Review of Texture-based Methods

- Employs texture synthesis and image processing techniques to provide global, continuous, dense, and visually pleasing representations without constructing intermediate geometry.
- LIC family is the most popular texture-based technique
- **IBFV** is an easy but flexible technique
- Both can be extended to (2.5D) surface flow visualization
- IBFV is more computationally efficient than LIC
- Extending to 3D volumetric data visualization is possible but challenging due to the occlusion

LIC

a point in the flow field — the counterpart of a pixel in the output LIC image

> locate a set of pixels hit by the streamline

index the input noise for the texture values

obtain the value of the target pixel in the LIC image via texture convolution

 $\frac{\sum (texture[i] \times weight[i])}{\sum weight[i]}$ weighting is governed by a low-pass filter

IBFV

http://www.win.tue.nl/~vanwijk/ibfv/

Texture-based Methods on Surfaces

Surface LIC

(Detlev Stalling, ZIB, Germany)

IBFVS

Volumetric Texture

Arrows vs. Streamlines vs. Textures

Streamlines: selective Arrows: simple

Vector Field Visualization: Feature-based

Goal: how to compute Jacobian of flow; know what features in vector fields are of interest; what are the common physical features; how to use information of Jacobian to extract some of the relevant features.

What features are in flows?

Features are highly application dependent

- Non-topology (physics-based)
- Topology

Physics-based Feature Extraction

Their computation is mostly local

Vector Field Gradient

• Consider a vector field

$$d\mathbf{x}/_{dt} = V(\mathbf{x}) = \vec{f}(x, y, z) = \begin{pmatrix} f_x \\ f_y \\ f_z \end{pmatrix}$$

• Its gradient is

$$\nabla V = \begin{bmatrix} \frac{\partial f_x}{\partial x} & \frac{\partial f_x}{\partial y} & \frac{\partial f_x}{\partial z} \\ \frac{\partial f_y}{\partial x} & \frac{\partial f_y}{\partial y} & \frac{\partial f_y}{\partial z} \\ \frac{\partial f_z}{\partial x} & \frac{\partial f_z}{\partial y} & \frac{\partial f_z}{\partial z} \end{bmatrix}$$

It is also called the **Jacobian** matrix of the vector field. Many feature detection for flow data relies on Jacobian.

$$V = \begin{cases} vx = -y \\ vy = \frac{1}{2}x \end{cases}$$

$$V = \begin{cases} vx = -y \\ vy = \frac{1}{2}x \end{cases} \qquad \qquad \nabla V = \begin{bmatrix} 0 & -1 \\ \frac{1}{2} & 0 \end{bmatrix}$$

$$V = \begin{cases} vx = 10x + 10y + 12340\\ vy = 12x - 19y - 12000 \end{cases}$$

$$V = \begin{cases} vx = 10x + 10y + 12340\\ vy = 12x - 19y - 12000 \end{cases} \qquad \nabla V = \begin{bmatrix} 10 & 10\\ 12 & -19 \end{bmatrix}$$

Divergence and Curl

• **Divergence** measures the magnitude of <u>outward flux</u> through a small volume around a point

$$div V = \nabla \cdot V = \frac{\partial f_x}{\partial x} + \frac{\partial f_y}{\partial y} + \frac{\partial f_z}{\partial z}$$
$$\nabla = \begin{bmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \end{bmatrix}$$

• Curl- describes the <u>infinitesimal rotation</u> around a point $curl V = \nabla \times V = \begin{bmatrix} \frac{\partial f_z}{\partial y} - \frac{\partial f_y}{\partial z} & \frac{\partial f_x}{\partial z} - \frac{\partial f_z}{\partial x} & \frac{\partial f_y}{\partial x} - \frac{\partial f_x}{\partial y} \end{bmatrix}$ $\nabla \cdot (\nabla \times V) = 0$ $\nabla \times (\nabla \otimes V) = \vec{0}$

Divergence and Curl

 Divergence measures the magnitude of <u>outward flux</u> through a small volume around a point

$$div V = \nabla \cdot V = \frac{\partial f_x}{\partial x} + \frac{\partial f_y}{\partial y} + \frac{\partial f_z}{\partial z}$$
$$\nabla = \begin{bmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \end{bmatrix}$$

• **Curl** describes the <u>infinitesimal rotation</u> around a point $curl V = \nabla \times V = \begin{bmatrix} \frac{\partial f_z}{\partial y} - \frac{\partial f_y}{\partial z} & \frac{\partial f_x}{\partial z} - \frac{\partial f_z}{\partial x} & \frac{\partial f_y}{\partial x} - \frac{\partial f_x}{\partial y} \end{bmatrix}$

$$\mathcal{V} = \nabla \times V = \begin{bmatrix} \frac{\partial J_z}{\partial y} - \frac{\partial J_y}{\partial z} & \frac{\partial J_x}{\partial z} - \frac{\partial J_z}{\partial x} & \frac{\partial J_y}{\partial x} - \frac{\partial J_x}{\partial y} \end{bmatrix}$$
$$\nabla \cdot (\nabla \times V) = 0$$
$$\nabla \times (\nabla \emptyset) = \vec{0}$$

Divergence and Curl

 Divergence- measures the magnitude of <u>outward flux</u> through a small volume around a point

$$div V = \nabla \cdot V = \frac{\partial f_x}{\partial x} + \frac{\partial f_y}{\partial y} + \frac{\partial f_z}{\partial z}$$
$$\nabla = \begin{bmatrix} \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \end{bmatrix}$$

• Curl- describes the <u>infinitesimal rotation</u> around a point $curl V = \nabla \times V = \begin{bmatrix} \frac{\partial f_z}{\partial y} - \frac{\partial f_y}{\partial z} & \frac{\partial f_x}{\partial z} - \frac{\partial f_z}{\partial x} & \frac{\partial f_y}{\partial x} - \frac{\partial f_x}{\partial y} \end{bmatrix}$ $\nabla \cdot (\nabla \times V) = 0$ $\nabla \times (\nabla \phi) = \vec{0}$

Both are local computation!

Consider a 2D Steady Vector Fields

Assume a 2D steady <u>piecewise linear</u> vector field

$$d\mathbf{x}/_{dt} = V(\mathbf{x}) = \vec{f}(x, y) = \begin{pmatrix} f_x \\ f_y \end{pmatrix} = \begin{pmatrix} ax + by + c \\ dx + ey + f \end{pmatrix}$$

• Its Jacobian is

$$7V = \begin{bmatrix} \frac{\partial f_x}{\partial x} & \frac{\partial f_x}{\partial y} \\ \frac{\partial f_y}{\partial x} & \frac{\partial f_y}{\partial y} \end{bmatrix} = \begin{bmatrix} a & b \\ d & e \end{bmatrix}$$

- Divergence is a + e
- Curl is -(b-d)

Given a vector field defined on a discrete mesh, it is important to compute the coefficients **a**, **b**, **c**, **d**, **e**, **f** for later analysis.

$$V = \begin{cases} vx = -y \\ vy = \frac{1}{2}x \end{cases} \qquad \qquad \nabla V = \begin{bmatrix} 0 & -1 \\ 1 \\ 2 & 0 \end{bmatrix}$$

$$V = \begin{cases} vx = -y \\ vy = \frac{1}{2}x \end{cases} \qquad \qquad \nabla V = \begin{bmatrix} 0 & -1 \\ \frac{1}{2} & 0 \end{bmatrix}$$

$$div V = \frac{\partial f_x}{\partial x} + \frac{\partial f_y}{\partial y} = 0 + 0 = 0$$
$$curl V = -\left(\frac{\partial f_x}{\partial y} - \frac{\partial f_y}{\partial x}\right) = -(-1 - \frac{1}{2}) = \frac{3}{2}$$

$$V = \begin{cases} vx = x + 2y + z + 0.5\\ vy = x - 3z - 1\\ vz = -y + z + 2 \end{cases}$$

$$V = \begin{cases} vx = x + 2y + z + 0.5\\ vy = x - 3z - 1\\ vz = -y + z + 2 \end{cases} \qquad \qquad \nabla V = \begin{bmatrix} 1 & 2 & 1\\ 1 & 0 & -3\\ 0 & -1 & 1 \end{bmatrix}$$

$$V = \begin{cases} vx = x + 2y + z + 0.5 \\ vy = x - 3z - 1 \\ vz = -y + z + 2 \end{cases} \qquad \nabla V = \begin{bmatrix} 1 & 2 & 1 \\ 1 & 0 & -3 \\ 0 & -1 & 1 \end{bmatrix}$$

$$div V = \nabla \cdot V = \frac{\partial f_x}{\partial x} + \frac{\partial f_y}{\partial y} + \frac{\partial f_z}{\partial z} = 1 + 0 + 1 = 2$$

$$curl V = \nabla \times V = \begin{bmatrix} \frac{\partial f_z}{\partial y} - \frac{\partial f_y}{\partial z} & \frac{\partial f_x}{\partial z} - \frac{\partial f_z}{\partial x} & \frac{\partial f_y}{\partial x} - \frac{\partial f_x}{\partial y} \end{bmatrix}$$

$$V = \begin{cases} vx = x + 2y + z + 0.5 \\ vy = x - 3z - 1 \\ vz = -y + z + 2 \end{cases} \qquad \nabla V = \begin{bmatrix} 1 & 2 & 1 \\ 1 & 0 & -3 \\ 0 & -1 & 1 \end{bmatrix}$$

$$div V = \nabla \cdot V = \frac{\partial f_x}{\partial x} + \frac{\partial f_y}{\partial y} + \frac{\partial f_z}{\partial z} = 1 + 0 + 1 = 2$$

$$curl V = \nabla \times V = \begin{bmatrix} \frac{\partial f_z}{\partial y} - \frac{\partial f_y}{\partial z} & \frac{\partial f_x}{\partial z} - \frac{\partial f_z}{\partial x} & \frac{\partial f_y}{\partial x} - \frac{\partial f_x}{\partial y} \end{bmatrix}$$
$$= [-1 - (-3), 1 - 0, 1 - 2] = [2, 1, -1]$$

vorticity vector!!

Examples of Divergence and Curl of 2D Vector Fields

Divergence and curl of a vector field Rainbow color coding is used.

Examples of vector-valued data reduction!

Volume rendering of vorticity in various flows (images from Google images)

Jacobian and its derived physical quantities can be applied to the extraction of certain physicsbased features.

Vortices

There is NO unified definition of vortices!!!!

Vortices

Blood Flow Analysis [Köhler et al. 2013]

ource: tp://www.onera.fr/cahierdelabo/english/aerod_ind03.htm

Post et al. STAR report 2003

Vortices in turbulent flows

(a)

(c)

Typical vortex detection techniques

Region-based – using one of the following attributes and some ad-hoc thresholds

$$J = S + R$$
, $S = \frac{1}{2}[J + J^{T}]$, $R = \frac{1}{2}[J - J^{T}]$

Vorticity
Q-criterion
$$Q = \frac{1}{2} (\|\mathbf{R}\|^2 - \|\mathbf{S}\|^2)$$

 $\lambda_2~$ is the second largest eigenvalue of the tensor S^2+R^2

Typical vortex detection techniques

• Line-based – detecting vortex cores

PV-parallel vector operator $\mathbf{v} || \boldsymbol{\nabla} \mathbf{v} \cdot \mathbf{v}$

the acceleration is parallel to the velocity the Jacobian matrix has a complex pair of eigenvalues

Typical vortex detection techniques

• Line-based – detecting vortex cores

PV-parallel vector operator $\mathbf{v} || \nabla \mathbf{v} \cdot \mathbf{v}$

the acceleration is parallel to the velocity the Jacobian matrix has a complex pair of eigenvalues

• **Geometric-based** – finding returning streamline using winding angles

Recent vortex detection techniques

Objectivity-based – extract optimal reference frame

[Guenther et al., SIGGRAPH 2017]

Vortex boundary extraction

[Elliptic LCS, Haller et al. 2016]

Hairpin vortex extraction and visualization

[Zafar et al. IEEE VIS 2023]

Hairpin vortex extraction and visualization

[Zafar et al. IEEE VIS 2023]

Separation Flows

Separation flow on delta wing surface [Tricoche et al. AIAA 2004]

Separation Flows

Separation and attachment line detection is again based on the parallel vector operator (in 2D)

PV-parallel vector operator $\mathbf{v} || \nabla \mathbf{v} \cdot \mathbf{v}$

both eigen-values of the Jacobian matrix are real number, leading to real eigen-vectors

Figure 3: a) Separation and attachment lines on a solid surface of the "bluntfin" data set (black lines). The white arrows indicate the projected velocity \mathbf{v} , the black arrows the field $\mathbf{w} = (\nabla \mathbf{v}) \mathbf{v}$. b) The same lines compared to an LIC of \mathbf{v} .

[Peikert and Roth, IEEE VIS 99]

Coherent structures in turbulent flows

Coherent structures in turbulent flows are in different scales and tangled in space and time Images from [Nguyen et al, IEEE VIS 2020, TVCG2022]

Helmholtz decomposition

Divergence free

Curl (or rotation) free

 $\nabla \varphi$ is the gradient of a scalar field φ

Divergence free (or no-solenoidal field)

Example: Helmholtz decomposition

curl-free

general

divergence-free

Additional Materials

Günther, Tobias, and Holger Theisel. "The state of the art in vortex extraction." In *Computer Graphics Forum*, vol. 37, no. 6, pp. 149-173. 2018.

Bhatia, Harsh, Gregory Norgard, Valerio Pascucci, and Peer-Timo Bremer. "The Helmholtz-Hodge decomposition—a survey." *IEEE Transactions on visualization and computer graphics* 19, no. 8 (2012): 1386-1404.