Arrows vs. Streamlines vs. Textures

Streamlines: selective

Arrows: simple

Arrows vs. Streamlines vs. Textures

Vector Field Visualization: Texture-based Method

Goal: understand the basic idea behind texture-based method (no need to remember all techniques); understand the mechanism of LIC and IBFV; be able to implement LIC

A BRIEF OVERVIEW

Spot Noise

♦ One of the first texture-based techniques (Van Wijk, Siggraph1991).

♦ Basic idea: distribute a set of intensity function, or spot, over the domain, that is wrapped by the flow over a small step.

♦ Pro: mimic the smear effect of oil; encode magnitude; can be applied for both steady and unsteady flow.

♦ Con: tricky to implement; low quality; computationally expensive.

[De Leeuw and Van Liere]

Line Integral Convolution (LIC)

pixel-based

♦ One of the most popular techniques (Brian Cabral & Leith Leedom, SIGGRAPH93).

♦ Basic idea: Low-pass filters white noise along pixel-centered symmetrically bi-directional <u>streamlines</u> to exploit spatial correlation in the flow direction.

- Pro: High-quality image with fine features; easy implementation; and many variants.
- ♦ Con: Computationally expensive; limited to steady flow visualization.

ActiveLIC	
	2D Vector Field x-res 921 Saddle Spiralling Real Data y-res 403 Vortex Repelling More Pseudo
	2D Noise Texture Convolution Kernel White Noise Sparse Noise C Ramp Kernel Kernel Length 15
	✓ Color Mapping Equalization Enhanced LIC ✓ High Pass Filter MagLIC Iteration 2 ENU and Zoom/n Common Structure Image Processing
	Left 40 Right 500 Image Freessing Top 50 Bottom 251 Iteration 1
	Scale 2 Image LICing Progressive LIC Animation Lise Integral Convolution
	LOD 3 Frames 8 Animation Save LIC Image As ProLIC FPSs 8 Save As Exit

Unsteady Flow LIC (UFLIC)

The first texture-based unsteady flow visualization method (by Han-Wei Shen and David Kao, IEEE Visualization 97 & IEEE TVCG 98).

♦ Basic idea: Time-accurately scatters particle values of successively fed-forward textures along pathlines over several time steps to convey the footprint / contribution that a particle leaves at downstream locations as the flow runs forward.

♦ Pro: High temporal coherence & high spatial coherence & hardware-independent.

♦ **Con**: Low computational performance due to *multi-step* (\approx 100) *pathline integration*.

Hardware-Accelerated Texture Advection (HATA)

The first hardware-based texture synthesis technique for unsteady flow (by Bruno Jobard and et al., IEEE Visualization 00).

♦ Basic idea: Exploits indirect pixel-texture addressing for fast flow advection, & additive / subtractive texture blending for fast texture convolution in an efficient pipeline.

 \diamond **Pro:** Near-interactive frame rates based on special-purpose graphics cards; for both steady and unsteady flow; good temporal coherence .

 \diamond **Con:** poor spatial coherence (very noisy).

(Bruno Jobard, Gordon Erlebacher, and M. Yousuff Hussaini)

exponential kernel

Image-Based Flow Visualization (IBFV)

♦ One of the most versatile and the easiest-to-implement hardware-based methods (by Jarke J. van Wijk, SIGGRAPH02).

 \diamond **Pro:** Interactive frame rates and easy simulation of many visualization techniques; good temporal coherence .

♦ Con: insufficient spatial coherence (*noisy or blurred*).

ActiveIBFV	
	Visualization Style C Arrows C Particles C LIC C Spot Noise C Warping C Smearing C Topology C Timeline
	Background Texture Settings Noise Type Texture Color Binary (B / W) C Triangle C Cosine C Expoential Red 255 Green 255 Blue Etable Etable Blue Etable 255 Alpha 0.0431373 S cale of the noise texture 2 2 2 2
	Arrows Particles Ribbons Radius 1 Radius 2 warp/smear/timeline Red 0 Red 255 Red 255 Green 255 Green 0 Blue 0 Blue 0 Blue 0 Blue 255
	Dye Radius 8 R 178 G 153 B 127 Flow Settings All Strength 7 C Sink C Clockwise Dyed Rotation 7 C Source C Anti-clock
	Field Mesh Resolution 100 DeltaT 3 Apply Exit

Lagrangian-Eulerian Advection (LEA)

♦ A fast hardware-independent unsteady flow visualization method (by Bruno Jobard and et al, IEEE TVCG 02).

♦ Basic idea: Employs backward single-step pathline integration to search the previous frame for the contributing particle (Eulerian) which scatters the texture value to the target pixel of the current frame (Lagrangian) & blends successive textures.

 \diamond **Pro:** Interactive frame rates and supportive of arbitrarily-shaped field domains; good temporal coherence .

♦ Con: insufficient spatial coherence (obscure direction).

(Bruno Jobard, Gordon Erlebacher, and M. Yousuff Hussaini)

Unsteady Flow Advection-Convolution (UFAC)

- ♦ A separable temporal-spatial texture synthesis method for unsteady flow fields (by Daniel Weiskopf and et al, IEEE Visualization 03).
- Basic idea: Establishes temporal coherence by property advection along pathlines while building spatial correlation by texture convolution along streamlines.
- With explicit, direct, and separate control over temporal coherence and spatial coherence to balance visualization speed and quality.
- ♦ Pro: Interactive rates on graphics cards with fragment (e.g., pixel shader) support.
- ♦ Con: Temporal-spatial inconsistency either flickering animation or noisy image.

Noisy images with (left) / without (right) velocity masking Good frames in a flickering animation (Daniel Weiskopf, Gordon Erlebacher, and Thomas Ertl)

Steady Flow Visualization Methods

Method	Noise design	Implementation	Image quality	Feature missing	Extensions	Performance
Spot Noise	tricky	tedious	low	yes	few	low
LIC	easy	easy	high	no	many	low

> Unsteady Flow Visualization Methods

Method	Temporal coherence	Spatial coherence	Performance	Graphics cards
UFLIC	high	high	low	not required
HATA	good	poor (very noisy)	near-interactive rates	special-purpose
IBFV	good	insufficient (noisy / blurred)	interactive rates	general-purpose
LEA	good	insufficient (obscure direction)	interactive	not required
UFAC	trade-off between n	oisy image & flickering animation	interactive	special-purpose

Recent Advances

Robert S. Laramee, Helwig Hauser, Helmut Doleisch, Benjamin Vrolijk, Frits H. Post, and Daniel Weiskopf, **The state of the art in flow visualization: dense and texture-Based techniques.** in *Computer Graphics Forum (CGF)*, Vol. 23, No. 2, 2004, pages 203-221.

Guo-Shi Li, Xavier Tricoche, Daniel Weiskopf, and Charles Hansen. Flow Charts: **Visualization of vector fields on arbitrary surface**. IEEE Transactions on Visualization and Computer Graphics, 14(5), pp. 1067-1080, 2008.

Jin Huang, Wenjie Pei, Chunfeng Wen, Guoning Chen, Wei Chen, and Hujun Bao. **Output-coherent image-space LIC for surface flow visualization**. IEEE Pacific Visualization Symposium 2012.

Jin Huang, Zherong Pan, Guoning Chen, Wei Chen, and Hujun Bao. **Image-space texture-based outputcoherent surface flow visualization**, IEEE Transactions on Visualization and Computer Graphics, Vol. 19 (9): pp. 1476-1487, 2013.

Victor Matvienko, Jens Krüger. **Dense flow visualization using wave interference**. IEEE Pacific Visualization Symposium 2012.

Victor Matvienko, Jens Krüger. **Explicit frequency control for high-quality** *texture-based flow*, IEEE Visualization 2015.

SOME DETAILS

Line Integral Convolution — LIC

Line Integral Convolution (LIC) was presented by *Brian Cabral* and *Casey Leedom* (ACM SIGGRAPH93). (cited by 1788 so far)

Basic Idea

- ♦ LIC convolves white noise using a low-pass filter along pixel-centered symmetrically bi-directional streamlines to exploit spatial correlation in the flow direction — anisotropic low-pass filtering along flow lines.
- ♦ LIC synthesizes an image that provides a global dense representation of the flow, analogous to the resulting pattern of wind-blown sand.

white noise \rightarrow the texture is freely warped / driven by the flow without any intrinsic resistance

Line Integral Convolution — LIC

Top-left:gray-scale LICBottom-left:contrasted LIC

Top-right:color-mappedLICBottom-right:high-pass filteredLIC

Animation successively shifting the phase of <u>a periodic convolution kernel</u> such as Hanning filter ("Motion Without Movement", CG['] 91)

> OLIC (Oriented LIC)

- \diamond R. Wegenkittl and et al. (*Computer Animation 97*).
- ♦ A LIC image shows the flow direction while failing to show the orientation (clockwise or counter-clockwise ?).
- \diamond A ramp filter offers orientation cue by *intensity tapering*.
- ♦ Sparse noise offers enough space for intensity-tapering.

 \diamond White points of some size are placed at the lattice and then *slightly jittered*.

the design of sparse noise

 $\left| \right\rangle$

Sparse noise \oplus Ramp convolution kernel \implies OLIC (flow orientation in a LIC image)

Enhanced LIC

- \diamond A. Okada and D. L. Kao (*IS* & *T* / *SPIE Electronics Imaging 97*).
- \diamond *Enhances the appearance of streamlines* neither noisy nor blurred.
- ♦ Iteratively (iteration times >= 2) takes an output LIC image as the input to the next LIC cycle prior to final high-pass filtering (e.g., Laplacian filter).

A quite fancy LIC image results from using sparse noise in enhanced LIC.

IMAGE-BASED FLOW VISUALIZATION (IBFV)

Details — Texture-Based Methods

Image-Based Flow Visualization (IBFV)

$$F(\mathbf{p}_{k}; k) = (1 - \alpha)F(\mathbf{p}_{k-1}; k - 1) + \alpha G(\mathbf{p}_{k}; k)$$

$$\downarrow$$

$$F(\mathbf{p}_{k}; k) = \alpha \sum_{i=0}^{k-1} (1 - \alpha)^{i} G(\mathbf{p}_{k-i}; k - i)$$

Zhanping Liu @ MSU / HPC / VAIL

Demo program

A variety of visualization techniques such as particles, arrow plots, streamlines, timelines, spot noise, LIC, and flow topology can be easily simulated by tuning IBFV parameters

TEXTURE-BASED VISUALIZATION FOR SURFACE FLOW

Surface LIC

 \diamond Dense visualization of flows on curved surfaces

♦ Parametric surface LIC — on well-defined surfaces

- On a parameterized CFD surface (model).
- On a parameterized stream surface extracted by *Advancing Front* from 3D flows.
- Maps vectors from physical space to parametric space by nonlinear transform.
- Generates a 2D LIC texture in parametric space.
- Maps the 2D LIC texture back onto the curved surface (physical space).
- Compensates texture distortions from non-isometric physical-parametric space mapping by using carefully-designed input noise and adaptive kernel length.

(Lisa Forssell et al., IEEE TVCG 95)

 \diamond Triangulated surface LIC — on arbitrarily complex surfaces

- On extracted iso-surfaces or other implicit surfaces through a volume flow.
- Adopts fast and robust streamline integration <u>directly on a triangular domain.</u>
- Obviates non-isometric space mapping to avoid texture distortions.
- Uses *solid noise* (usually by a procedural noise function).
- Obtains the value of each texel (texture element) sampled in a triangle via LIC.
- Efficiently *packs numerous triangular-textures* into a few rectangular-texture blocks stored in memory for fast texture retrieval at low memory cost.
- Maps each triangular texture onto the target triangle in rendering.

compute each texel value

(Detlev Stalling, ZIB, Germany)

ISA vs. IBFVS

Coherent Texture on Surfaces

The surface and the vector field in color (R,G,B)

3D-2D projection

in color (R,G)

The noise texture pyramid

Texture mapping

Address the inconsistency of flow image when the view point is changed.

[Huang et al. TVCG13]

TEXTURE-BASED VISUALIZATION FOR 3D FLOW

Volume LIC

- ♦ Victoria Interrante and Chester Grosch (IEEE Visualization 97).
- \diamond A straightforward extension of LIC to 3D flow fields.
- \diamond Low-pass filters *volumetric noise* along 3D streamlines.
- \diamond Uses *volume rendering* to display resulting 3D LIC textures.
- \diamond Very time-consuming to generate 3D LIC textures.
- Texture values offer no useful guidance for transfer function design due to *lack* of intrinsic physical info that can be exploited to distinguish components.
- Very challenging to clearly show flow directions and interior structures through a dense texture volume.

Sparse noise + Hybrid Hanning-Ramp kernel (Zhanping Liu and et al., Journal of Image and Graphics 2001)

Unsteady Flow LIC — VAUFLIC

Image generated by using a texture-based transfer function

3D IBFV

[Telea and van Wijk Vis03]

Additional reading

- Helwig Hauser, Robert S. Laramee, Helmut Doleisch, Frits H. Post, and Benjamin Vrolijk, The State of the Art in Flow Visualization: Direct, Texture-based, and Geometric Techniques, TR-VRVis-2002-046 Technical Report, VRVis Research Center, Vienna, Austria, December 2002.
- Robert S. Laramee, Helwig Hauser, Helmut Doleisch, Benjamin Vrolijk, Frits H. Post, and Daniel Weiskopf, The State of the Art in Flow Visualization: Dense and Texture-Based Techniques. in Computer Graphics Forum (CGF), Vol. 23, No. 2, 2004, pages 203-221.

Acknowledgment

- Thanks for the materials from
 - Dr. Zhanping Liu, Kentucky State University
 - Dr. Robert Laramee, Swansea University, UK