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Abstract
Seismic interpretation is an important step in building subsurface models, which are needed to efficiently exploit
fossil fuel reservoirs. However, seismic features are seldom unambiguous, resulting in a high degree of uncertainty
in the extracted model. In this paper we present a novel system for the extraction, analysis, and visualization of
ensemble data of seismic horizons. By parameterizing the cost function of a global optimization technique for
seismic horizon extraction, we can create ensembles of surfaces describing each horizon, instead of just a single
surface. Our system also provides the tools for a complete statistical analysis of these data. Additionally, we allow
an interactive exploration of the parameter space to help finding optimal parameter settings for a given dataset.

Categories and Subject Descriptors (according to ACM CCS): I.3.8 [Computer Graphics]: Applications—

1. Introduction

Fossil fuels are the most important energy sources for to-
day’s societies. Using the full potential of existing reservoirs
is increasingly necessary. For planning production wells to
drill into oil and gas reservoirs, one needs an exact model of
the subsurface, including the different subsurface layers and
their boundaries—the so-called seismic horizons—, but also
faults, and other structures. To create such a model, usually
a seismic survey is acquired which contains seismic reflec-
tion data. These data need to be interpreted. The term inter-
pretation most of all describes the extraction of geological
structures from the seismic cube. These structures, however,
are often ambiguous and not very well defined. This results
in high uncertainty in the extracted features.

This work presents a novel framework for the quantifi-
cation of uncertainty in extracted seismic horizons, by intro-
ducing ensemble computation and visual analysis to this pro-
cess. We first automatically sample the parameter space of
the cost function underlying a global optimization technique
for horizon extraction [HBG∗11, HFG∗12]. This results in a
family of surfaces, i.e., a horizon ensemble, for each hori-
zon in the original data. Visualization then enables the user
to perform interactive exploration and statistical analysis of
the ensemble data. This process guides the user to regions
of high uncertainty in the extracted horizons. In addition,
by allowing the user to interactively constrain the parame-
ter ranges in order to explore the parameter space, our sys-
tem facilitates finding optimal parameter settings for a given
dataset. The major contributions of this paper are:

• Ensemble computation for seismic horizon extraction
based on sampling the parameter space of the cost func-
tion used for surface extraction.

• An interactive system that enables analysis and visual-
ization of the extracted ensemble data and facilitates real
time exploration of the parameter space of these data.

2. Related Work

Our framework is based on previous work for interactive
seismic horizon extraction using a global optimization ap-
proach [HBG∗11, HFG∗12]. However, in this paper, instead
of computing a single surface for each horizon, we compute
ensembles of horizon surfaces, by sampling the entire pa-
rameter space of the cost function. The uncertainty repre-
sented by these ensemble data can then be analyzed interac-
tively. A good overview of other techniques for horizon ex-
traction is provided by Pepper and Bejarano [PB05]. Farakli-
oti and Petrou [FP04] employ connected component analysis
for fully automatic horizon extraction. Patel et al. [PBVG10]
propose an interactive workflow for the manual combination
of building blocks computed in a preprocessing step.

Frameworks for visualization of ensemble data computed
for weather simulation include Ensemble-Vis by Potter et
al. [PWB∗09], and Noodles by Sanyal et al. [SZD∗10]. A
good introduction to uncertainty visualization is provided by
Pang et al. [PWL97], who present a detailed classification of
uncertainty, as well as numerous visualization techniques,
including several concepts applicable to (iso-)surface data,
like fat surfaces. Johnson and Sanderson [JS03] give a
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good overview of uncertainty visualization techniques for
2D and 3D scientific visualization, including uncertainty in
surfaces. For a definition of the basic concepts of uncer-
tainty and another overview of visualization techniques for
uncertain data, we refer to Griethe and Schumann [GS06].
Brown [Bro04] employs animation to visualize uncertainty
in iso-surfaces. Pöthkow et al. [PH11, PWH11] and Pfaffel-
moser et al. [PRW11] present techniques to extract and vi-
sualize uncertainty in probabilistic iso-surfaces. These ap-
proaches for visualizing uncertainty in iso-surfaces use a
mean surface as the main representative surface and use un-
certainty quantification provided by simulations.

3. Ensemble Computation

We compute each individual surface in a horizon ensem-
ble via a horizon extraction technique presented previ-
ously [HBG∗11,HFG∗12]. This technique employs a global
optimization approach using a cost function, which com-
prises three components that are combined via two user-
adjustable weights, and scaled by a third parameter. How-
ever, such a complex cost function can overburden the user.
For this reason, we propose to sample the parameter space
of the cost function automatically. For a detailed descrip-
tion of the cost function and the parameters, please refer
to [HFG∗12]. However, the approach presented here is appli-
cable to a variety of parameterized surface extraction tech-
niques. We will therefore refer to the parameters generically
as p0 to pn in the remainder of this paper.

To start the ensemble computation, only a single seed
point is required. However, an arbitrary number of points
can be defined as additional constraints to force the result-
ing surfaces through user-specified positions. The same seed
point and set of constraints are used to compute all sur-
faces in the ensemble. Once the seed point and constraints
are defined, the user can define a range and sampling rate
for each parameter to compute the ensemble. For each pa-
rameter setting, the seed point and constraints, as well as
the parameterized cost function, are given to the surface ex-
traction algorithm. The result of each surface extraction step
is a single horizon surface represented as a height field or
function f : N×N 7→ R, mapping each (x,y)-position on a
regular grid to a single depth value. Even though we focus
on height fields in this work, our approach would also be
applicable to generic surfaces, as long as correspondences
between the ensemble members can be established. For this
paper, we assume that the (x,y)-position defines this corre-
spondence. Moreover, as the surfaces for each parameter set-
ting are computed independently from all others, the ensem-
ble computation can easily be parallelized for faster compu-
tation of the ensemble data. This allows each node of a clus-
ter and/or processor core to compute one surface at a time.

4. Statistical Analysis

To analyze the results of the ensemble computation, we
compute a wide range of statistical properties. The basis

for these computations is provided by a 3D histogram, h :
N×N×N 7→ N, mapping each volume position (x,y,z) to
the number of surfaces passing through that position. With
the (x,y)-position as the correspondence between ensemble
members, as described above, this 3D histogram resembles
a set of 1D histograms mapping the depth value at any given
(x,y)-position to the number of surfaces passing through that
depth. As such, this histogram can also be interpreted as a
probability distribution. Due to the fact that all surfaces in
an ensemble share the same domain, we know that the sum
of all surfaces passing through all depth values at any (x,y)-
position equals the number of ensemble runs. We can there-
fore directly derive a probability for each voxel being part of
a horizon surface, by dividing the number of surfaces pass-
ing through that voxel by the number of ensemble runs.

In addition, we compute the probability density distribu-
tion for each (x,y)-position. Based on this data, we compute
a maximum likelihood surface. This surface is an actual sur-
face from the ensemble, which is chosen according to an
overall likelihood value assigned to each of the surfaces.
This likelihood value is computed by taking the height- or
function-value f (x,y) at each (x,y)-position of the surface
f , and summing over all the individual probabilities on the
surface, which result from a look-up in the probability den-
sity function (pdf) at each position:

likelihood( f ) = ∑
x

∑
y

pdf(x,y, f (x,y)). (1)

The ensemble member with the highest likelihood value is
then defined as the maximum likelihood surface. This sur-
face corresponds to a global measure, in contrast to a surface
such as the mean surface, where each point is only locally
the point of highest probability.

By interpreting the 3D histogram as a set of 1D his-
tograms, we can also compute a complete set of statistical
properties per (x,y)-position, such as mean, standard devia-
tion, or kurtosis. Mean and median depth value, as well as
the maximum mode of the pdf, can be used to synthesize ad-
ditional surfaces. Other values can be used to get an idea of
the distribution of the ensemble surfaces in the volume.

5. Visualization

The surfaces resulting from the ensemble computation have
significantly different properties than, for example, the prob-
abilistic iso-surfaces presented in [PRW11] or [PH11].
Whereas the distribution of the probabilistic iso-surfaces can
be modeled as a Gaussian distribution, each parameter set-
ting in our approach can produce a completely different sur-
face. In fact, typically there is very little variation as long as
the surfaces tag the same horizon. In uncertain areas, how-
ever, it often happens that different parameter settings lead
to surfaces tagging different horizons, which results in dis-
connected clusters of very similar surfaces in each cluster
(compare Figure 1). Thus, the visualization techniques pre-
sented in [PRW11, PH11] are not applicable for our ensem-
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Figure 1: Accumulated rendering of 101 surfaces intersected
with a planar slice. The clustering behavior is clearly visible.

(a) Maximum likelihood surface

(b) Mean surface

Figure 2: Comparison of the maximum likelihood surface
(a) with the synthetic mean surface (b) extracted from a 101
surface ensemble, sampling parameter p0. The surface was
seeded on the bright ridge line. The color coding indicates
the difference between the amplitude at the volume position
passed by the surface and the target amplitude. Blue means
a small difference (better), red a bigger difference (worse).

bles. That is, the mean surface used in these approaches as
a representative surface would not correspond to a horizon
surface, since it would likely result in a surface in between
two possible segmentations, but tag neither one correctly.

Instead of synthesizing a surface, we have decided to ex-
tract the maximum likelihood surface for use as the repre-
sentative of the ensemble, as described in Section 4. An ex-
emplary comparison of the maximum likelihood surface and
a mean surface can be seen in Figure 2. Figure 2a shows
an example of a maximum likelihood surface. Even though
there is a somewhat large variance in the ensemble, the max-
imum likelihood surface fits the underlying data quite well.
In contrast, the mean surface shown in Figure 2b is basically
a mixture of two large clusters of surfaces and does not fit
either one of the tagged horizons for large parts of the sur-
face.

However, simply displaying the maximum likelihood sur-
face itself without any additional information does not pro-
vide much information about the ensemble. Therefore, we
also depict the results of the statistical analysis described in
Section 4.

We allow pseudo-coloring the surface with these results,
using one of several pre-defined, or user-defined color maps.
These properties immediately provide a good idea about how
the surface extraction behaves in different areas, i.e. very sta-
ble areas are clearly visible throughout all properties, indi-
cated by small values in range, standard deviation, variance,
close to zero values in the skewness, or very large values in
the kurtosis. In addition, it is possible to automatically ani-
mate all surfaces in a pre-defined range. Animating the en-
semble gives a nice impression of the parameters that result
in similar surfaces, as well as of which areas in the dataset
react more or less to changes in the parametrization of the
cost function. Similar surfaces or surface parts in the ensem-
ble will result in little variation in the animation, whereas
areas of large variance will show more movement and thus
automatically draw the user’s attention.

All the described techniques have in common that they
can be used to visualize the complete ensemble or any user-
defined subset. Using a slider, the user can define a subrange
for each parameter and the statistical analysis is carried out
on the fly for this range. This allows an interactive explo-
ration of the parameter space, which is helpful to define in-
teresting ranges for each parameter.

6. Results

We have computed several ensembles with different parame-
ter samplings. Since we can give only a brief overview in this
format, we present one ensemble, consisting of a total of 101
surfaces in this section. The ensemble was created by sam-
pling the parameter p0 in the range of [0..1] in steps of 0.01,
while the other two parameters were fixed. Additional visu-
alizations can be found at http://www.thomashollt.
com/eurographics13.
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(a) p0 = [0.0..1.0] (b) p0 = ]0.9..1.0] (c) p0 = [0.0..0.9[

Figure 3: Exploration of a single parameter. The color coding represents the variance of the ensemble. Only looking at (a), it
seems that there is a quite large variance over the entire surface. However, by looking at the two different parameter sub-ranges
in (b) and (c), respectively, it becomes clear that nearly all of the variation is related to the parameter range from 0.9 to 1.0.

Figure 3 shows different visualizations of this horizon en-
semble. The variance is depicted by color coding the max-
imum likelihood surfaces of the respective parts of the en-
semble. Judging from Figure 3a, which resembles the com-
plete ensemble, it seems that there is quite a bit of variance
as there are very few dark blue areas. By splitting up the
parameter range into two sub-ranges, one from 0.9 to 1.0
(shown in Figure 3b), and one from 0.0 to 0.9 (Figure 3c), it
becomes clear that nearly all of the variation is in the upper
ten percent of the parameter range.

Using this ensemble, for this specific dataset, we could
quickly find out that the usable parameter range for p0 is be-
tween 0.0 and 0.9, but also that a parameter in this range will
have very little effect on the resulting surfaces, meaning that
the user does not have to be very careful with this parameter,
as long as it is between 0.0 and 0.9.

7. Conclusions

In this paper, we have presented a novel framework for the
computation, analysis, and visualization of ensemble data
consisting of extracted seismic horizon surfaces. These en-
sembles do not follow a Gaussian distribution. We have
shown that our framework is helpful for identifying good
parameter settings for the cost function, as well as for avoid-
ing bad parameter settings. Our approach can also be used
to find interesting features in the data, which might warrant
closer manual interactive inspection.
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