherit the properties and thereby
also the limitations of IVD. Our approach, on the other hand, detects
increasing vortex sizes the longer the vortices were diffusing their
angular momentum.

Performance. We trained the neural networks on an NVIDIA
Tesla K40m GPU. The training time and the inference time are
reported for all three networks in Table 2. While CNN was with
only 1 hour training time the fastest to train, we could see that it
performed worst. The Resnet trained for about 10 hours and Unet
for about 18 hours. The inference time of a 64×64 patch was for
all networks similar, ranging from 42 seconds (Resnet, Unet) to 62
seconds (CNN). The differences in the training time stem mainly
from the deeper networks for Resnet and Unet. Deep convolutional
networks without skip connections have difficulties to learn, since
back-propagation suffers from vanishing gradients in the early layers,
which leads to slow learning.

5 CONCLUSION AND FUTURE WORK

Automatic extraction of vortex boundary is challenging. To address
that, we took a machine learning (ML) approach. Different from
other ML methods, we use a synthetic model to generate a large
training set with various vortices whose boundaries can be labeled
automatically. We applied the generated large training set to train
three different neural networks, including a CNN, a Resnet, and a
Unet. We evaluated the trained networks on unseen synthetic data
and numerically simulated data. We found that Unet outperforms the
other two networks in the accuracy of the vortex boundary extraction.
Compared to threshold-based methods that rely on vorticity, we can
detect forming vortices directly in the wake of the cylinder, a regime
that exhibits shear flow, which creates false positives in vorticity.
Further, our vortex detection shows that the size of vortices increases
down the flow, while their angular momentum decreases, resulting
in smaller vorticity values.

In our work, we determined the distribution of model parame-
ters by fitting the parametric model to numerical data. Numerical
simulations with other data characteristics will therefore not be part
of the parameter space seen by the network. In order to increase
the parameter space, we sampled the Gaussian of each parameter
independently. While this allows for more combinations that other
flows might assume, it also creates configurations that are unlikely
to happen in practice. To improve the method, we would like to train
on a wider range of fluid flows for the fitting process, while also
explicitly modeling the correlation between the individual Gaussian
distributions. We will also include multiple vortices in our synthetic
model to better capture vortex interactions. Further, we would like to
investigate the parameterization of the synthetic model more, based
on larger collections of laminar and turbulent flows. Lastly, it would
be interesting to turn the binary segmentation problem into a multi-
class segmentation problem, accounting for different vortex scales.
For this, it will be difficult to obtain a ground truth.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their valuable feedback. This
research was partially supported by NSF IIS 1553329 and by the
Swiss National Science Foundation (SNSF) Ambizione grant no.
PZ00P2 180114.

REFERENCES

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, et al. Tensorflow: A system for large-
scale machine learning. In 12th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 16), pp. 265–283, 2016.

[2] I. Baeza Rojo and T. Günther. Vector field topology of time-dependent
flows in a steady reference frame. IEEE Transactions on Visualiza-
tion and Computer Graphics (Proc. IEEE Scientific Visualization),
26(1):280–290, 2020.

[3] X. Bai, C. Wang, and C. Li. A streampath-based RCNN approach to
ocean eddy detection. IEEE Access, 7:106336–106345, 2019. doi: 10.
1109/ACCESS.2019.2931781

[4] D. C. Banks and B. A. Singer. Vortex tubes in turbulent flows: Identifi-
cation representation, reconstruction. Technical report, 1994.

[5] D. Bauer, R. Peikert, M. Sato, and M. Sick. A case study in selective
visualization of unsteady 3d flow. In Proceedings of the conference on
Visualization’02, pp. 525–528. IEEE Computer Society, 2002.

[6] T. Bin and L. Yi. CNN-based flow field feature visualization method.
International Journal of Performability Engineering, 14(3):434, 2018.

[7] F. Chollet et al. Keras: Deep learning library for theano and tensorflow.
URL: https://keras. io/k, 7(8):T1, 2015.

[8] L. Deng, Y. Wang, Y. Liu, F. Wang, S. Li, and J. Liu. A CNN-based
vortex identification method. Journal of Visualization, 22(1):65–78,
2019.

[9] K. Franz, R. Roscher, A. Milioto, S. Wenzel, and J. Kusche. Ocean eddy
identification and tracking using neural networks. In IGARSS 2018-
2018 IEEE International Geoscience and Remote Sensing Symposium,
pp. 6887–6890. IEEE, 2018.

[10] C. Garth, X. Tricoche, T. Salzbrunn, T. Bobach, and G. Scheuermann.
Surface techniques for vortex visualization. In VisSym, vol. 4, pp.
155–164, 2004.

[11] T. Günther, M. Gross, and H. Theisel. Generic objective vortices for
flow visualization. ACM Transactions on Graphics (TOG), 36(4):141,
2017.

[12] T. Günther and H. Theisel. The state of the art in vortex extraction.
In Computer Graphics Forum, vol. 37, pp. 149–173. Wiley Online
Library, 2018.

[13] M. Hadwiger, M. Mlejnek, T. Theußl, and P. Rautek. Time-dependent
flow seen through approximate observer killing fields. IEEE Trans-
actions on Visualization and Computer Graphics, 25(1):1257–1266,
2019.

[14] G. Haller. An objective definition of a vortex. Journal of Fluid Me-
chanics, 525:1–26, 2005.

[15] G. Haller. Lagrangian coherent structures. Annual Review of Fluid
Mechanics, 47:137–162, 2015.

[16] G. Haller, A. Hadjighasem, M. Farazmand, and F. Huhn. Defining
coherent vortices objectively from the vorticity. Journal of Fluid
Mechanics, 795:136–173, 2016.

[17] J. Han, J. Tao, and C. Wang. FlowNet: A deep learning framework
for clustering and selection of streamlines and stream surfaces. IEEE
Transactions on Visualization and Computer Graphics, pp. 1–1, 2018.
doi: 10.1109/TVCG.2018.2880207

[18] J. Han, J. Tao, H. Zheng, H. Guo, D. Z. Chen, and C. Wang. Flow field
reduction via reconstructing vector data from 3-D streamlines using
deep learning. IEEE computer graphics and applications, 39(4):54–67,
2019.

[19] J. Han and C. Wang. TSR-TVD: Temporal super-resolution for time-
varying data analysis and visualization. IEEE Transactions on Visual-
ization and Computer Graphics, 2019.

[20] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 770–778, 2016.

[21] W. He, J. Wang, H. Guo, K.-C. Wang, H.-W. Shen, M. Raj, Y. S.
Nashed, and T. Peterka. InSituNet: Deep image synthesis for parame-
ter space exploration of ensemble simulations. IEEE Transactions on
Visualization and Computer Graphics (Proc. IEEE Scientific Visualiza-
tion 2019), 2020.

[22] C. Heine, H. Leitte, M. Hlawitschka, F. Iuricich, L. De Floriani,
G. Scheuermann, H. Hagen, and C. Garth. A survey of topology-

based methods in visualization. In Computer Graphics Forum, vol. 35,
pp. 643–667. Wiley Online Library, 2016.

[23] J. Hunt. Vorticity and vortex dynamics in complex turbulent flows.
Transactions of the Canadian Society for Mechanical Engineering,
11(1):21–35, 1987.

[24] J. Jeong and F. Hussain. On the identification of a vortex. Journal of
fluid mechanics, 285:69–94, 1995.

[25] J. Kasten, J. Reininghaus, I. Hotz, and H.-C. Hege. Two-dimensional
time-dependent vortex regions based on the acceleration magni-
tude. Transactions on Visualization and Computer Graphics (Vis’11),
17(12):2080–2087, 2011.

[26] B. Kim and T. Günther. Robust reference frame extraction from un-
steady 2d vector fields with convolutional neural networks. Computer
Graphics Forum (Proc. EuroVis), 38(3), 2019.

[27] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

[28] P. A. Lagerstrom. Solutions of the navier–stokes equation at large
reynolds number. SIAM Journal on Applied mathematics, 28(1):202–
214, 1975.

[29] R. Lguensat, M. Sun, R. Fablet, P. Tandeo, E. Mason, and G. Chen.
Eddynet: A deep neural network for pixel-wise classification of oceanic
eddies. In IGARSS 2018-2018 IEEE International Geoscience and
Remote Sensing Symposium, pp. 1764–1767. IEEE, 2018.

[30] Y. Liu, Y. Lu, Y. Wang, D. Sun, L. Deng, F. Wang, and Y. Lei. A
cnn-based shock detection method in flow visualization. Computers &
Fluids, 2019. doi: 10.1016/j.compfluid.2019.03.022

[31] A. Okubo. Horizontal dispersion of floatable particles in the vicinity
of velocity singularities such as convergences. In Deep sea research
and oceanographic abstracts, vol. 17, pp. 445–454. Elsevier, 1970.

[32] R. Peikert and M. Roth. The “parallel vectors” operator: a vector field
visualization primitive. In VIS ’99: Proceedings of the conference on
Visualization ’99, pp. 263–270. IEEE Computer Society Press, Los
Alamitos, CA, USA, 1999.

[33] C. Petz, J. Kasten, S. Prohaska, and H.-C. Hege. Hierarchical vortex
regions in swirling flow. In Computer Graphics Forum, vol. 28, pp.
863–870. Wiley Online Library, 2009.

[34] A. Pobitzer, R. Peikert, R. Fuchs, B. Schindler, A. Kuhn, H. Theisel,
K. Matkovic, and H. Hauser. The state of the art in topology-based
visualization of unsteady flow. Computer Graphics Forum, 30(6):1789–
1811, September 2011.

[35] S. Popinet. Free computational fluid dynamics. ClusterWorld, 2(6),
2004.

[36] F. H. Post, B. Vrolijk, H. Hauser, R. S. Laramee, and H. Doleisch. The
state of the art in flow visualization: feature extraction and tracking.
Computer Graphics Forum, 22(4):775–792, Dec. 2003.

[37] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional net-
works for biomedical image segmentation. In International Conference
on Medical image computing and computer-assisted intervention, pp.
234–241. Springer, 2015.

[38] C. M. Ströfer, J. Wu, H. Xiao, and E. Paterson. Data-driven,
physics-based feature extraction from fluid flow fields. arXiv preprint
arXiv:1802.00775, 2018.

[39] D. Sujudi and R. Haimes. Identification of swirling flow in 3-d vector
fields. In 12th Computational Fluid Dynamics Conference, p. 1715,
1995.

[40] G. H. Vatistas, V. Kozel, and W. Mih. A simpler model for concentrated
vortices. Experiments in Fluids, 11(1):73–76, 1991.

[41] Y. Wang, L. Deng, Z. Yang, D. Zhao, and F. Wang. A rapid vortex
identification method using fully convolutional segmentation network.
The Visual Computer, pp. 1–13, 2020.

[42] T. Weinkauf, J. Sahner, H. Theisel, and H.-C. Hege. Cores of swirling
particle motion in unsteady flows. IEEE Transactions on Visualization
and Computer Graphics (Proceedings Visualization 2007), 13(6):1759–
1766, November – December 2007.

[43] J. Weiss. The dynamics of enstrophy transfer in two-dimensional
hydrodynamics. Physica D: Nonlinear Phenomena, 48(2-3):273–294,
1991.

	Introduction
	Related Work
	Our Method
	Synthetic Generation of Training Vector Fields
	Parameter Space Fitting
	Training Data Generation
	Deep Learning for Vortex Boundary Identification

	Results
	Testing on Synthetic Data
	Testing on Numerical Data

	Conclusion and Future Work

