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Figure 1: A selected time step of an ocean forecasting ensemble computed for the Gulf of Mexico is visualized via the mean surface of the
ensemble (center). For a more detailed inspection of the entire distribution of the surfaces comprising the ensemble, we provide two linked views.
The first linked view (left) shows a histogram of depth positions of the surfaces at a selected spatial position and time step. The second linked
view (right) is a time-series view that depicts a glyph for each time step at the selected position. The horizontal line corresponds to a chosen
critical sea level, where each glyph’s color depicts the risk corresponding to how much of the distribution is above that critical level.

ABSTRACT

We present a novel integrated visualization system that enables
interactive visual analysis of ensemble simulations used in ocean
forecasting, i.e, simulations of sea surface elevation. Our system
enables the interactive planning of both the placement and opera-
tion of off-shore structures. We illustrate this using a real-world
simulation of the Gulf of Mexico. Off-shore structures, such as
those used for oil exploration, are vulnerable to hazards caused by
strong loop currents. The oil and gas industry therefore relies on
accurate ocean forecasting systems for planning their operations.
Nowadays, these forecasts are based on multiple spatio-temporal
simulations resulting in multidimensional, multivariate and multi-
valued data, so-called ensemble data. Changes in sea surface eleva-
tion are a good indicator for the movement of loop current eddies,
and our visualization approach enables their interactive exploration
and analysis. We enable analysis of the spatial domain, for plan-
ning the placement of structures, as well as detailed exploration of
the temporal evolution at any chosen position, for the prediction of
critical ocean states that require the shutdown of rig operations.
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1 INTRODUCTION

Oil exploration in the deep Gulf of Mexico is vulnerable to hazards
due to strong currents at the fronts of highly non-linear warm-core
eddies [38]. The dynamics in the Gulf of Mexico are indeed dom-
inated by the powerful northward Yucatan Current flowing into a
semi-enclosed basin. This current forms a loop, called the Loop
Current, that exits through the Florida Straits, and in turn merges
with the Gulf Stream. At irregular intervals, the loop current sheds
large eddies that propagate westward across the Gulf of Mexico.
This eddy shedding involves a rapid growth of non-linear instabili-
ties [3], and the occasional eddy detachment and reattachment make
it very difficult to clearly define, identify, monitor, and forecast an
eddy shedding event [2, 4, 11].

The predictability of loop current shedding events in the Gulf of
Mexico poses a major challenge for the oil and gas industry oper-
ating in the Gulf. The presence of these strong loop currents po-
tentially causes serious problems and safety concerns for the rig
operators. Millions of dollars are lost every year due to drilling
downtime caused by these powerful currents. As oil production
moves further into deeper waters, the costs related to strong current
hazards are increasing accordingly, and accurate 3D forecasts of
currents are needed. These can help rig operators to avoid some of
these losses through better planning, and avoid potentially danger-
ous scenarios. A 3D ocean forecasting system for the Gulf of Mex-
ico therefore becomes crucial and highly desired by the oil and gas
industry, where accurate loop current forecasts over a time frame of
one to two weeks provide a reasonable time window for planning
the drilling operations.

Developing efficient tools to visualize and clearly disseminate
forecast outputs and results is becoming a very important part of
the forecasting process. Such tools have to be conceived in a way
that allows users to easily extract and clearly identify the necessary
information from large ensembles and the associated statistics rep-
resenting the forecast and its uncertainties. In this paper, we present
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Figure 2: The Gulf of Mexico Simulation Area covered by the
presented dataset. The colors denote water depth in meters [11].

the first system for the visual exploration and analysis of these kinds
of forecasts. Our system handles multivalued ensembles of height-
fields comprising multiple time steps. A set of statistical properties
is derived from the ensemble and can be explored in multiple linked
views, while the complete ensemble is always available for detailed
inspection on demand. Our system enables domain experts to ef-
ficiently plan the placement and operation of off-shore structures,
such as oil platforms.

1.1 Ocean Forecast Simulation

The development of a reliable ocean forecasting system requires
models capable of simulating ocean circulation and an efficient as-
similation scheme that, given enough observations, provides ac-
curate initial conditions for forecasting. High-resolution 3D gen-
eral circulation ocean models are necessary to reproduce complex
mesoscale dynamics like in the Gulf of Mexico [2]. However, such
models cannot provide accurate forecasts of mesoscale variability,
such as eddy shedding events, without data assimilation. A general
circulation ocean model is subject to several sources of uncertain-
ties, not only from the poorly known inputs such as the initial state,
and atmospheric and lateral boundary conditions, but also from the
use of approximate parameterization schemes of sub-grid physics
and ocean mixing dynamics. Data assimilation methods address
this issue by constraining model outputs with incoming data.

The important role of uncertainties is now increasingly recog-
nized in the ocean prediction community for proper decision mak-
ing and efficient risk management.

New assimilation methods based on Bayesian filtering theory
have been recently developed by the ocean and atmospheric com-
munities for efficient propagation and quantification of uncertain-
ties [6, 27, 12, 13, 11]. These methods, known as ensemble Kalman
filter methods, follow a Monte Carlo approach to represent the
uncertainties on a state estimate by an ensemble of model states.
These are then integrated forward in time with the general circula-
tion ocean model to quantify uncertainties in the forecast. The esti-
mated forecast uncertainties are then combined with the observation
uncertainties to assimilate the new incoming data using a Kalman
filter correction step [6], before a new forecast cycle begins. De-
veloping and implementing efficient ensemble Kalman filters with
state-of-the-art ocean and atmospheric models is a very active area
of research.

With the fast-growing high performance computing resources,
the implementation of ensemble Kalman filters with large ensem-
ble members is now practically feasible using highly sophisticated
general circulation ocean models. When a filter’s ensemble is avail-
able, it is customary to calculate various statistical measures of the

ensemble spread as indicators of the uncertainties and of their evo-
lution in space and time, which are then used in decision making.

Recently, Hoteit et al. [11] developed an ensemble forecast-
ing system for the Gulf of Mexico circulation based on the
Massachusetts Institute of Technology General Circulation Model
(MITgcm) [20], and the Data Assimilation Research Testbed
(DART) [13]. This system is capable of assimilating various sets
of satellite and in-situ ocean observations. We use this system as a
real-world scenario that illustrates the new capabilities for analysis
and exploration provided by our visualization approach. Figure 2
gives an overview of the area covered by the forecasting system.

1.2 Visualization Contributions
We present a GPU-based interactive visualization system for the
exploration and analysis of ensemble heightfield data, with a focus
on the specific requirements of ocean forecasts. Based on an ef-
ficient GPU pipeline we perform on-the-fly statistical analysis of
the ensemble data, allowing interactive parameter exploration. We
present a novel workflow for planning the placement and operation
of off-shore structures needed by the oil and gas industry. While
we focus on the visualization and analysis of ocean forecast data,
the presented approach could also be used for the exploration of
heightfield ensembles from other areas, such as weather forecast-
ing or climate simulation.

2 RELATED WORK

Uncertainty and ensemble visualization are widely recognized as
important topics in the field of visualization, which has resulted
in a large body of related work in recent years. In the following
overview, we restrict ourselves to key publications in uncertainty
and ensemble visualization, as well as selected publications from
other areas related to the techniques presented in this paper.

Uncertainty Visualization. A good introduction to uncer-
tainty visualization is provided by Pang et al. [24], who present a
detailed classification of uncertainty, as well as numerous visualiza-
tion techniques. Johnson and Sanderson [14] give a good overview
of uncertainty visualization techniques for 2D and 3D scientific vi-
sualization, including uncertainty in surfaces. For a definition of the
basic concepts of uncertainty and another overview of visualization
techniques we refer to Griethe and Schumann [7]. Riveiro [34] pro-
vides an evaluation of different uncertainty visualization techniques
for information fusion. Rhodes et al. [33] present the use of color
and texture to visualize uncertainty of iso-surfaces. Brown [1] em-
ploys animation for the same task. Grigoryan and Rheingans [8]
present a combination of surface and point based rendering to visu-
alize uncertainty in tumor growth. There, uncertainty information
is provided by rendering point clouds in areas of large uncertainty,
as opposed to crisp surfaces in certain areas.

Recently, Pöthkow et al. [29, 30] as well as Pfaffelmoser et
al. [25] presented techniques to extract and visualize uncertainty in
probabilistic iso-surfaces. Pfaffelmoser and Westermann [26] de-
scribe a technique for the visualization of correlation structures in
uncertain 2D scalar fields. They use spatial clustering based on the
degree of dependency of a random variable and its neighborhood.

A system which models and visualizes uncertainty in segmen-
tation data based on a priori shape and appearance knowledge has
been presented by Saad et al. [35].

Ensemble Visualization. Early work on visualization of en-
semble data was conducted by Pang, Kao and colleagues [15, 19,
16, 18]. While the authors did not use the term ensemble, these
works deal with the visualization of what they call spatial distribu-
tion data, which they define as a collection of n values for a single
variable in m dimensions. These are essentially ensemble data. The
authors adapt standard visualization techniques to visualize these
data gathered from various sensors, e.g. satellite imaging or mutli-
return Lidar. Frameworks for visualization of ensemble data gained
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Figure 3: Application Overview. Our application for exploration of ocean forecast ensembles consists of four main views. The simulated ocean
surface, or a derived version, like the mean surface for a time step, can be shown in 3D or 2D ( a and b ). The histogram view ( c ) shows the
complete distribution of the ensemble at a selected position, while the time-series view ( d ) shows the distribution and the resulting operational
risk at a selected position for multiple time steps.

from weather simulations include Ensemble-Vis by Potter et al. [32]
and Noodles by Sanyal et al. [36]. These papers describe fully
featured applications focused on the specific needs for analyzing
weather simulation data. They implement multiple linked views to
visualize a complete set of multidimensional, multivariate and mul-
tivalued ensemble members. While these frameworks provide tools
for visualizing complete simulation ensembles including multiple
dimensions, to solve the problem presented in this work we focus
on 2.5D surface, i.e. heightfield ensemble data.

Matković et al. [21] present a framework for visual analysis of
families of surfaces by projecting the surface data into lower dimen-
sional spaces. Piringer et al. [28] describe a system for comparative
analysis of 2D function ensembles used in the development pro-
cess of powertrain systems. Their design focuses on comparison of
2D functions at multiple levels of detail. Healey and Snoeyink [9]
present a similar approach for visualizing error in terrain represen-
tation. There, the error, which can be introduced by sensors, data
processing or data representation, is modeled as the difference be-
tween the active model and a given ground truth.

Several published extensions of box plots have inspired our
time-series view. Hintze and Nelson [10] introduce violin plots to
give an indication of the distribution using the sides of the box.
Esty and Banfield [5] combine box and percentile plots to add the
complete distribution to the plot while keeping the simplicity of
box plots. Potter et al. [31] combine quartile, moment and density
plots, based on the histogram, to create summary plots. The density
of curves in 1D function plots can be visualized effectively using
kernel density estimation [17]. Our histogram view that shows the
distribution of surfaces embedded in 3D passing through each (x,y)
position is similar in spirit to such approaches, but for primitives of
one dimension higher.

3 VISUAL OCEAN FORECAST EXPLORATION

Our system targets the interpretation of forecasts from the planning
phase of an off-shore structure to its operation. Since the different
phases have different requirements, we provide a set of four main
views, which are used in different combinations depending on the
application scenario. Figure 3 shows our application with the main
views plus a unified settings panel. The views are two spatial views
showing the surface data themselves, one in 3D a , the other one in
2D b , a linked histogram view c as well as a time-series view d .

While the accessibility of an existing reservoir is the key factor
when planning an oil platform, ocean forecasts can provide valu-
able additional information. Modern drilling techniques to some
extent allow flexible paths and thus considerable flexibility for the
actual placement of a platform. However, the complexity of the
path has implications on the cost of drilling. On the other hand,
slight changes of the position might move a platform from an area
that is strongly affected by eddy shedding, which leads to long
downtimes, to a less affected area, overall resulting in more efficient
operations. In the planning phase, the interaction mainly happens
in the two spatial views.

2D View. The simple 2D top-down view shown in Figure 3 b
is a common tool for visualizing heightfield data and familiar to do-
main scientists. In the standard setting, this view provides a gen-
eral overview. It shows the mean surface of a specific time step,
using iso contours and pseudo-coloring for the heightfield values.
In the first step, domain scientists can use this view to select a re-
gion of interest. Regions that are not suitable for placement in the
first place, i.e., regions from which no reservoir can be reached,
can be marked in this view. For this task, we provide both a sim-
ple rectangular clipping interface, as well as allowing the user to
paint a mask directly inside the view. The latter enables arbitrary
free-form selections. Once the region of interest is defined, a first
overview of the data can be gained using the 2D view. In addition
to the mean heightfield, any 2D scalar field resulting from a statis-
tical analysis can also be visualized in this view. In particular, our
domain scientists are interested in two main properties: the vari-
ance, and a simple risk estimate (see below). Both pseudo-coloring
and iso contours can be used to visualize any of these properties.
However, one is usually reserved for the mean sea level surface in
order to provide context. Once the area of interest is defined and
the user has a general overview of the data, the main task is to find
a position at which downtimes of the platform, caused by danger-
ous ocean conditions, will be minimal. Here, these conditions are
mostly defined by the sea level. We allow users to specify a critical
height value, whose iso contour derived from the currently selected
surface is then highlighted. Pseudo-coloring the variance can give
an idea of the uncertainty of the contour. To provide insight on
spatial variations, all values can be modified interactively. Often,
slight variations of the critical height result in large variations of
the actually affected area. By simultaneously showing the iso con-
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Figure 4: 3D View Detail. a shows iso contours of the mean sur-
faces for all time steps blended over the current surface. The area
of interest is rendered with full opacity, while the context is preserved
by rendering the remaining parts semi-transparently. b shows a vol-
ume rendering of the pdf at a user-selected position. The surface is
color-mapped with the variance. The large spread in areas of high
variance is clearly visible in the volume rendering.

tours for the defined height of the mean surfaces of all time steps
at once, experts can easily identify the most affected areas. How-
ever, uncertainty information is hard to include in this case. On the
one hand, color-coding the surface allows showing only one time
step at a time. On the other hand, a rubber-band approach for sev-
eral contours results in a large amount of clutter. We avoid this by
visualizing a risk estimate.

Risk Estimate. We define and visualize a simple risk es-
timate as the percentage of ensemble members above the defined
critical height. This value is computed for every (x,y)-position for
every time step. The surface in Figure 3 a is colored with such a
risk estimate. We can use color-coding only for a single time step,
but by using the iso contour for an acceptable risk (e.g. 10%), the
iso contours for all time steps can be overlaid, as described above.
The user can also interactively modify both parameters, the critical
height and the acceptable risk, to iteratively find an acceptable com-
promise and define a set of possible positions for further inspection.

3D View. The linked 3D view (Figure 3 a ) provides all the
features described for the 2D view plus several additional tools for
a more detailed spatial and temporal inspection. Typically, in the
3D view the height values of the displayed surface are mapped to
the third dimension, freeing pseudo-coloring and iso contours for
additional information. Figure 4 a shows an example, where the
surface is pseudo-colored using the risk estimate, and iso contours
corresponding to the critical sea level for all time steps are shown as
well. An additional benefit of the 3D view is that it is possible to use
volume rendering for showing details of the distribution of the en-
semble. Similar to approaches presented by Pöthkow et al. [29, 30],
as well as Pfaffelmoser et al. [25], we depict the actual distribution
of the ensemble as a volume around the surface. Instead of using a
parametric representation of the data based on mean and variance,
we allow rendering the full probability density function (pdf) of the
distribution, to allow detailed inspection of the actual data. How-
ever, since at this point the user usually has picked a set of points
of interest, to avoid unnecessary occlusion, we do not render the
complete volume, but a small subset of adjustable size, which es-
sentially works like a volumetric cursor (see Figure 4 b ). The user
can simply probe the data by hovering with the mouse over a posi-
tion of interest, and the probability density volume is then rendered
around the picked position.

Histogram View. Another way to inspect the distribution in
detail is the histogram view shown in Figure 3 c . This view shows
the histogram over the values of the heightfield as well as the prob-
ability density function (pdf) for a selected (x,y)-position. Similar
to the volumetric representation in the 3D view, the position is de-
fined by picking directly in any of the spatial views. When the user
moves the mouse over the surface, the histogram view is updated
on the fly to show the histogram at the current mouse position.
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Figure 5: The Time-Series View in detail. The y axis corresponds
to the sea level, the x axis to time. Each glyph shows the distribution
of the selected position for one time step. Glyphs are colored us-
ing the associated risk, i.e., the fraction of the distribution above the
selected critical sea level. Each time step corresponds to a unique
color, as indicated by the vertical lines, which is also used for render-
ing the iso contours of multiple time steps (Figure 4 a ).

At this point, after defining the area of interest, narrowing down
using the risk estimate, and finally inspecting the distribution in
detail at a small number of positions, the user can use the time-
series view to inspect the data at the selected (x,y)-positions over
all time steps. This last step in the planning phase is very similar
to the planning in the operational phase, with the distinction that
the position is not yet defined. Positions of interest can either be
defined interactively as described above, or loaded from file.

Time-Series View. This view always shows the complete
time-series for a single position. Once defined, or loaded, our appli-
cation caches several positions of off-shore structures, from which
one can be selected using a drop-down menu. Using the time-series
view (Figures 3 d and 5), domain experts can then easily identify
the points in time where operations should be halted. For each time
step, a glyph similar to a violin plot [10] is displayed. Here the
probability density function (pdf) is used for the outline and the
mean value is indicated by a horizontal line at the appropriate po-
sition. To provide spatial context, the plots are arranged at their
original depth positions and as such can be compared directly. In
addition, the critical height is indicated by a horizontal line. To help
identify the critical time steps, the glyphs are color-coded accord-
ing to the risk estimate. Without ensemble forecasts, rigs were op-
erated based on a single simulation. However, even when ensemble
forecasts are available, a visual exploration approach is necessary.
Without our visualization system, our domain experts would define
the safeness by simply looking at the mean and variance values of
the ensemble. In each time step, we indicate the mean value of the
distribution by a bold black bar, providing the same information as
before, for all time steps in a single view. The user can immedi-
ately identify critical time steps, looking at the color and position
of each glyph, and possibly order an unavoidable shutdown of op-
erations. If the situation is unclear, the glyph provides the complete
distribution to enable the expert to make a decision.

4 ANALYSIS AND VISUALIZATION PIPELINE

For efficient exploration and analysis of the data an elaborate sta-
tistical analysis as described in Section 4.1 is performed. To allow
interactive updates, we have implemented a GPU-based analysis
and visualization pipeline presented in Section 4.2.

4.1 Statistical Analysis
The basis for visual statistical analysis of the input data is a 3D
spatial distribution histogram. We define the axes of this histogram
such that the x and y axes correspond to the domain of the height-
field, and the z-axis corresponds to its values. This results in a vol-
ume with the same x and y extents as the input surface data, and
the z extent depending on the range and sampling of the image of
the input function. The histogram shows the number of surfaces
passing through the (x,y,z)-position, corresponding to each bin.
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Figure 6: Pipeline Overview. The pipeline is divided into two major blocks: The statistical analysis part at the top, and the rendering part shown
at the bottom. Both parts are entirely GPU-based, and all data (middle) are shared by both parts in GPU memory.

Since there is only one value per (x,y)-position per heightfield
we can derive two important properties; First, we can interpret the
3D histogram as a set of 1D histograms, one for each (x,y)-position.
This means that the statistical analysis can be carried out for each
(x,y)-position separately. We use this to parallelize the computation
as shown in Section 4.2. Second, each of these 1D histograms can
be interpreted directly as a probability distribution of the surfaces at
the corresponding (x,y)-position by normalizing the value of each
bin by dividing by the total number of surfaces. In addition to this
simple probability measure, we also compute a kernel density esti-
mation to approximate the continuous probability density function
at each (x,y)-position. These 1D histograms and probability den-
sity functions are used for the glyphs in the time series view and
also for the histogram view. The complete 3D volume is the basis
for the volume rendering depicted in the 3D view.

From the 1D histograms, a number of statistical properties in-
cluding range, mean, median, maximum mode, standard deviation,
variance, skewness, kurtosis and the risk estimate described in Sec-
tion 3 are computed for each (x,y)-position. While mean, me-
dian and maximum mode are added to the ensemble as surfaces,
the other properties are added as meta information, for example to
color-code the surfaces accordingly.

Additionally, if enabled, iso contours are extracted from selected
properties, most importantly from the active surface (mean, median
or maximum mode), as well as the risk estimate for all time steps.

To explore the parameter space, for example to look at the in-
fluence of a certain parameter or to remove outliers, the statistical
analysis, as well as iso contour extraction, can be carried out either
for the complete ensemble, or for any user-defined subset of the en-
semble. In the standard setting for oceanography, time is mapped
to one parameter, while the simulation starting condition is mapped
to a second one. In addition, the time parameter’s range is set to
a single time-step, while the second parameter’s range covers all
starting conditions. This results in the statistical analysis being car-
ried out for a single time step only. However, both parameters can
be adjusted causing the analysis to be carried out for the adjusted
range on the fly.

To allow interactive exploration of the parameter space, all up-
dates of the statistical analysis must be computed in real time, or at
least at interactive rates. For this reason, we employ a pipeline that
is entirely GPU-based, which is presented in the next section.

4.2 GPU-Based Analysis and Visualization Pipeline

Our GPU-based analysis and visualization pipeline is illustrated in
Figure 6. In the remainder of this section, circled numbers refer to
this figure. The pipeline is divided into two main parts: The statis-
tical analysis and iso surface extraction is carried out using CUDA,

while the visualization is based on OpenGL and GLSL shaders. All
data are shared between the two parts of the pipeline, so that after
the initial upload of the ensemble onto the GPU no expensive bus
transfer is necessary. Since usually only a small part of the ensem-
ble is required by the visualization, a streaming approach would
be possible for datasets that are larger than GPU memory, but we
currently assume that the dataset fits into GPU memory.

Input. The input 1 to our system is a set of heightfields.
These can be part of a simulation ensemble, e.g. from ocean or
weather forecasts, a time series of some sort, or the results of a pa-
rameterized segmentation. Even though we focus on heightfields in
this work, the concepts can also be applied to surfaces in n dimen-
sions as long as the correspondences between all surfaces in the
dataset are known for every nD-datapoint. In our framework, we
assume the 2D spatial (x,y)-coordinate to be the correspondence
between the surfaces.

Data Representation. Before computation of statistics or
visualization, the ensemble is converted into a 3D texture 2 and
loaded onto the GPU. Every heightfield of the ensemble will be
represented by one slice in this texture. Additionally, space for
the mean, median and maximum mode heightfield will also be re-
served in this texture. The surfaces are indexed using the original
parametrization. If there is only a single parameter, for example the
time steps in a time series, the surface ID corresponds to the texture
index. For higher-dimensional parameter spaces, e.g. ensemble ID
plus time, the linear texture index is computed from the original
parameters. This allows the user to define subranges for each pa-
rameter separately, for example to examine the complete ensemble
at a single time step.

Statistical Analysis. The first step in the statistical analy-
sis is the creation of the 3D histogram 3 . Changes in the param-
eter range trigger an update of the 3D histogram and subsequently
of the representative surface and property texture. Since each en-
semble member provides exactly one entry to the histogram per
(x,y)-position, rather than using a thread for each member, we use
one thread per (x,y)-position. Each thread then loops over all se-
lected surfaces and inserts the corresponding height values into the
histogram. This way, write conflicts can be avoided and no criti-
cal sections or atomic operations are needed. The kernels for the
derived properties are set up in a similar fashion. The desired sta-
tistical property is computed by one thread per (x,y)-position. The
main difference to the histogram computation is that this results
in a single scalar per thread, all of which are then assembled into
a 2D texture. While mean, median and maximum mode 4 are at-
tached to the 3D heightfield texture to be used as representative sur-
faces, the other properties 5 are copied into a 2D texture available
to the visualization pipeline for texturing the surface. Exploiting
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the parallelism of the GPU and eliminating costly bus transfers be-
tween CPU and GPU allows interactive modification of the param-
eter range even for ensembles containing several hundred surfaces.
Section 4.3 provides a detailed performance analysis.

Iso Contouring. We have implemented marching squares
using CUDA, based on the marching cubes example from the
CUDA SDK. However, on our test system this implementation
performs worse than a CPU version (compare Section 4.3). The
CUDA version also requires considerable communication between
the CPU and GPU meaning the advantage of a completely GPU
based pipeline gets lost when extracting the iso contours. Hence
we use the faster CPU version. We keep the initial geometric rep-
resentation of the contours, for example for use in the 2D view, but
for overlaying the contours onto the 3D surfaces we render the con-
tours into an offscreen buffer 6 , which is then used for texturing.

Rendering. The rendering pipeline takes advantage of the
fact that all ensemble data are already stored in GPU memory,
which facilitates efficient surface rendering. Instead of creating
new surface geometry every time a different surface of the ensemble
is rendered, a single generic vertex buffer of fixed size is created.
This buffer covers the entire (x,y)-domain, but does not contain
any height information. The z-value of each vertex is set later in the
vertex shader. Before transforming the vertex coordinates into view
space, the object space (x,y)-coordinates of the vertex in combina-
tion with the ID of the active surface are used to look up the z-value
of the current vertex in the ensemble texture. At this point, the de-
sired surface geometry is available. In order to be able to visualize
the results of the statistical analysis, the object space coordinates
are attached to each vertex as texture coordinates (x and y are suf-
ficient). In the fragment shader, this information can then be used
to look up the active statistical property in the 2D texture. This
texture contains the raw information from the statistical analysis,
which is then converted to the fragment color by a look up in a 1D
color map. We provide a selection of several continuous, diverging
cool-to-warm color maps, as presented by Moreland [22], but also
allow the creation of custom color maps. These color maps mini-
mally interfere with shading, which is very important in this case,
as shading is an important feature to judge the shape of a surface.
During testing we realized that using the continuous version made
it very hard to relate an actual value to a color in the rendering so we
decided to optionally provide a discrete version with ten steps. Af-
ter the surface geometry has been rendered, a surrounding volume,
for example the 3D probability density function, can be rendered as
well. This is done in a second rendering pass in order to guarantee
correct visibility [37].

Interaction. With the described pipeline in place, a number
of features can be implemented very easily and efficiently. If de-
sired, the user can choose to render any surface from the ensemble.
This requires no data transfer to or from the GPU, except for the ID
of the surface in the ensemble to render. In addition, it is possible
to automatically animate all surfaces in a predefined range. In the
presented application this can be useful in two ways; As shown by
Brown [1] animation is a powerful tool for visualizing uncertainty.
The user can choose to animate through all members of a single
time step to get an impression of the surface distribution. Secondly
animating the mean surfaces over the time domain can show the
behavior of the loop currents.

The described visualization techniques can give a very good im-
pression of the quantitative variation in the data. Detailed informa-
tion on the surface distribution can be gained by animating through
or manually selecting individual surfaces from the ensemble. How-
ever, it is hard to compare more than two surfaces this way. We
therefore provide an additional view showing the histogram and
probability distribution for a selected position. The position to in-
vestigate can be picked directly in the 3D view. All information that
is required for picking is already available in our rendering pipeline:

We use the same vertex shader as described before for rendering the
surface into an off-screen buffer of the same size as the frame buffer.
Instead of using the object space coordinates to look up the scalar
values in the fragment shader, we use the coordinates directly as the
vertex color. This way, we can look up the current mouse position
directly in the downloaded off-screen buffer. With the (x,y)-part
of the resulting volume position, we can then directly look up the
histogram and probability density distribution for this position. To
facilitate easy comparison, we color the bin corresponding to the
current representative surface differently than the remaining bins.

4.3 Performance

The performance of the statistical analysis is crucial for interactive
exploration of the parameter space. We used the dataset described
in Section 5 for a performance analysis. The dataset consists of a
total of 500 surfaces spread over ten time steps. Since usually one
time step is investigated at a time we compare performance for a
single time step, consisting of 50 surfaces, as well as the complete
dataset. Table 1 shows the resulting computation times.

The computations were performed using an NVIDIA GeForce
GTX 580 with 1.5GB of graphics memory. The timings were av-
eraged over 1000 kernel executions. As all data stays on the GPU,
no bus transfer has to be considered. For comparison, we also show
computation times of a single time step on the CPU. The compu-
tations were carried out on a workstation with two six-core Xeons
(12 physical cores plus hyper threading) clocked at 3.33GHz and
48GB of main memory. The CPU computations were parallelized
using OpenMP, utilizing 24 threads.

In general, it can be seen in Table 1 that using the GPU even
for 500 surfaces, the slowest update including skewness and all de-
pendencies plus the probability density function (which needs to
be computed for the histogram and time series views) still allows
for interactive update rates. Compared to the CPU version, we
achieved a speedup of roughly 5× for all tasks when considering
the dependencies.

The histogram, range, mean, variance, kurtosis and the risk esti-
mate are calculated directly from the ensemble and as such the com-
plexity relies solely on the number of surfaces and valid data points
per surface. We would expect the computation time for these val-
ues to scale linearly with the number of surfaces/valid data points,
which seems to be in line with the measured numbers. For even
larger datasets, however, it would make sense to compute range,
mean, variance, kurtosis and the risk estimate using the histogram.
This would result in constant time, only depending on the size of
the histogram. For the datasets here, however, the histogram com-
putation is the limiting factor. The probability density function,
median and mode are looked up using the histogram, and there-
fore there is no difference between the small and the large data set.
Standard deviation and skewness are implemented as linear combi-
nations of other surface properties, and thus computation times are
also independent of the number of surfaces. With the dependencies
precomputed, the computation of both properties is trivial, which
results in very short computation times.

5 APPLICATION SCENARIOS

We illustrate our approach using two different scenarios for a real-
world Gulf of Mexico ocean forecast dataset. The dataset covers the
Gulf of Mexico basin between 8.5◦ N and 31◦ N, and 262◦ E and
287.5◦ E on a 1/10◦ ×1/10◦ grid with 40 vertical layers. Forecast-
ing experiments were performed over a six-month period in 1999
between May and October during which a strong loop current event
occurred (Eddy “Juggernaut”) [23]. The resulting dataset consists
of ten time steps, each consisting of 50 ensemble members. The lat-
eral dimensions are represented by a grid consisting of 275× 325
samples.
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Table 1: Computation times for all properties. All times are in milliseconds. The first column shows ID and name of the property. The second
column lists the IDs that are required to compute the corresponding property. The columns titled w/o dep and w dep show the computation for
just this property, and the property plus all dependencies, respectivley. The last two columns show the speedup from CPU to GPU. For iso
contour extraction (12) one contour per time step was extracted, resulting in one and ten contours respectively.

Depends on 50 Surfaces CUDA 500 Surfaces CUDA 50 Surfaces CPU CPU/GPU Speedup
Property Property w/o dep w dep w/o dep w dep w/o dep w dep w/o dep w dep

1 Histogram - 3.23 3.23 38.56 38.56 19.24 19.24 6.0x 6.0x
2 PDF 1 12.93 16.16 12.78 51.34 45.70 64.94 3.5x 4.0x
3 Range - 0.71 0.71 11.09 11.09 3.45 3.45 4.9x 4.9x
4 Mean - 0.71 0.71 10.89 10.89 3.48 3.48 4.9x 4.9x
5 Median 1 0.70 3.93 0.70 39.26 8.78 28.02 12.5x 7.1x
6 Mode 1 1.40 4.63 1.41 39.97 4.65 23.89 3.3x 5.2x
7 Variance 4 0.72 1.43 10.87 21.76 3.85 7.33 5.3x 5.1x
8 Std Dev 4, 7 0.02 1.45 0.02 32.78 0.14 7.47 7.0x 5.2x
9 Skewness 1, 4, 6, 7, 8 0.05 6.13 0.05 72.80 0.16 31.42 3.2x 5.1x

10 Kurtosis 4, 7 0.74 2.17 10.76 32.52 4.05 11.38 5.5x 5.2x
11 Risk - 1.70 1.70 21.00 21.00 27.93 27.93 16.4x 16.4x
12 Iso Contour any of 3 - 11 5.20 n/a∗ 23.90 n/a∗ 1.40 n/a∗ 0.27x n/a∗
∗Computation time with dependencies varies, depending on the property used for iso contouring.

5.1 Scenario I: Planning Phase

Planning the placement of an off-shore structure demands a com-
plete overview of the ensemble in the spatial domain, but also over
all available time steps. Figure 7 outlines all necessary steps. First,
the user defines the area of interest (defined by factors not available
in the ocean forecast, like reservoir reachability) in the 2D view
(Figure 7a) either by a simple bounding rectangle, or completely
free by painting directly on the map. In Figure 7b, the sea level of
the mean surface for a single time step is mapped to the third dimen-
sion. The standard deviation is used for pseudo-coloring in the 3D
view. By animating all time steps, the user can now get an overview
of the mean sea level at the selected area of interest, as well as the
corresponding uncertainties. Besides the 3D view, animation can
also be used in the 2D view, showing the sea level using iso contours
and pseudo-coloring (inset). While the animation is very effective

(a) Area of Interest Definition. (b) Sea Level and Std. Deviation.

(c) Time Series Sea Level Contours. (d) Distribution Detail.

Figure 7: Spatial Exploration for placement planning consists of
four main steps: Definition of the area of interest based for example
on reservoir reachability (a), general overview (b), time series analy-
sis (c) and detailed analysis for verification (d).
Please use Adobe Reader ≥ 9 to enable animations.

to give a first impression of the changing sea level, it is challenging
to derive qualitative results. Therefore, in the next step, the user
can look at iso contours from the mean surfaces, or risk estimates
of multiple time steps in a single view. The contour for a single se-
lected sea level and maximum allowed risk is extracted for all time
steps and rendered on the mean surface. The selected sea level, as
well as the maximum risk, can be changed on the fly (compare the
animation in Figure 7c). Starting with a low sea level and zero risk,
the user can gradually approach a suitable compromise of available
positions, critical sea surface height and resulting risk, to narrow
down the area of interest to a few points. Once a compromise is
found, the ensemble distribution can be probed interactively at the
interesting positions, to verify the results using the histogram view
(inset Figure 7d). At this point the potential placement is narrowed
down to a few positions. A detailed analysis of all time steps, iden-
tical to the analysis for operations (Section 5.2) can be performed.

5.2 Scenario II: Operational Phase

Most of the ensemble analysis for planning operations and unavoid-
able downtimes is carried out in the time-series view shown in Fig-
ure 5. For a detailed explanation of the view, see Section 3. After
definition of a set of positions corresponding to the managed rigs,
one position can be selected at a time from a drop-down box. This
location is then depicted in the 2D and 3D views for spatial context.
The critical sea level, as well as the acceptable risk, can be defined
from the user interface. We provide a set of standard color maps
for coloring the glyphs. The color map is also freely customizable,
most importantly to adapt to the acceptable risk. A good color map
should highlight three cases based on the risk estimate: Time steps
which are safe for operation with a high certainty, time steps where
the rig needs to be shut down with large certainty, and finally un-
certain time steps. We found the green to yellow to red diverging
color map, as used in Figure 5 to be a good fit, with the green and
red mapping to the percentages which indicate safe operations and
a high risk, respectively, and the yellow to percentages indicating
the need for additional inspection.

The actual operation planning is a recurring process with only a
few future time steps available at a time. The parameters like posi-
tion, critical sea level, acceptable risk and the corresponding color
map, however, typically do not change. Hence all these settings can
be loaded from a state file alongside new forecast data. Assuming
a color map as described, after loading the data the user can im-
mediately identify safe and unsafe time steps from the color of the
corresponding glyphs. Only uncertain time steps need further inves-
tigation. The main factor to consider for these cases is the spread
or uncertainty of the distribution. A compact glyph corresponds to
a distribution with little uncertainty. Here, the risk estimate can im-
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mediately be used for making a decision to shut down the rig. A
large glyph in general indicates large uncertainty. Here, the user
must carefully weigh several properties: Are ensemble members in
the critical range close to the critical sea level or far above, is the
distribution skewed to either side, etc. While in general this infor-
mation can be derived from the glyph, the user can also access the
raw results from the statistical analysis at this point before making
a final decision.

6 CONCLUSION
In this work we present an interactive system for the visualization,
exploration and analysis of heightfield ensemble data. The core of
our framework, which consists of statistical analysis and rendering,
is implemented in an efficient GPU-based pipeline. We show the
utility of our framework for ocean forecasting. We have received
very promising feedback from our domain expert collaborators, and
are planning a formal user study in the future.
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