Evaluating Hex-mesh Quality Metrics via Correlation Analysis

While analytical expressions of most of the quality metrics in Table 1 of the paper can be found in [SEK*07], we list below the formulas of metrics that are highly related to the condition number. We also describe the quality metric of Dimension that is not obvious to derive from [SEK*07].
Notations. \vec{X}_{i} is a principal axis of a hexahedral element and L_{i} is the magnitude of \vec{X}_{i}, where $i \in\{0,1,2\}$.

A hexahedron has three principal axes, each of which is pointing to the center of a face from the center of its opposite face (left of the figure). The cross-derivative of $\overrightarrow{X_{i j}}$ is pointing from the center of one diagonal face to the center of the other one, where the diagonals of the two diagonal faces are on the two hex-faces of X_{k} (right of the figure). $L_{i j}$ denotes the length of $\overrightarrow{X_{i j}}$.
Diagonal is the ratio of the minimum diagonal length to the maximum diagonal length of a hexahedron. A hexahedron has four diagonals.
Edge Ratio is the ratio of the longest edge to the shortest edge of a hexahedron. A hexahedron has twelve edges.
Maximum Edge Ratio measures the largest aspect ratio of two principle axes, which is computed as max $\left\{\frac{L_{0}}{L_{1}}, \frac{L_{1}}{L_{0}}, \frac{L_{0}}{L_{2}}, \frac{L_{2}}{L_{0}}\right.$, $\left.\frac{L_{1}}{L_{2}}, \frac{L_{2}}{L_{1}}\right\}$.
Skew measures the degree to which a pair of normalized principle axes are parallel, which is computed asmax $\left\{\left\lvert\, \frac{\overrightarrow{X_{0}}}{\left\|\overrightarrow{X_{0}}\right\|}\right.\right.$. $\frac{\overrightarrow{X_{1}}}{\left\|\overrightarrow{X_{1}}\right\|}\left|,\left|\frac{\overrightarrow{X_{0}}}{\left\|\overrightarrow{X_{0}}\right\|} \cdot \frac{\overrightarrow{X_{2}}}{\left\|\overrightarrow{X_{2}}\right\|}\right|,\left|\frac{\overrightarrow{X_{1}}}{\left\|\overrightarrow{X_{1}}\right\|} \cdot \frac{\overrightarrow{X_{2}}}{\left\|\overrightarrow{X_{2}}\right\|}\right|\right\}$.
Taper measures the maximum ratio of a cross-derivative to its shortest associated principal axis, which is computed as $\max \left\{\frac{L_{01}}{\min \left\{L_{0}, L_{1}\right\}}, \frac{L_{02}}{\min \left\{L_{0}, L_{2}\right\}}, \frac{L_{12}}{\min \left\{L_{1}, L_{2}\right\}}\right\}$.
Dimension is computed based on the finite element gradient operator and is defined as $\mathcal{D}=\frac{V}{2 \sqrt{B \cdot B}}$ [TF89], where V is the volume of the hexahedron and B is the discrete gradient operator evaluated over the hexahedral element. B is computed as $B=\left[B_{i x}, B_{i y}, B_{i z}\right]^{T}$ and $i \in[0,1,2,3,4,5,6,7]$. Given that $B_{0} x=y_{2}\left(\left(z_{6}-z_{3}\right)-\left(z_{4}-z_{5}\right)\right)+y_{3}\left(z_{2}-z_{4}\right)+$ $y_{4}\left(\left(z_{3}-z_{8}\right)-\left(z_{5}-z_{2}\right)\right)+y_{5}\left(\left(z_{8}-z_{6}\right)-\left(z_{2}-z_{4}\right)\right)+y_{6}\left(z_{5}-z_{2}\right)+y_{8}\left(z_{4}-z_{5}\right)$, other terms of $B_{i x}$ can be evaluated using the same formula by permuting the nodes according to Table 1 and subsequently, $B_{i y}$ and $B_{i z}$ are computed by permuting the coordinate axes according to Table 2.

Table 1: Nodal permutations

0	1	2	3	4	5	6	7
1	2	3	0	5	6	7	4
2	3	0	1	6	7	4	5
3	0	1	2	7	4	5	6
4	7	6	5	0	3	2	1
5	4	7	6	1	0	3	2
6	5	4	7	2	1	0	3
7	6	5	4	3	2	1	0

Table 2: Coordinate axes permutations

x	y	z
y	z	x
z	x	y

