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ABSTRACT Tissue segmentation from a single brain MR image is of paramount importance for brain
reconstruction and analysis. In this paper, we propose a new hybrid algorithm for brain MR image
segmentation, combining super-resolution, spatial constraint based clustering and fine-tuning. To smooth
noise and improve image clarity, we first amplify the brain MR image by using a super-resolution algorithm
– cubic surface fitting with edges in the image as constraints. Then an improved fuzzy c-means clustering
algorithm is performed on the amplified image for the global segmentation, in which a shape parameter and
an anomaly detection parameter are introduced.With the introduction of these two parameters, the robustness
of the clustering is enhanced, and the trade-off between noise smoothing and detail preservation can be
controlled more accurately. Furthermore, the local regions around boundaries of different brain tissues (e.g.,
gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF)) are re-segmented in a fine-tuning
process, and a soft voting strategy is adopted for adjusting the incorrect pixels, which makes full use of the
boundary details of different tissues. Experimental results show the new algorithm can preserve major brain
tissue structures and smooth out noise.

INDEX TERMS Fuzzy c-means, coefficient of variation of local window, shape parameter, fine-tuning.

I. INTRODUCTION
Image segmentation is one of the most important techniques
in image understanding and computer vision, and applied in
many fields, such as objection detection, medical imaging
analysis, etc. Segmentation is to partition one image into
homogeneous and non-overlapping regions with respect
to certain characteristics, such as intensity, texture and
shape [1]. Magnetic Resonance (MR) imaging has several
advantages over other medical imaging modalities, including
the high contrast between different soft tissues, relatively
high spatial resolution across the entire field of view and
multi-spectral characteristics. Accurate segmentation of brain
MR images according to tissue types (e.g., gray matter
(GM), white matter (WM) and cerebrospinal fluid (CSF))
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or relevant anatomical structures (e.g., cortex, ventricles,
hippocampus, etc.) is often the first step to extract features,
which are useful for the identification of disease-specific
morphological differences [2]. The major obstacles for brain
MR image segmentation are partial volume effect (PVE),
intensity inhomogeneity (IIH) [3] and noise [4]. In recent
years, many works on brain MR image segmentation have
been proposed, such as segmentation based normal cut, graph
cut, geodesic distance, mean shift and random walk [5].

In the brain MR images, due to the partial volume effect,
it is difficult to assign the effected pixels to one single tissue.
In this case, the conventional hard segmentation methods are
not the first choice to segment brain MR images [3], because
each pixel is restricted to one class exclusively in these
methods. Different from the hard segmentation methods,
fuzzy clustering allows one pixel to belong to multiple classes
concurrently, which considers the ambiguity in clustering and
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retains more information than hard segmentation methods.
Therefore, it is more widely applied in brain MR image
segmentation. Fuzzy c-means, abbreviated as FCM, is one
representative fuzzy clustering method, and is widely applied
in medical image segmentation. FCM performs well in
noise-free images, while poorly in images effected by noise,
outliers or other images artifacts [6]. This is because spatial
information is not considered in its objective function. Aim-
ing to overcome this problem, several improved algorithms
have been proposed to improve the conventional FCMmainly
by updating the membership parameter [7], [8], objective
function Miao et al. [9], Zhang et al. [10], Kumar et al. [11].

Due to the effect of noise, the boundary in the original
brain MR image is not clear enough, especially the boundary
between gray matter and cerebrospinal fluid. Moreover,
the partial volume effect causes small difference between
different tissues near the boundary, especially between
the gray matter and the white matter. Considering these
issues, those improved algorithms still have some problems
as follows: (1) They do not enhance the clarity of the
input image. (2) The estimation of influence from the
neighboring pixels to the central pixel in the brain MR
image is not accurate enough. (3) The local information
including boundary details is not utilized. To improve the
segmentation results, we propose a new algorithm for brain
MR image segmentation, which combines super-resolution,
spatial constraint based clustering and fine-tuning, defined
as Spatial constraint based FCM with Fine-Tuning (denoted
as SFCMFT). First, we use a super-resolution algorithm to
pre-process the input brain MR image, aiming to smooth
out noise while improving image clarity. After this pre-
processing, the boundaries of different tissues are enhanced.
Then, an improved fuzzy c-means clustering algorithm is
performed on the amplified image to obtain the initial
segmentation, in which a shape parameter and an anomaly
detection parameter are introduced. With the introduction
of these two factors, the robustness of the segmentation
can be enhanced and the trade-off between noise removal
and detail preservation can be controlled more accurately.
Furthermore, the local regions around boundaries of different
tissues are re-segmented in a fine-tuning process, and a soft
voting strategy is adopted for adjusting the incorrect pixels.
This process makes full use of the boundary details between
different tissues. Our new algorithm is noise-tolerant and can
generate accurate segmentation results robustly.

In general, our contributions include three aspects. (1) We
propose a new global segmentation algorithm by defining a
shape parameter and an anomaly detection parameter, which
not only consider the influences of neighbors, but also judge
if the neighbors are noise pixels. In this case, the influences
of noise pixels will be reduced, while the influences of the
clean pixels will be increased automatically. (2) We propose
the fine-tuning step to refine the pixels near boundaries
more accurately. (3) We propose a general framework
of combining super-resolution, global segmentation and
fine-tuning steps, to achieve more accurate segmentation

results. Our framework is also suitable for other clustering
algorithms and applications.

II. LITERATURE REVIEW
Ahmed proposed FCM_S algorithm [12] by introducing
neighboring pixels into the objective function. Chuang et al.
proposed an improved FCM (SAFCMpq) [13] algorithm that
defines a spatial function, which is used to update the mem-
bership value of each pixel after taking its neighboring pixels
membership values into account. Moreover, considering that
the number of the pixels is larger than the number of the
gray levels (ranging from 0 to 256) in grey-scale image,
especially in brain MR images, Zhang et al. [14] utilized the
gray histogram of the image instead of pixels for clustering.
Szilagyi et al. [15] developed an enhanced FCM (EnFCM)
algorithm to accelerate the clustering process, and the
computational time of the algorithm was reduced greatly.
Furthermore, Cai et al. [16] proposed the fast generalized
FCM (FGFCM) algorithm. This method introduces a local
similarity metric that combines both spatial and gray level
information to form a non-linearly weighted sum image.
By adopting the technique of EnFCM, FGFCM can be
computed efficiently.

Although the algorithms mentioned above enhance the
robustness to noise effectively, they need to select proper
parameters to achieve a desired trade-off between robustness
to noise and the preservation of details. Generally speaking,
the selection of these parameters has to be made empirically
or via trial and error. To solve this problem, Stelios and
Vassilios [17] introduced a fuzzy local information c-means
(FLICM) by incorporating the local spatial information and
gray level information into the clustering. This algorithm is
free of the empirically adjusted parameters. In consideration
of both the spatial distance and the gray-level difference
among neighboring pixels, Gong et al. designed a new
trade-off weighted fuzzy factor to measure the damping
extent. By introducing this new fuzzy factor into FCM
algorithm, they proposed an improved FLICM algorithm.
It introduces a kernel metric to enhance the robustness
to noise, which is denoted as KWFLICM [18]. Above
algorithms could balance the weight between removing
noise and remaining the details in image automatically,
by introducing the spatial information. However, due to
these methods don’t consider the preprocessing of brain MR
images, the segmentation results can be improved further.
References [19], [20] proposed to preprocess the MR images
by using the simple linear iterative clustering (SLIC) algo-
rithm, which is a superpixel dividingmethod and can generate
superpixels by combining the pixels with similar gray values
in the image. Because SLIC is a kind of down-sampling
methods, some detail information of the MR image will lost.
Sarkar and Halder introduced the rough theory into fuzzy
c-means clustering, and they proposed novel rough-fuzzy
c-means algorithms, which could adjust the weight to
control the effect of rough factor automatically [2], [8].
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However, the performance of only combining rough theory
is still limited.

III. BASIC IDEA
For brain MR image segmentation, getting the right and
accurate brain tissues depends on two key factors. One is that
the brain MR image is clear. It means that the boundaries
and the junctions of different brain tissues are clearly
distinguishable and the effect of noise is small. The other
is a robust segmentation algorithm. Considering these two
key factors, we propose a new hybrid segmentation algorithm
that consists of an image super-resolution pre-processing,
a spatial constraint based clustering and a fine-tuning process.
In the following, we first state the basic ideas of these three
steps.

A. BASIC IDEA OF IMAGE SUPER-RESOLUTION
The noises in the input image are expected to be reduced,
while the details and boundaries are expected to be preserved
by using a good super-resolution algorithm, which is vital for
the subsequent segmentation [19]. To enhance the clarity of
the boundaries of brain tissues while smoothing out the noise
in image, we select a cubic surface fitting super-resolution to
amplify the given brain MR images.

B. BASIC IDEA OF SPATIAL CONSTRAINT BASED
CLUSTERING
After super-resolution pre-processing, we obtain brain MR
images with higher resolution and less noise. A good
segmentation method is then needed, which can resist a
small amount of noise while preserve the boundaries of
brain tissues as much as possible. In FLICM, a novel fuzzy
factor is defined to encode the neighbor information, which
uses the distance from the neighboring pixels to the center
pixel to measure the influence of the neighboring pixels
automatically. However, this fuzzy factor in FLICM cannot
reflect the accurate neighboring information sometimes.
Our new algorithm replaces this fuzzy factor with a shape
parameter and an anomaly detection parameter. The shape
parameter uses a variation coefficient, aiming to reflect the
different effects of neighbors in different local windows that
may be impacted by different levels of noise. It can measure
the influence of the neighboring pixels on the center pixel
more accurately. Thus, we can get more accurate weight to
balance noise removal and detail preservation. The anomaly
detection parameter checks and corrects the error effects from
the neighboring pixels, which are caused by either noise
or boundaries of different tissues. In short, the new global
segmentation can determine theweight based on the influence
of the neighboring pixels on their center pixels automatically,
and achieve a more desired trade-off between noise removal
and detail preservation.

C. BASIC IDEA OF FINE-TUNING
The result of the global segmentation is generally acceptable,
and the incorrect segmentation mainly concentrates near the

boundaries of brain tissues. For brain MR image, due to the
noise and partial volume effect, the values of pixels in the
same tissue are not exactly same. In that case, the differences
of the gray values of pixels in the same tissue could be
even larger than the differences across different tissues,
especially near the junctions of two or more tissues. Since
the segmentation is based on the gray values of pixels, it may
incorrectly assign the pixels in different tissues into the same
class, or assign the pixels in the same tissues into different
classes, resulting in incorrect tissue boundaries.

To overcome this problem, we propose a fine-tuning
process to make a better use of the local information near
the boundaries, and re-segment the boundary regions in the
result of the global segmentation. After this re-segmentation,
we correct the pixels distributed in the wrong class, and
fine-tune the boundary. Because the number of pixels in each
local region near boundary is less than the whole image,
the differences of pixel values in the same tissue in the
local region is less too. Hence, this local re-segmentation
can be performed more accurately than the above global
segmentation.

The rest of this paper is organized as follows. In Section IV,
we describe our super-resolution process. In Section V
we introduce the global segmentation algorithm in details.
In Sections VI and VII, we introduce the fine-tuning and
merging process, and then we present experimental results
on various brain MR images in Section VIII. Finally,
we summarize the paper in Section IX.

IV. IMAGE SUPER-RESOLUTION PRE-PROCESSING
As discussed earlier, an effective super-resolution, which can
both suppress noise in image and preserve details of brain
tissue boundaries, is needed to pre-process the input image.
To identify the most suitable algorithm, we have tested a large
number of super-resolution methods on brain MR images
with noise, including the cubic surface fitting algorithm [21],
Yang et al.’s algorithm [22], GR algorithm [23] andNE+LLE
algorithm [24], as shown in FIGURE 1. The input image
is from BrainWeb, an open simulation brain dataset online,
and the noise level of it is 9% (from 0 to 9%, 0 means
no noise, higher percentage means heavier noise). The gray
value distribution of the noise in the simulation image follows
a Gaussian density function, whose average value is 0. The
standard deviation of this Gaussian density function is the
product of the noise level and the average of the gray value
of the white matter. In FIGURE 1(c), the amplified result by
using Yang et al.’s algorithm is obviously fuzzier than the
others visually.

To compare these algorithms quantificationally, we com-
pute the error image, which is a difference map between
the amplified result and the clear image. The value of each
pixel in the error image indicates the gray value difference
between the corresponding pixels in amplified image and
the clear image, respectively. Here, the clear image is the
corresponding input image with 0 noise in BrainWeb. Note
that, to make the resolution of the amplified image identical
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FIGURE 1. The image super-resolution results of different cross sections
of the brain images: (a) input image, (b) cubic surface fitting,
(c) Yang et al., (d) GR (e) NE+LLE.

to the resolution of the clear image, we first down sample
the input image, and then amplify the downsampled image
using these algorithms. FIGURE 2 shows the error line
charts of the error images of the amplified results in the
first row of FIGURE 1. The X and Y axes correspond
to the gray value difference and the number of pixels,
respectively. Intuitively, the fewer the pixels have large gray
value difference, the better the super-resolution algorithm
performs. The error line chart of the input noise image is
shown as the orange curve, and the error line charts of
the amplified images by using the improved cubic surface
fitting algorithm, Yang et al.’s algorithm, GR algorithm
and NE+LLE algorithm are shown as red, blue, pink and
green curves respectively. From the plots, we can see that the
improved cubic surface fitting algorithm (i.e., the red curve)
has the best accuracy among the tested algorithms. This is
likely because it takes both the continuity and smoothness
conditions into account. Hence, we select this algorithm for
our image super-resolution pre-processing.

FIGURE 2. The line chart of the error images shown in FIGURE 1.

To illustrate that the improved cubic surface fitting
algorithm could better preserve boundaries, we take the
local windows containing certain boundaries cut from the
amplified images as examples. These local windows and
their corresponding error images are shown in FIGURE 3,
and the mean error values and PSNR (peak signal-to-noise
ratio) are shown in TABLE 1. Compared to the results of
other algorithms, the improved cubic surface fitting algorithm

TABLE 1. Mean error values of error images and PSNR by using different
amplified methods on FIGURE 1.

FIGURE 3. The boundary of the super-resolution results: (a) the clear
image, (b) the error image of noise image, (c) the error image of the
improved cubic surface fitting algorithm, (d) the error image of
Yang et al.’s algorithm, (e) the error image of GR algorithm, (f) the error
image of NE+LLE algorithm.

apparently preserves more boundary information, and its
mean error value is the smallest while its PSNR is the highest.

Nonetheless, the improved cubic surface fitting algorithm
only filters out the high-frequency noise. The amplified
image still contains noise, which requires a robust global
segmentation algorithm to handle it.

V. IMAGE CLUSTERING
To enhance the robustness to noise, FLICM introduces a
novel fuzzy factor that uses the spatial distance information
from the neighboring pixels to their center pixel to measure
the trade-off between noise removal and detail preservation.
However, spatial distance information is not enough to
measure the trade-off in the real-world scenarios. To address
this, KWFLICM further introduces a trade-off weighted
fuzzy factor that is computed based on the difference between
a variation coefficient of the direct neighborhood of the
central pixel, and an average variation coefficient within
a local window. Ideally, when the pixels within the local
window are effected by noise more heavily, the trade-off
weight should be larger in order to smooth out noise.
However, when the local window is effected by noise very
heavily, both the variation coefficient of the neighborhood
and the average variation coefficient within the local window
might be large. In this case, the difference of these two large
values might be small oppositely, leading to smaller trade-off
weight. This is contrary to our expectation.

Both KWFLICM and FLICM can measure the effect of the
neighbors to the center pixel automatically to some extent, but
they still cannot produce ideal results when the configuration
of the noise is complex. FIGURE 4 provides an example
of such a complex configuration, and the brain MR image
is from BrainWeb. The noise level of FIGURE 4(a) is 7%.
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FIGURE 4. The comparison of fuzzy factors from KWFLICM with those
computed by using our method. (a) the noise image, (b)-(d) gray values of
three windows extracted from (a). Specifically, (c) and (d) cover the
boundaries of WM and CSF, WM and GM, respectively. (e)-(l) are the fuzzy
factors in (b). Specifically, (e) gray value of central window in (b), (f) local

spatial constraint in FLICM, (g) |Cj − C | in KWFLICM, (h)
Cj−Cmin

Cmax−Cmin
in

our algorithm, (i) fuzzy factor in KWFLICM, (j) shape parameter,
(k) anomaly detection parameter, (l) τcr . (m)-(q) and (q)-(t) are the fuzzy
factors in (d) and (c), respectively. Specifically, (m) and (q) gray values of
central windows in (d) and (c), (n) and (r) shape parameters in (m) and
(q), (o) and (s) anomaly detection parameters in (m) and (q), (p) and
(t) τcr s in (m) and (q).

A 5 × 5 window is extracted from the noise brain MR
image (marked by a red rectangle in FIGURE 4(a)), and the
gray value of this window is shown in FIGURE 4(b). In the
local window marked by the red rectangle in FIGURE 4(b),
compared to the corresponding clear image (noise level is 0)
in BrainWeb, the central pixel is identical to the original
value, and its three neighbors B, C, D are effected by noise to
varying degrees.

Under the above configuration, the fuzzy factor value
based on KWFLICM is shown in FIGURE 4(i). From this
result, we can see when a pixel is noise, like pixel B or D,
its effect to the center pixel is large. On the contrary, when a
pixel is noiseless, like pixel A or E, its effect is small. This will
make the noiseless pixels to be disturbed by its neighboring
noise pixels, which is contrary to our expectation. This
example shows that KWFLICM cannot properly determine
the weight to balance noise removal and detail preservation
when the configuration of the noise is complex.

A. THE SHAPE PARAMETER
In FIGURE 4(b), compared to the corresponding clear image,
there are four noise pixels in the local window centered at B
(marked by a blue rectangle), and their gray values are 190,
190, 158 and 172, respectively. In the meantime, there are
two noise pixels B and C in the local window centered at F
(marked by a green rectangle), whose gray values are 158,
190, respectively. The coefficient of variation at the center
pixel u (e.g., pixels B and F in the above example) is defined
as follows:

Cu =
Rv,a(x)
(x̄)

, (1)

where Rv,a and x̄ represent the intensity variance and mean in
a local window of the image, respectively.

The value of Cu reflects gray value homogeneity degree of
the local window. It exhibits high value at edges or in the area
corrupted by noise and produces low value in homogeneous
regions. In the local window marked by a red rectangle in
FIGURE 4(b), the maximum and minimum coefficients of
variation areCB = 1.874 andCE = 0.0017, respectively, and
the average coefficient of variation within this local window
is C̄ = 1.071. In KWFLICM, the fuzzy factor uses |Cj−C| to
measure the influence from neighboring pixels, as shown in
FIGURE 4(g). Since this local window is heavily effected by
noise, the average of coefficient of variation is high too. This
situation causes a low difference value between CB and C̄ ,
even lower than the difference between CE and C̄ , which
cannot accurately reflect the influence of noise.

In order to avoid the error caused by the above average
coefficient of variation, we normalize the variation coefficient
by the difference between the maximum and the minimum
coefficients of variation, so that it ranges from 0 to 1. The
new variation coefficient is then defined as follows:

ξj =
Cj − Cmin

Cmax − Cmin
, (2)

Cmin and Cmax are the minimum and maximum coefficients
of variation, respectively.

The new variation coefficients in the above local window
are shown in FIGURE 4(h). As can be seen, the new
coefficient of pixel B is close to 1, whose local neighborhood
(marked by the blue rectangle) has a large coefficient of
variation. In the meantime, the new coefficient of pixel E
is close to 0, whose neighborhood (marked by the black
rectangle) has a small coefficient of variation. This indicates
the new coefficient accurately reflect the influence of noise.
The coefficient of variation could reflect the complexity of
shapes in the local window to some extent. We define a
shape parameter by using the coefficient of variation, which
could measure the influences from neighbors to central pixel
automatically. When the coefficient of variation is higher,
the shapes in the local window are more complicated, and
the influences from neighbors to central pixel should be
smaller. Oppositely, when the coefficient of variation is
lower, the shapes in the local window are simpler, and
the influences from neighbors to central pixel should be
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larger. In the meantime, it is expected when the variation
coefficient is close to 1, the shape parameter should decline
quickly; and when the variable coefficient is close to 0,
the shape parameter should increase quickly. To satisfy this
relationship, we define the shape parameter as follows:

δsc = π
(1−ξj), (3)

δsc is the shape parameter, ranging from 1 to π . δsc and ξj
have an inverse correlation. When ξj is close to 0, δsc is close
to π , and when ξj is close to 1, δsc is close to 1 according
to equation (3), as shown in FIGURE 5. In other words,
when the window is effected by noise heavily or around
the boundaries, ξj is close to 1 and δsc is close to 1, which
will reduce the effects of neighbors. When the window is
smooth, ξj is close to 0 and δsc is close to π , which will
increase the effects of neighbors. The shape parameter from
equation (3) is shown in FIGURE 4(j). Compared to the
fuzzy factor of KWFLICM shown in FIGURE 4(i), the new
shape parameters of pixels E and F are higher, while the shape
parameters of B and D are lower. It means the new shape
parameter can measure the effect of noise more accurately.

FIGURE 5. The change of δsc with ξj .

B. THE ANOMALY DETECTION PARAMETER
The design of δsc did not included the case that the neighbor-
ing pixels are anomaly in the current FCM. In FIGURE 4(b),
there is a noise pixel whose gray value is 190 in windows
centered at neighboring pixels C and A, respectively. The
shape parameter of the window centered at A is as same
as the shape parameter of the one centered at C, as shown
in FIGURE 4(h). However, since the neighboring pixel C is
effected by noise, the influence of the neighboring pixel C to
the central pixel should be smaller than the influence of the
neighboring pixel A.

To solve the above problem, we introduce an anomaly
detection parameter to face the case that a neighbor is
noise or boundary pixel. The larger the gray value of the
neighboring pixel is different from the average gray value
of the window, the more likely the neighbor is a noise pixel

or on the boundary, and thus the smaller impact of the
neighboring pixel should have on the central pixel. On the
contrary, the less the gray value of neighbor is different from
the average of gray value of the window, the less likely
the neighbor is a noise pixel, and the greater impact of the
neighboring pixel should have on the central pixel. Therefore,
we define the anomaly detection parameter by using the
difference of the gray values between neighboring pixels
and the central pixel. To measure the difference relatively,
we use the z-score to define the anomaly detection parameter.
Z-score measures how many standard deviations below or
above the mean of the gray value of the window. The anomaly
detection parameter is then defined as follows:

δsr = e
−
|xj−x̄|
Sd(xj) , (4)

xj is the gray value of a neighboring pixel j. x̄ is the average
gray value of the local window centered at xj. Sd(xj) is the
standard deviation of the local window, and |xj−x̄|Sd(xj)

is the
z-score. δsr is the anomaly detection parameter, ranging from
0 to 1. The lower value of z-score is, the less difference
of the gray values between the neighboring pixel and the
central pixel is, and the less possibility the neighboring
pixel is a noise pixel. In this case, the value of δsr is high,
and the impact of neighboring pixel on the central pixel
is large. On the contrary, the higher the value of z-score
is, the larger difference of the gray values between the
neighboring pixel and the central pixel is, and the more
possibility the neighboring pixel is a noise pixel. In this case,
the value of δsr is low, and the impact of neighboring pixels on
the central pixel is small. According to equation (4), we obtain
that the value of the anomaly detection parameter of pixel C
is lower than A, which means C is more likely to be a noise
pixel than A, as shown in FIGURE 4(k).

C. THE NEW FUZZY FACTOR
We define a new fuzzy factor by combining the above
shape parameter and the anomaly detection parameter. When
the value of shape parameter δsc is high, the neighboring
pixels in a window are effected by noise slightly or not
on the boundary. In this situation, we can use anomaly
detection parameter δsr to compute the probability of a
neighboring pixel being noise or on boundary. When δsr is
high, the neighbor is more likely to be a noiseless pixel or
not on boundary, and the influence of the neighbor on central
pixel is large. On the contrary, when δsr is low, the neighbor
is more likely to be a noise pixel or on the boundary, and
the influence of the neighbor on the central pixel is small.
When the value of shape parameter δsc is small, the window
is effected by noise heavily, or the window is around the
boundary. In this case, due to the large changes of gray scale
values within the local window, and the central pixel may
be noised, we cannot get the probability of the neighbors
being noise from δsr . To avoid the influence of noise on the
noiseless pixel, the effect of neighbors on the central pixel
should be as less as possible. In short, when δsc and δsr are
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both high, the influence of neighbors on central pixel should
be high; otherwise, the influence of neighbors on the central
pixel should be low. To achieve this goal, the relationship of
δsc and δsr is defined as the harmonic mean as the following:

τcr =
2× δsc.δsr
δsc + δsr

, (5)

τcr ranges from 0 to 2π
π+1 . The harmonic mean can assure only

when the values of δsc and δsr are both high, the value of τcr
is high. Compared to FLICM and KWFLICM, all the values
of τcr of the noiseless pixels A, E and F are higher than those
of the noise pixels B, C, and D, as shown in FIGURE 4(l).
We also compare our definition with the ones using

the quadratic mean τcr =
δsc

2
+δsr

2

2 , geometrical mean
τcr =

√
δsc.δsr and arithmetic mean τcr =

δsc+δsr
2 ,

respectively. The resultant fuzzy factors of the example
(FIGURE 4(b)) computed by the four average methods are
shown in FIGURE 6. Since arithmetic mean and quadratic
mean are easily effected by the extreme data, pixel C is
noised but it has a high fuzzy factor, which is unreasonable.
The geometrical mean can reduce the effect of the extreme
numerical value, but cannot get low value when one of δsc
and δsr is low, (e.g., the fuzzy factor value of pixel C). Only
the harmonic mean can assure when the values of δsc and δsr
are both high, the value of τcr is high.

FIGURE 6. Results of the fuzzy factors of FIGURE 4(b) computed by the
four average methods: (a) Harmonic mean τcr =

2×δsc .δsr
δsc+δsr

, (b) quadratic

mean τcr =
δsc 2+δsr 2

2 , (c) geometrical mean τcr =
√
δsc .δsr ,

(d) arithmetic mean τcr =
δsc+δsr

2 .

To further evaluate the efficacy of our proposed shape
parameters and anomaly detection parameters, we also
present the parameters regarding another configuration that
covers two types of tissues (WM and CSF, WM and GM),
as shown in FIGURE 4 (c) and (d). Specifically, (c) and
(d) are two 5× 5 windows covering the boundaries between
WM and CSF, WM and GM, respectively, extracted from the
brain MR image (marked by pink and orange rectangles in
FIGURE 4(a)). The gray values, shape parameters, anomaly
detection parameters and τcrs of these two windows are
shown in FIGURE 4(q)-(t) and (m)-(p), respectively. The
parameters are large when the gray values of neighboring
pixels are more similar to the gray values of centers,
which means the neighbors and centers might belong to the
same cluster (e.g., pixels H in (d) and J in (c)). On the
contrary, the fuzzy factors are small when the gray values
of neighboring pixels are less similar to the gray values of
centers, which means the neighbors and centers might belong
to different clusters (e.g., pixels G in (d) and I in (c)).

Combining the spatial distance function in FLICM,
the new fuzzy factor is defined as follows:

δij = δsd .τcr , (6)

and

δsd =
1

dij + 1
. (7)

δsd is a local spatial constraint, same with that in FLICM
(as shown in FIGURE 4(f)), and dij is the distance between
the pixel i and pixel j. The trade-off weighted fuzzy factor is
defined as:

G′ki =
∑
j∈Ni

δij(1− µkj)m||xj − vk ||2. (8)

Here, j is a neighbor of pixel i. µkj is the membership of the
pixel j belonging to the cluster k . vk is the cluster center of
the cluster k . m ≥ 1 is a parameter to control the fuzziness
of the clustering results. The effect and set ofm are discussed
in [25]. Here, m is set as 2 according to experience.

D. GLOBAL SEGMENTATION
The energy function of the improved global segmentation is
defined as:

E =
N∑
i=1

C∑
k=1

(µmki||xi − vk ||
2
+ G′ki). (9)

Here, N is the number of pixels in the given image, and C is
the predefined number of clusters. In our paper, C is set as 4.
The new membership update function and clustering center
update function are as follows:

µki =
1

C∑
l=1

(
||xi−vk ||2+

N∑
i=1

∑
j∈Ni

δij(1−µkj)m||xj−vk ||2

||xi−vl ||2+
N∑
i=1

∑
j∈Ni

δij(1−µlj)m||xj−vl ||2
)

1/(m−1) , (10)

vk =

N∑
i=1
µmkixi +

N∑
i=1

∑
j∈Ni

δij(1− µkj)mxj2

N∑
i=1
µmki +

N∑
i=1

∑
j∈Ni

δij(1− µkj)m
. (11)

The framework of global segmentation is illustrated in
Algorithm 1.

The improved global segmentation can estimate the influ-
ence of the neighboring pixels on the center pixel accurately.
Compared to other FCM algorithms, our improved algorithm
can produce more precise boundary, as shown in FIGURE 7.
Note that, the input image in FIGURE 7 is the amplified
image after super-resolution process. The first row shows the
segmentation result, and the second and third rows are the
magnified views for the regions enclosed by these two green
rectangles. To quantitatively evaluate the global segmentation
results, we present the dice similarity coefficient (DSC,
defined in result section) results of FIGURE 7, as shown
in TABLE 2. Compared with the other three algorithms,
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Algorithm 1 The Global Segmentation
Input: image I ; the number of pixels N ; the number of

clusters C ; the max iteration T ; threshold e;
Output: membership matrix U =

{µ11, µ21, .., µk1, . . . , µki, . . .}; cluster center
V = {v1, v2, .., vk};

1: Initialize partition U randomly;
2: for t = 1 to T do
3: for i = 1 to N do
4: for k = 1 to C do
5: update the cluster center vk by using equation

(11);
6: update the membership µki by using equation

(10);
7: end for
8: end for
9: calculate the new objective function Et by using

equation (9);
10: if abs(Et − Et−1) < e then
11: break;
12: else
13: Et−1 = Et ;
14: end if
15: end for

FIGURE 7. The results of the global segmentation. The first row shows the
segmentation results, and the second and third rows are the magnified
views for the regions enclosed by these two green rectangles. (a) input
image, (b) FCM_S, (c) FLICM, (d) KWFLICM, (e) the global segmentation.

TABLE 2. The dice similarity coefficient (DSC) for FIGURE 7.

the global segmentation can get higher DSC, meaning that
it performs better than other algorithms.

VI. FINE-TUNING PROCESS
A. THE DEFINITION OF DETECTION WINDOW
Compared to other FCM algorithms, our global segmen-
tation can obtain more accurate boundary, for example,
the boundary between the gray matter and the cerebrospinal

fluid, as shown in the green rectangles in FIGURE 7. Since
the utilization of image details is lack, as introduced in
Section III, the result is still not accurate enough, especially
on the boundary between the white matter and gray matter,
as shown in the magnified views in FIGURE 7(e).

Considering that the inaccurate results are typically
reflected in the wrong classification of pixels on boudaries,
SFCMFT algorithm makes the best use of boundary infor-
mation and re-segments the regions around boundaries,
to improve the accuracy of the segmentation and enhance the
robustness. To achieve this goal, we define a square window
with r × r pixels. In the fine-tuning process, we move the
window along the boundary from top to bottom and left to
right without being crossed, at the rate of one pixel per move.
FIGURE 8 shows the sliding process on a local picture cut
from the image result of global segmentation, in which r
is set as 6. As shown in FIGURE 8, the tissue boundary
of the global segmentation is marked by red lines, and the
sliding orientations are marked by the yellow arrows. When
we move the window to the pixel i, we can get a detection
window centered at pixel i, denoted as Di, marked by the
black rectangle in FIGURE 8.

FIGURE 8. The sliding process shown on a local image of the global
segmentation result. Top image: global segmentation result, the red
curves represent the tissue boundary. Bottom image: sliding process on a
local image cut out from the top image. The boundary is marked by red
line, and the sliding orientations are marked by the orange arrows. The
detection windows are marked by the black rectangle.

B. LOCAL FINE-TUNING PROCESS
To refine the detailed features around the boundary and
optimize the boundary, we re-segment the regions within the
detection windows and correct the boundary pixels.

FIGURE 9(b)-(d) are brainMR image segmentation results
by using FLICM, KWFLICM and our global segmentation
method, respectively, and (g)-(j) are the local windows
amplified by 30 times. Red curves in FIGURE 9(e) mark the
boundaries of our global segmentation result. FIGURE 9(f)
is a local window containing imprecise boundaries (marked
by black lines). Compared to the ground truth shown in
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FIGURE 9. The re-segmentation utilizing the local information of the
detection window: (a) input image, (b) FLICM, (c) KWFLICM, (d) global
segmentation, (e) boundaries of (d), (f) gray value of local window,
(g) local window from (a), (h) result from (d), (i) local segmentation
result, (j) ground truth.

FIGURE 9(j), the pixels whose gray values are above
130 should be in the same cluster in FIGURE 9(f) (marked by
blue color). FIGURE 9(i) shows the local segmentation result
achieved by re-applying our global segmentation method
on FIGURE 9(g), and it is closer to the ground truth.
So the effective utilization of the local information plays an
important role to improve the accuracy.

The number of classes in the detection window is
determined by the result of the global segmentation. If the
number of classes in the detection window after the global
segmentation is c′, the number of classes in the detection
window is supposed to be c′ in re-segmentation.

C. VOTING STRATEGY
Because the window is slid along the boundary at the rate
of one pixel per move, some pixels are overlapped in the
adjacent detection windows. These overlapped pixels might
be distributed to different clusters in the re-segmentation
results of these adjacent detection windows. For each
overlapped pixel j, we retune its cluster by majority vote.
Specifically, for each cluster k , Vk (i) represents the ‘‘vote’’
from the detection window Di containing the pixel j, which
represents the possibility that pixel j is distributed to the
cluster k in the detection window Di. Then, we compute
the total votes that this cluster received by summing the
votes Vk (i) from all detection windows Di containing pixel
j. Finally, the pixel j is distributed to the cluster with the
maximum total votes.

Here, we introduce two voting strategies to define Vk (i).
The simplest strategy is setting Vk (i) as 1 (or 0), when
the pixel j is (or is not) distributed to the cluster k in
the detection window Di after re-segmentation. In this way,
the pixel j is only distributed to one cluster in each detection
window, so it is called hard voting strategy. On the contrary,
assuming pixel j could be distributed to more than one cluster

in each detection window, the second one is soft voting
strategy. In the soft voting strategy, Vk (i) is defined as the
membership of the pixel j to the cluster k in the detection
window Di after re-segmentation. The fine-tuning results of
two voting strategies are shown in FIGURE 10. Due to the
soft voting strategy considering the membership between
pixel and cluster, it can reflect more image information and
get more accurate segmentation results, as shown in the red
rectangle in FIGURE 10. Therefore, we adopt the soft voting
strategy in the fine-tuning process.

FIGURE 10. The comparisons of the segmentation results by using two
voting strategies. The first row shows the ground truth. The second row is
the segmentation results of hard voting strategy, and the third row is the
segmentation results of soft voting strategy. (a) the segmentation results
(the first row is the input image) (b) WM (c) GM (d) CSF.

VII. MERGING PROCESS
After fine-tuning, we get the segmented image amplified by
n times. To recover the image to the original size, we down
sample the image by using amerging strategy.Wemerge n×n
pixels to one pixel from up to down and left to right without
overlap. In the merging process, there are two situations:

(1) most pixels belong to cluster ki;
(2) the number of pixels distributed to each cluster is same.
In situation (1), we merge the n × n pixels to cluster ki

according to the majority rule. In situation (2), we sum the
membership of each pixel to each cluster, and distribute the
pixels to the cluster whose total membership is maximum.

VIII. EXPERIMENTAL RESULTS
This section describes the segmentation results of our
approach and other five algorithms, including FCM_S,
FGFCM, EnFCM, FLICM andKWFLICM, on the simulative
and real brain MR images. The real MR brain images are
obtained from Qilu Hospital of Shandong University. The
obvious differences in the segmentation results are marked
by rectangles. The amplified rate n is set as 2 by experiences.
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The size of neighboring local window in the global segmenta-
tion method is set as 3× 3, same as those in FCM_S, FLICM
and KWFLICM algorithms. The size of detection window in
fine-tuning process is set as 6×6, and the reasonwill be stated
in the next part.

FIGUREs 11, 12, and 13 present the brain MR images
segmentation results of SFCMFT, FCM_S, FLICM, and
KWFLICM, respectively. The three images are all from
BrianWeb, and corrupted by 3%, 7%, 9% noises, respectively.
The ground truth of each tissue is provided by Brainweb
online. These ground truths of tissues are probabilistic maps.
Here, we obtained the ground truth by retaining the pixels in
each tissue whose gray values are larger than 0. Note that,
for the overlapped pixels of different tissues, we distribute
them to the tissues in which their gray values are larger
(meaning higher probability). From FIGUREs 11, 12, and 13,
we can get that the segmentation results by using FLICM and
KWFLICM are not as accurate as the segmentation results
by using SFCMFT. The inaccurate segmentation portions
are marked by the rectangles. Specifically, the boundaries
between gray matter and white matter at the occipital cortex
are closer to the ground truth by using our SFCMFT, marked
by the red rectangles in FIGURE 11, FIGURE 12 and
FIGURE 13. The boundaries between the cerebrospinal fluid
and gray matter at the frontal cortex are more similar to the
ground truth by using SFCMFT, such as the portions marked
by the green rectangles in FIGURE 11 and FIGURE 12.

FIGURE 11. The results of brain MR image segmentation with 3%, 7%, 9%
noise. (a) ground truth (b) FCM_S (c) FLICM (d) KWFLICM (e) SFCMFT.

In FIGURE 14, the first row shows the results of
applying FCM_S, FLICM and SFCMFT on the brain
MR images with 3% noise. The second to the fourth
columns show the individual clusters obtained with the above
algorithms respectively. The rows from top to bottom are
membership functions of cerebrospinal fluid, gray matter and
white matter, respectively. Compared with the ground truth
(FIGURE 14(a)), it can be seen clearly that FLICM and
KWFLICM cannot segment the tissue accurately, especially
at the boundary between the white matter and gray matter,

FIGURE 12. The results of brain MR image segmentation with 3%, 7%, 9%
noise. (a) ground truth, (b) FCM_S, (c) FLICM, (d) KWFLICM, (e) SFCMFT.

FIGURE 13. The result of brain MR image segmentation with 3%, 7%,9%
noise. (a) ground truth, (b) FCM_S, (c) FLICM, (d) KWFLICM, (e) SFCMFT.

and the cerebrospinal fluid inside brain sulci. Due to the
partial volume effect, the gray values of gray matter and
white matter are very close. Moreover, the cerebrospinal
fluid inside brain sulci is small and narrow, and it is easily
confused with noise, as marked by the red rectangles in
FIGURE 14. FLICM and KWFLICM do not pre-process the
input brain MR image with noise, so the image is fuzzy
and contains noise. In the segmentation process, due to the
deficient use of local information, FLICM and KWFLICM
cannot distinguish white matter from gray matter accurately,
and cannot tell all the cerebrospinal fluid from the brain
sulci. SFCMFT amplifies the image to reduce the effect of
noises in the image and enhance the clarity of boundary
between different tissues. Moreover, SFCMFT redefines the
new fuzzy factor of the relationship between pixels and
their neighbors by introducing the shape parameter and the
anomaly detection parameter. SFCMFT can segment the gray
matter and white matter, and distinguish the cerebrospinal
fluid in brain sulci more accurately, which provides a reliable
method for image-analysis and medical diagnosis.
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FIGURE 14. The result of brain MR segmentation result with 3% noise,
from top to bottom is CSF, GM, WM. (a) ground truth (b) FCM_S (c) FLICM
(d) SFCMFT.

We apply the proposed fine-tuning post-processing on
FLICM and KWFLICM algorithms, and compare with
the segmentation result without fine-tuning, as shown in
FIGUREs 15 and 16. Note that, in FIGUREs 15 and 16,
the input images are the amplified images after the
super-resolution process. The first and third rows are the
results of FLICM,KWFLICM and SFCMFTwith fine-tuning
process, and the second and fourth rows are the results
of FLICM, KWFLICM and SFCMFT without fine-tuning
process. Fine-tuning utilizes the boundary details adequately,
by re-segmenting the local windows around the boundary.
Because the number of clusters in local windows is less, and
the difference of gray values of pixels in the same cluster is
smaller, it can avoid partial volume effect between different
tissues to get an ideal result to some extent (the first and
third rows in FIGURE 15 and FIGURE 16), as marked
by red rectangles. These results show that the fine-tuning
process can be applied to other segmentation algorithms,
making it a general post-processing framework to improve
the segmentation results.

FIGURE 17 shows the segmentation results of a real
human brain MR image, effected by noise. To further
segment the real brain MR image, we remove the skull in
FIGURE 17 and apply SFCMFT on the image, as shown in
FIGURE 18(b). FIGURE 18(c) is the ground truth segmented
by brain experts manually. In this real brain MR image,
the boundary between gray matter and cerebrospinal fluid
is not clear, nor is the boundary between white matter and
gray matter, causing inaccurate results. SFCMFT amplifies
the input image to enhance the clarity of boundaries, and
then judges the noise accurately by the introduced shape
and anomaly detect parameters. The fine-tuning process
re-assigns the pixel to its correct cluster around the boundary.

FIGURE 15. Segmentation results of medical image corrupted by 5% and
9%. (a) input image (b) FLICM (c) KWFLICM (d) SFCMFT. The first and third
rows are results with fine-tuning, and the second and fourth rows are
results without fine-tuning.

Compared with the ground truth, SFCMFT can segment the
tissues more accurately, especially the boundary between
the gray matter and white matter and the boundary between
the gray matter and cerebrospinal fluid, as marked by green
and red rectangles, respectively.

Segmentation accuracy (SA) is adopted to evaluate the
segmentation results quantificationally, which is defined as
the sum of the pixels that are correctly classified divided by
the number of all pixels. Formally,

SA =
∑C

k=1

Ak ∩ Ck∑C
i=1 Ci

, (12)

where Ak is the set of pixels belonging to the k class in the
result, Ck is the set of pixels belonging to the k class in the
reference image. Compared with the existing five algorithms,
SFCMFT could get higher SAs, meaning that it performs
better than other algorithms, as shown in TABLE 3.
We further adopt the popular measurements, dice similarity

coefficient (DSC), sensitivity and specificity to quantitatively
assess the performance of these segmentation algorithms. For
each tissue, DSC, sensitivity and specificity are computed as
follows:

DSC =
2× TP

TP+ FP+ FN
, (13)

sensitivity =
TP

TP+ FN
, (14)
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FIGURE 16. Segmentation results of medical image corrupted by 5% and
9% noise. (a) input image (b) FLICM (c) KWFLICM (d) SFCMFT. The first
and third rows are results with fine-tuning, and the second and fourth
rows are results without fine-tuning.

FIGURE 17. The real MR brain image. (a) input image (b) FCM (c) FLICM
(d) KWFLICM (e) SFCMFT.

specificity =
TN

FP+ FN
, (15)

where FP, FN and TP are the numbers of false-positive,
false-negative and true-positive voxels, respectively. The
values of DSC, sensitivity and specificity range from 0 to 1,
and high values mean more similarity to the ground truth.
Compared with the existing five algorithms, SFCMFT could
get higher DSCs, meaning that it performs better than other
algorithms, as shown in TABLE 4. Note that, the DSCs
in TABLE 4 are the average of DSCs of all tissues. The
DSCs results of different tissues are shown in Tables 1-3
in the supplemental materials. Compared with the existing
five algorithms, SFCMFT could get higher sensitivities and
specificities, meaning that it get more pixels clustered rightly,

FIGURE 18. The results of real MR brain images without skull. (a) input
image without skull (b) SFCMFT (c) ground truth.

TABLE 3. Comparison of SAs for brain images with noise.

while smaller pixels clustered wrongly, as shown in TABLE 5
and TABLE 6.

To further compare these algorithms, two cluster validity
functions are selected for evaluation, which are the partition
coefficient Vpc and the partition entropy Vpe, defined as
follows:

Vpc =
C∑
k=1

N∑
j=1

µ2
kj/N , (16)

Vpe =
C∑
k=1

N∑
j=1

(µkj logµkj)/N , (17)

where N is the number of pixels in a given image, C is
the number of classes. The final partition of the image
with less fuzziness means a better performance. Hence,
the best clustering is achieved when Vpc is maximal and Vpe
is minimal. The partition coefficient Vpc and the partition
entropyVpe on the brainMR images are provided in TABLE 7
and TABLE 8, respectively. It is worth noting that the values
of Vpc and Vpe are the average values of ten runs. As shown in
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TABLE 4. Comparison of DSCs for brain images with noise.

TABLE 5. Comparison of sensitivities for brain images with noise.

TABLE 6. Comparison of specificities for brain images with noise.

TABLE 7 and TABLE 8, the Vpc and Vpe values of SFCMFT
are comparable to or even better than those of the other
algorithms on the brain MR image contaminated by noise
with varying degrees.

The time complexity of SFCMFT is O(( n
r+1 )

2CI ), where I
is the number of iterations and r is the size of the detection

TABLE 7. Comparison of Vpc .

TABLE 8. Comparison of Vpe.

window. Therefore, it is not reasonable to assign too small
value to the r considering the complexity of computing.
However, a small r is needed to enhance the accuracy of fine-
tuning. The line chart in FIGURE 19 shows the change of the
SA values with different window sizes r .

FIGURE 19. Line graph of SA with the change of size of the window.

When r is set to 2, the accuracy is still effected by noise.
The higher the noise level is, the lower the accuracy becomes,
as shown by the red and green lines in FIGURE 19. When
r is set to 8 or larger, the enhancement of accuracy is not
obvious. In the image effected by little noise, there is no
obvious difference between setting r as 4 and 6, as shown
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by the blue line in FIGURE 19. However, when the noise
is heavy, setting r as 6 could achieve more accurate results,
as shown by the green and red lines in FIGURE 19. Therefore,
in our fine-tuning process, r is set as 6.

IX. CONCLUSION
In this paper, we design a general framework SFCMFT
for brain MR image segmentation. Firstly, we use a cubic
surface fitting algorithm to pre-process the original brain MR
image, which can smooth out noise meanwhile improving
image clarity. Secondly, we design a new fuzzy factor by
introducing a shape parameter and an anomaly detection
parameter to control the trade-off between noise removal
and detail preservation more accurately. Lastly, we propose
a fine-tuning process, to re-segment the detection windows
near boundary and refine the incorrect pixels. Experimental
results by applying our techniques to various brain MR
images show that SFCMFT can improve the accuracy and
robustness of the brain MR image segmentation. However,
SFCMFT has a higher running time and the result of
fine-tuning process depends on the global segmentation
to some extent, as shown in Table 4 in the supplemental
materials, which we plan to address in the future. Moreover,
we do not consider the skull or other structures in MR images
(whose gray values are close to the gray values of tissues,
as shown in FIGURE 17). In the future, we will improve our
method to perform on the whole brain with skull structures.
Furthermore, our research focuses on the brain MR images
affected by natural noise, which is similarly governed by a
Rician distribution. In the future, we will improve our method
for other noises.

REFERENCES
[1] J. Xia, F. Wang, Z. Wu, L. Wang, C. Zhang, D. Shen, and G. Li, ‘‘Mapping

hemispheric asymmetries of the macaque cerebral cortex during early
brain development,’’ Human Brain Mapping, vol. 41, no. 1, pp. 95–106,
Jan. 2020.

[2] A. Halder and N. A. Talukdar, ‘‘Robust brain magnetic resonance
image segmentation using modified rough-fuzzy C-means with spatial
constraints,’’ Appl. Soft Comput., vol. 85, Dec. 2019, Art. no. 105758.

[3] N. Mahata, S. Kahali, S. K. Adhikari, and J. K. Sing, ‘‘Local contextual
information and Gaussian function induced fuzzy clustering algorithm for
brain MR image segmentation and intensity inhomogeneity estimation,’’
Appl. Soft Comput., vol. 68, pp. 586–596, Jul. 2018.

[4] L. Wang et al., ‘‘Benchmark on automatic six-month-old infant brain
segmentation algorithms: The iSeg-2017 challenge,’’ IEEE Trans. Med.
Imag., vol. 38, no. 9, pp. 2219–2230, Sep. 2019.

[5] Z. Wang, L. Guo, S. Wang, L. Chen, and H. Wang, ‘‘Review of random
walk in image processing,’’ Arch. Comput. Methods Eng., vol. 26, no. 1,
pp. 17–34, Jan. 2019.

[6] C. Singh and A. Bala, ‘‘A transform-based fast fuzzy C-means approach
for high brain MRI segmentation accuracy,’’ Appl. Soft Comput., vol. 76,
pp. 156–173, Mar. 2019.

[7] C. Wu and X. Yang, ‘‘Robust credibilistic fuzzy local information
clustering with spatial information constraints,’’ Digit. Signal Process.,
vol. 97, Feb. 2020, Art. no. 102615.

[8] J. P. Sarkar, I. Saha, and U. Maulik, ‘‘Rough possibilistic type-2 fuzzy
C-means clustering for MR brain image segmentation,’’ Appl. Soft
Comput., vol. 46, pp. 527–536, Sep. 2016.

[9] J. Miao, X. Zhou, and T.-Z. Huang, ‘‘Local segmentation of images
using an improved fuzzy C-means clustering algorithm based on self-
adaptive dictionary learning,’’ Appl. Soft Comput., vol. 91, Jun. 2020,
Art. no. 106200.

[10] Y. Zhang, X. Bai, R. Fan, and Z. Wang, ‘‘Deviation-sparse fuzzy C-means
with neighbor information constraint,’’ IEEE Trans. Fuzzy Syst., vol. 27,
no. 1, pp. 185–199, Jan. 2019.

[11] D. Kumar, H. Verma, A. Mehra, and R. K. Agrawal, ‘‘A modified
intuitionistic fuzzy C-means clustering approach to segment human brain
MRI image,’’ Multimedia Tools Appl., vol. 78, no. 10, pp. 12663–12687,
May 2019.

[12] M. N. Ahmed, S. M. Yamany, N. Mohamed, A. A. Farag, and T. Moriarty,
‘‘A modified fuzzy C-means algorithm for bias field estimation and
segmentation of MRI data,’’ IEEE Trans. Med. Imag., vol. 21, no. 3,
pp. 193–199, Mar. 2002.

[13] K.-S. Chuang, H.-L. Tzeng, S. Chen, J. Wu, and T.-J. Chen, ‘‘Fuzzy
C-means clustering with spatial information for image segmentation,’’
Comput. Med. Imag. Graph., vol. 30, no. 1, pp. 9–15, Jan. 2006.

[14] X. Zhang, C. Zhang, W. Tang, and Z. Wei, ‘‘Medical image segmentation
using improved FCM,’’ Sci. China Inf. Sci., vol. 55, no. 5, pp. 1052–1061,
May 2012.

[15] L. Szilagyi, Z. Benyo, S. M. Szilagyi, and H. S. Adam, ‘‘MR brain image
segmentation using an enhanced fuzzy C-means algorithm,’’ in Proc. 25th
Annu. Int. Conf. IEEE Eng.Med. Biol. Soc., vol. 1, Sep. 2003, pp. 724–726.

[16] W. Cai, S. Chen, and D. Zhang, ‘‘Fast and robust fuzzy C-means clustering
algorithms incorporating local information for image segmentation,’’
Pattern Recognit., vol. 40, no. 3, pp. 825–838, Mar. 2007.

[17] S. Krinidis and V. Chatzis, ‘‘A robust fuzzy local information C-means
clustering algorithm,’’ IEEE Trans. Image Process., vol. 19, no. 5,
pp. 1328–1337, May 2010.

[18] M. Gong, Y. Liang, J. Shi, W. Ma, and J. Ma, ‘‘Fuzzy C-means clustering
with local information and kernel metric for image segmentation,’’ IEEE
Trans. Image Process., vol. 22, no. 2, pp. 573–584, Feb. 2013.

[19] Y. Kong, J. Wu, G. Yang, Y. Zuo, Y. Chen, H. Shu, and J. L. Coatrieux,
‘‘Iterative spatial fuzzy clustering for 3D brain magnetic resonance image
supervoxel segmentation,’’ J. Neurosci. Methods, vol. 311, pp. 17–27,
Jan. 2019.

[20] S. N. Kumar, A. L. Fred, and P. S. Varghese, ‘‘Suspicious lesion
segmentation on brain, mammograms and breast MR images using new
optimized spatial feature based super-pixel fuzzy C-Means clustering,’’ J.
Digit. Imag., vol. 32, no. 2, pp. 322–335, Apr. 2019.

[21] Z. Caiming, Z. Xin, L. Xuemei, and C. Fuhua, ‘‘Cubic surface fitting to
image with edges as constraints,’’ in Proc. IEEE Int. Conf. Image Process.,
Sep. 2013, pp. 1046–1050.

[22] J. Yang, Z. Lin, and S. Cohen, ‘‘Fast image super-resolution based on
in-place example regression,’’ in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., Jun. 2013, pp. 1059–1066.

[23] R. Timofte, V. De, and L. V. Gool, ‘‘Anchored neighborhood regression for
fast example-based super-resolution,’’ in Proc. IEEE Int. Conf. Comput.
Vis., Dec. 2013, pp. 1920–1927.

[24] R. Timofte, V. De Smet, and L. Van Gool, ‘‘A+: Adjusted anchored
neighborhood regression for fast super-resolution,’’ in Proc. Asian Conf.
Comput. Vis. Springer, 2014, pp. 111–126.

[25] M. Ren, Z.Wang, and J. Jiang, ‘‘A self-adaptive FCM for the optimal fuzzy
weighting exponent,’’ Int. J. Comput. Intell. Appl., vol. 18, no. 2, Jun. 2019,
Art. no. 1950008.

JING XIA (Associate Member, IEEE) received
the Ph.D. degree from the School of Computer
Science and Technology, Shandong University,
in 2019. Her research interests include brain MR
image segmentation, early brain cortex develop-
ment, parcellation of brain cortical surface, and
medical image segmentation.

135910 VOLUME 8, 2020



J. Xia et al.: New Hybrid Brain MR Image Segmentation Algorithm With Super-Resolution, Spatial Constraint

XUEMEI LI is currently an Associate Professor
with the School of Computer Science and Technol-
ogy, Shandong University. Her research interests
include image denoise, machine learning, and
so on.

GUONING CHEN received the Ph.D. degree in
computer science from Oregon State University,
in 2009. He worked as an Instructor with the
Computer Science Department, Guangxi Univer-
sity, from 2002 to 2004. He was a Postdoctoral
Researcher with the Scientific Computing and
Imaging (SCI) Institute, University of Utah, from
2009 to 2012. He is currently an Associate Pro-
fessor with the Department of Computer Science,
University of Houston.

CAIMING ZHANG received the B.S. and M.E.
degrees in computer science from Shandong
University, in 1982 and 1984, respectively, and
the Dr. Eng. degree in computer science from the
Tokyo Institute of Technology, Japan, in 1994.
From 1997 to 2000, he has held visiting position
with the University of Kentucky, USA. He is cur-
rently a Professor and the Ph.D. Supervisor with
the School of Computer Science and Technology,
Shandong University. He is also the Dean and a

Professor with the School of Computer Science and Technology, Shandong
University of Finance and Economics. His research interests include CAGD,
CG, information visualization, and medical image processing.

VOLUME 8, 2020 135911


