
Vector Field Visualization: 
Introduction

Goal: understand what is a vector field and where it is from, why visualizing vector fields 
is challenging, what are the typical visualization techniques for vector field data, what is 
the direct visualization of vector field, how to compute streamlines



What is a Vector Field?

A simple 2D steady vector field A vector-valued function that assigns 
a vector (with direction and 
magnitude) to any given point. 
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What is a Vector Field?

Its solution gives rise to a “flow”, which 
consists of densely placed particle 
trajectories (i.e., the red curve shown 
in the left example). 

A vector-valued function that assigns 
a vector (with direction and 
magnitude) to any given point. 

It typically can be expressed as an 
ordinary differential equation (ODE).

A simple 2D steady vector field



Why Is It Important? 



Applications in Engineering and Science 

Automotive design 
[Chen et al. TVCG07,TVCG08]

Weather study [Bhatia and Chen et al. TVCG11]

6Oil spill trajectories [Tao et al. EMI2010] Aerodynamics around missiles [Kelly et al. Vis06]



Applications in Computer Graphics
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Parameterization
[Ray et al. TOG2006]

Fluid simulation [Chenney SCA2004, 
Cao&Chen 2013]

Painterly Rendering [Zhang et al. TOG2006]

Smoke simulation [Shi and Yu TOG2005]

Shape Deformation 
[von Funck et al. 2006]

Texture Synthesis [Chen et al. TVCG12b]



Why Is It Challenging to Process?
• Need to effectively visualize both magnitude + direction,

often simultaneously
• Additional challenges:

– large data sets
– time-dependent data

magnitude only direction only



Classification of Visualization Techniques

• Direct method: overview of vector fields, minimal computation, e.g., 
glyphs, color mapping.

• Geometric: a discrete object(s) whose geometry reflects (e.g., tangent to) 
flow characteristics, e.g., integral curves.

• Texture-based: covers domain with a convolved texture, e.g., Spot Noise, 
LIC, LEA, ISA, IBFV(S).

• Feature-based: both automatic and interactive feature-based techniques, 
e.g., flow topology, vortex core structure, coherent structure, LCS, etc.



Flow Data
Data sources:

• flow simulation:
• airplane- / ship- / car-design
• weather simulation (air-, sea-flows)
• medicine (blood flows, etc.)

Source: simtk.org

Simulated



Notes on Computational Fluid Dynamics
• We often visualize Computational Fluid 

Dynamics (CFD) simulation data
• CFD is the discipline of predicting flow 

behavior, quantitatively
• data is (often) the result of a 

simulation of flow through or 
around an object of interest

some characteristics of CFD data:
• large, often terabytes
• Unsteady, i.e.. time-dependent
• unstructured, adaptive resolution grids

Image source: Google images



Comparison with Reality
Experiment

Simulation

Really close but not exactly



Flow Data
Data sources:

• flow simulation:
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Flow Data
Data sources:

• flow simulation:
• airplane- / ship- / car-design
• weather simulation (air-, sea-flows)
• medicine (blood flows, etc.)

• flow measurement:
• wind tunnels, water channels
• optical measurement techniques

• flow models (analytic):
• differential equation systems 

(dynamic systems)

Source: simtk.org

Source: speedhunter.com

Source: zfm.ethz.ch

Analytic

Simulated

Measured



Flow Data
Simulation:
• flow: estimate (partial) differential equation systems (e.g., a physical 

model)
• set of samples (3/4-dims. of data), e.g., given on a curvilinear grid
• most important primitive: tetrahedron and hexahedron (cell)
• could be adaptive grids

Measurement:
• vectors: taken from instruments, often estimated on a uniform grid
• optical methods + image recognition, e.g.,: PIV (particle image 

velocimetry)

Analytic:
• flow: analytic formula, differential equation systems dx/dt 

(dynamical system)
• evaluated where-ever needed (e.g., making plots of flow in MatLab)



Types of the vector field data



2D vs. 2.5D Surfaces vs. 3D
2D flow visualization
• 𝑅𝑅2 flows
• Planes, or flow layers (2D cross sections through 

3D)

2.5D, i.e. surface flow visualization
• 3D flows around obstacles
• boundary flows on manifold surfaces (locally 2D)

3D flow visualization
• 𝑅𝑅3 flows
• simulations, 3D domains



Steady vs. Time-dependent
Steady (time-independent) flows:
• flow itself constant over time
• v(x), e.g., laminar flows
• simpler case for visualization
• well understood behaviors and features

Time-dependent (unsteady) flows:
• flow itself changes over time
• v(x,t), e.g., combustion flow, turbulent flow, 

wind field
• more complex cases
• no unified theory to characterize them yet!



Time-independent 
(steady) Data

• Dataset sizes over years (old data):



Peta/exa-scale 
turbulence 
simulations

1015/1018

Time-dependent 
(unsteady) Data



Experimental Flow Visualization

Typically, optical Methods.

Understanding this experimental methods will help us understand 
why certain visualization approaches are adopted.



With Smoke or Dye
• Injection of dye, smoke, 

particles

• Optical methods:
• transparent object with 

complex distribution of light 
refraction index

• Streaks, shadows



Large Scale Dying

Source: weathergraphics.com

Source: ishtarsgate.com



Direct Methods



Direct FlowVis with Arrows
Properties:
• direct FlowVis
• frequently used!
• normalized arrows 

vs. velocity coding
• 2D: quite useful,

3D: often problematic
• often difficult to understand in 

complex cases, mentally integrate 
to reconstruct the flow

Image source: tms.org



Issues of Arrows in 3D
Common problems:

• Ambiguity

• Perspective shortening

• 1D objects generally difficult 
to grasp in 3D
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Issues of Arrows in 3D
Common problems:

• Ambiguity

• Perspective shortening

• 1D objects generally difficult 
to grasp in 3D

Remedy:

• 3D-Arrows 
(are of some help)
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http://cs.swan.ac.uk/~csbob/te
aching/csM07-vis/

Arrows in 3D – Examples  
Compromise:

arrows only in layers



Geometric-based Methods: 
Integral curves and surfaces



Direct vs. Geometric FlowVis

Direct flow visualization:
• overview of current state of flow
• visualization with vectors popular
• arrows, icons, glyph techniques

Geometric flow visualization:
• use of intermediate objects, 

e.g., after vector field integration over time
• visualization of development over time
• streamlines, stream surfaces
• analogous to indirect (vs. direct) volume 

visualization



Streamlines – Theory
• flow data v: derivative information

• dx/dt = v(x); 
spatial points x∈Rn, Time t∈R, flow 
vectors v∈Rn

• streamline s: integration over time, 
also called trajectory, solution, curve
• s(t) = s0 + ∫0≤u≤t v(s(u)) du;

seed point s0, integration variable u



Streamlines – Theory
• flow data v: derivative information

• dx/dt = v(x); 
spatial points x∈Rn, Time t∈R, flow 
vectors v∈Rn

• streamline s: integration over time, also 
called trajectory, solution, curve
• s(t) = s0 + ∫0≤u≤t v(s(u)) du;

seed point s0, integration variable u

• Property:
• uniqueness 

• difficulty: result s also in the integral ⇒
analytical solution usually impossible.



Streamlines – Practice
Basic approach:

• Mathematical expression: s(t) = s0 + ∫0≤u≤t v(s(u)) du

• practice: numerical integration

• idea: 
(very) locally, the solution is (approx.) linear

• Euler integration: 
follow the current flow vector v(si) from the current streamline point si
for a very small time (dt) and therefore distance

Euler integration: si+1 = si + v(si) · dt,
integration of small steps (dt very small)



Euler Integration – Example
2D model data:

vx = dx/dt = -y

vy = dy/dt = x/2
Sample arrows:

True
solution:
ellipses.

0 1 2 3 4

0

1

2



Euler Integration – Example
Seed point s0 = (0 | -1)T;
current flow vector v(s0) = (1 |0)T;
dt = ½
vx = dx/dt = -y

vy = dy/dt = x/2

0 1 2 3 4

0

1

2



Euler Integration – Example
New point s1 = s0 + v(s0) ·dt = (1/2 | -1)T;
current flow vector v(s1) = (1 |1/4)T;
vx = dx/dt = -y

vy = dy/dt = x/2

0 1 2 3 4

0

1

2



Euler Integration – Example
New point s2 = s1 + v(s1) ·dt = (1 | -7/8)T;
current flow vector v(s2) = (7/8 |1/2)T;
vx = dx/dt = -y

vy = dy/dt = x/2

0 1 2 3 4

0

1

2



Euler Integration – Example
s3 = (23/16 | -5/8)T ≈ (1.44 | -0.63)T;
v(s3) = (5/8 |23/32)T ≈ (0.63 |0.72)T;
vx = dx/dt = -y

vy = dy/dt = x/2

0 1 2 3 4

0

1

2



Euler Integration – Example
s4 = (7/4 | -17/64)T ≈ (1.75 | -0.27)T;
v(s4) = (17/64 |7/8)T ≈ (0.27 |0.88)T;

0 1 2 3 4

0

1

2



Euler Integration – Example
s9 ≈ (0.20 |1.69)T;
v(s9) ≈ ( -1.69 |0.10)T;

0 1 2 3 4

0

1

2



Euler Integration – Example
s14 ≈ ( -3.22 | -0.10)T;
v(s14) ≈ (0.10 | -1.61)T;

0 1 2 3 4

0

1

2



Euler Integration – Example
s19 ≈ (0.75 | -3.02)T; v(s19) ≈(3.02 |0.37)T;
clearly: large integration error, dt too large,
19 steps

0 1 2 3 4

0

1

2



Euler Integration – Example
dt smaller (1/4): more steps, more exact. 
s36 ≈ (0.04 | -1.74)T; v(s36) ≈ (1.74 |0.02)T;
36 steps

0 1 2 3 4

0

1

2



Comparison Euler, Step Sizes
Euler
quality is 
proportional
to dt



Euler Example – Error Table

dt #steps error

1/2 19 ~200%
1/4 36 ~75%
1/10 89 ~25%
1/100 889 ~2%
1/1000 8889 ~0.2%





RK-2 – A Quick Round

si
v(si)



RK-2 – A Quick Round

dt/2

si

v(si)

s’



RK-2 – A Quick Round

dt/2

si

v(si)

s’
v(s’)



RK-2 – A Quick Round

dt/2

si
v(si)

s’
v(s’)

v=(v(si)+ v(s’))/2



RK-2 – A Quick Round

dt

si

s’

v=(v(si)+ v(s’))/2

s’= si+ (dt/2)*v(si)
v = (v(si)+ v(s’))/2
si+1= si + dt*v

dt/2



RK-2 – A Quick Round
RK-2: even with dt = 1 (9 steps) 

better 
than Euler 
with dt = 1/8
(72 steps)



RK-4 vs. Euler, RK-2
Even better: fourth order RK:
• four vectors k1, k2, k3, k4

• one step is a convex combination:
si+1 = si + (k1 + 2· k2 + 2· k3 + k4)/6

• vectors:
k1 = dt·v(si) … original vector
k2 = dt·v(si+ k1 /2) … RK-2 vector
k3 = dt·v(si+ k2 /2) … use RK-2 …
k4 = dt·v(si+ k3) … and again



Euler vs. Runge-Kutta
RK-4: pays off only with complex flows

Here 
approx.
like 
RK-2



Taylor expansion

f(x+a)=



Integration, Conclusions
Summary:
• analytic determination of streamlines usually not possible
• hence: numerical integration
• various methods available

(Euler, Runge-Kutta, etc.)
• Euler: simple, imprecise, esp. with small dt
• RK: more accurate in higher orders
• furthermore: adaptive methods, implicit methods, etc.



Streamline Termination
When to stop streamline integration 

(termination condition):
• when streamline leaves flow domain

• when streamline runs into fixed point /singularity (v = 0)

• when streamline gets too near to itself (loop)

• after a certain amount of maximal steps



Streamline Placement

in 2D



Problem: Choice of Seed Points
Streamline placement:
• If regular grid used: very irregular result



Overview of Algorithm
Idea: streamlines should not lie too close to one another

Approach:
• choose a seed point with distance dsep from an already 

existing streamline
• forward- and backward-integration until distance dtest is 

reached (or …).
• two parameters:

• dsep … start distance
• dtest … minimum distance



Algorithm – Pseudo-Code
• Compute initial streamline, put it into a queue

• current streamline = initial streamline
• WHILE not finished DO:

TRY: get new seed point which is dsep away from current streamline

IF successful THEN

compute new streamline AND put to queue

ELSE IF no more streamline in queue THEN

exit loop

ELSE next streamline in queue becomes current streamline



Streamline Termination
When to stop streamline integration 

(termination condition):
• when distance to neighboring streamline ≤ dtest

• when streamline leaves flow domain

• when streamline runs into fixed point (v = 0)

• when streamline gets too near to itself (loop)

• after a certain amount of maximal steps



New Streamlines



Different Streamline Densities
Variations of dsep relative to image width:

6% 3% 1.5%



dsep vs. dtest

dtest = 0.9 · dsep dtest = 0.5 · dsep



Tapering and Glyphs
Thickness in 

relation to 
distance

Directional
glyphs:



Literature
For more information, please see:
• B. Jobard & W. Lefer: “Creating Evenly-Spaced Streamlines of 

Arbitrary Density” in Proceedings of 8th Eurographics
Workshop on Visualization in Scientific Computing, April 
1997, pp. 45-55

• Data Visualization: Principles and Practice, Chapter 6: Vector 
Visualization by A. Telea, AK Peters 2008
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