
Review of Texture-based Methods

• Employs texture synthesis and image processing techniques to 
provide global, continuous,  dense, and  visually pleasing 
representations without constructing intermediate geometry.

• LIC family is the most popular texture-based technique
• IBFV is an easy but flexible technique
• Both can be extended to (2.5D) surface flow visualization
• IBFV is more computationally efficient than LIC
• Extending to 3D volumetric data visualization is possible but 

challenging due to the occlusion



a  point  in  the  flow 
field — the counterpart of 

a pixel  in the output LIC image

d( ρ(τ) ) / d τ = υ( ρ(τ) )

ρ(τ+∆τ) = ρ(τ) + ∫ττ +∆τ υ(ρ(τ))dτ

locate a  set of
pixels   hit   by

the  streamline

index the input 
noise   for   the 
texture   values

obtain   the  value  of 
the target pixel in the LIC 

image  via  texture convolution

 Pipelineυ( ρ(τ) )
ρ(τ + dτ)

ρ(τ)

dτ

∑ ( texture[i] × weight[i] )
∑ weight[i]

weighting  is governed 
by   a   low-pass filter 

LIC



IBFV

Image source: van Wijk

http://www.win.tue.nl/~vanwijk/ibfv/



Texture-based Methods on Surfaces

Surface LIC (Detlev Stalling, ZIB, Germany)

IBFVS ISA



Volumetric Texture
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http://cs.swan.ac.uk/~csbob/te
aching/csM07-vis/

Arrows vs. Streamlines vs. Textures
Streamlines: selective
Arrows: simple

Textures: 
2D-filling





Vector Field Visualization:
Feature-based

Goal: how to compute Jacobian of flow; know what features in vector fields are of 
interest; what are the common physical features; how to use information of Jacobian to 
extract some of the relevant features.



What features are in flows?

Features are highly application dependent 
• Non-topology (physics-based)
• Topology



Physics-based Feature Extraction

Their computation is mostly local



Vector Field Gradient
• Consider a vector field 

�𝑑𝑑𝐱𝐱
𝑑𝑑𝑑𝑑 = 𝑉𝑉 𝐱𝐱 = 𝒇𝒇 𝑥𝑥,𝑦𝑦, 𝑧𝑧 =

𝑓𝑓𝑥𝑥
𝑓𝑓𝑦𝑦
𝑓𝑓𝑧𝑧

• Its gradient is 

𝛻𝛻𝑉𝑉 =

𝜕𝜕𝑓𝑓𝑥𝑥
𝜕𝜕𝑥𝑥

𝜕𝜕𝑓𝑓𝑥𝑥
𝜕𝜕𝑦𝑦

𝜕𝜕𝑓𝑓𝑥𝑥
𝜕𝜕𝑧𝑧

𝜕𝜕𝑓𝑓𝑦𝑦
𝜕𝜕𝜕𝜕

𝜕𝜕𝑓𝑓𝑦𝑦
𝜕𝜕𝑦𝑦

𝜕𝜕𝑓𝑓𝑦𝑦
𝜕𝜕𝑧𝑧

𝜕𝜕𝑓𝑓𝑧𝑧
𝜕𝜕𝜕𝜕

𝜕𝜕𝑓𝑓𝑧𝑧
𝜕𝜕𝑦𝑦

𝜕𝜕𝑓𝑓𝑧𝑧
𝜕𝜕𝑧𝑧

It is also called the Jacobian matrix of the vector field.
Many feature detection for flow data relies on Jacobian.



What is the Jacobian of the following vector field?

𝑉𝑉 = �
𝑣𝑣𝑥𝑥 = −𝑦𝑦

𝑣𝑣𝑣𝑣 =
1
2
𝑥𝑥



What is the Jacobian of the following vector field?

𝑉𝑉 = �
𝑣𝑣𝑥𝑥 = −𝑦𝑦

𝑣𝑣𝑣𝑣 =
1
2
𝑥𝑥 𝛻𝛻𝑉𝑉 =

0 −1
1
2

0



What is the Jacobian of the following vector field?

𝑉𝑉 = �𝑣𝑣𝑥𝑥 = 10𝑥𝑥 + 10𝑦𝑦 + 12340
𝑣𝑣𝑣𝑣 = 12𝑥𝑥 − 19𝑦𝑦 − 12000



What is the Jacobian of the following vector field?

𝑉𝑉 = �𝑣𝑣𝑥𝑥 = 10𝑥𝑥 + 10𝑦𝑦 + 12340
𝑣𝑣𝑣𝑣 = 12𝑥𝑥 − 19𝑦𝑦 − 12000 𝛻𝛻𝑉𝑉 = 10 10

12 −19



Divergence and Curl
• Divergence measures the magnitude of outward flux through 

a small volume around a point

𝑑𝑑𝑑𝑑𝑑𝑑 𝑉𝑉 = 𝛻𝛻 � 𝑉𝑉 =
𝜕𝜕𝑓𝑓𝑥𝑥
𝜕𝜕𝑥𝑥

+
𝜕𝜕𝑓𝑓𝑦𝑦
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝑓𝑓𝑧𝑧
𝜕𝜕𝑧𝑧

𝛻𝛻 =
𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕
𝜕𝜕𝑦𝑦

𝜕𝜕
𝜕𝜕𝑧𝑧

• Curl- describes the infinitesimal rotation around a point

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑉𝑉 = 𝛻𝛻 × 𝑉𝑉 =
𝜕𝜕𝑓𝑓𝑧𝑧
𝜕𝜕𝑦𝑦

−
𝜕𝜕𝑓𝑓𝑦𝑦
𝜕𝜕𝜕𝜕

𝜕𝜕𝑓𝑓𝑥𝑥
𝜕𝜕𝜕𝜕

−
𝜕𝜕𝑓𝑓𝑧𝑧
𝜕𝜕𝑥𝑥

𝜕𝜕𝑓𝑓𝑦𝑦
𝜕𝜕𝑥𝑥

−
𝜕𝜕𝑓𝑓𝑥𝑥
𝜕𝜕𝑦𝑦

𝛻𝛻 � (𝛻𝛻 × 𝑉𝑉) = 0
𝛻𝛻 × (𝛻𝛻𝛻) = 0



Divergence and Curl
• Divergence measures the magnitude of outward flux through 

a small volume around a point

𝑑𝑑𝑑𝑑𝑑𝑑 𝑉𝑉 = 𝛻𝛻 � 𝑉𝑉 =
𝜕𝜕𝑓𝑓𝑥𝑥
𝜕𝜕𝑥𝑥
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𝜕𝜕
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• Curl describes the infinitesimal rotation around a point

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑉𝑉 = 𝛻𝛻 × 𝑉𝑉 =
𝜕𝜕𝑓𝑓𝑧𝑧
𝜕𝜕𝑦𝑦

−
𝜕𝜕𝑓𝑓𝑦𝑦
𝜕𝜕𝜕𝜕

𝜕𝜕𝑓𝑓𝑥𝑥
𝜕𝜕𝜕𝜕

−
𝜕𝜕𝑓𝑓𝑧𝑧
𝜕𝜕𝑥𝑥

𝜕𝜕𝑓𝑓𝑦𝑦
𝜕𝜕𝑥𝑥

−
𝜕𝜕𝑓𝑓𝑥𝑥
𝜕𝜕𝑦𝑦

𝛻𝛻 � (𝛻𝛻 × 𝑉𝑉) = 0
𝛻𝛻 × (𝛻𝛻𝛻) = 0



Divergence and Curl
• Divergence- measures the magnitude of outward flux through 

a small volume around a point

𝑑𝑑𝑑𝑑𝑑𝑑 𝑉𝑉 = 𝛻𝛻 � 𝑉𝑉 =
𝜕𝜕𝑓𝑓𝑥𝑥
𝜕𝜕𝑥𝑥

+
𝜕𝜕𝑓𝑓𝑦𝑦
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝑓𝑓𝑧𝑧
𝜕𝜕𝑧𝑧

𝛻𝛻 =
𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕
𝜕𝜕𝑦𝑦

𝜕𝜕
𝜕𝜕𝑧𝑧

• Curl- describes the infinitesimal rotation around a point

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑉𝑉 = 𝛻𝛻 × 𝑉𝑉 =
𝜕𝜕𝑓𝑓𝑧𝑧
𝜕𝜕𝑦𝑦

−
𝜕𝜕𝑓𝑓𝑦𝑦
𝜕𝜕𝜕𝜕

𝜕𝜕𝑓𝑓𝑥𝑥
𝜕𝜕𝜕𝜕

−
𝜕𝜕𝑓𝑓𝑧𝑧
𝜕𝜕𝑥𝑥

𝜕𝜕𝑓𝑓𝑦𝑦
𝜕𝜕𝑥𝑥

−
𝜕𝜕𝑓𝑓𝑥𝑥
𝜕𝜕𝑦𝑦

𝛻𝛻 � (𝛻𝛻 × 𝑉𝑉) = 0
𝛻𝛻 × (𝛻𝛻𝛻) = 0

Both are local computation!



Consider a 2D Steady Vector Fields
• Assume a 2D steady piecewise linear vector field 

�𝑑𝑑𝐱𝐱
𝑑𝑑𝑑𝑑 = 𝑉𝑉 𝐱𝐱 = 𝒇𝒇 𝑥𝑥,𝑦𝑦 =

𝑓𝑓𝑥𝑥
𝑓𝑓𝑦𝑦

= 𝑎𝑎𝑥𝑥 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐
𝑑𝑑𝑑𝑑 + 𝑒𝑒𝑒𝑒 + 𝑓𝑓

• Its Jacobian is 

𝛻𝛻𝛻𝛻 =

𝜕𝜕𝑓𝑓𝑥𝑥
𝜕𝜕𝜕𝜕

𝜕𝜕𝑓𝑓𝑥𝑥
𝜕𝜕𝑦𝑦

𝜕𝜕𝑓𝑓𝑦𝑦
𝜕𝜕𝜕𝜕

𝜕𝜕𝑓𝑓𝑦𝑦
𝜕𝜕𝑦𝑦

= 𝑎𝑎 𝑏𝑏
𝑑𝑑 𝑒𝑒

• Divergence is 𝑎𝑎 + 𝑒𝑒
• Curl is −(b − d)

Given a vector field defined on a discrete mesh, it is important 
to compute the coefficients a, b, c, d, e, f for later analysis.



What are the divergence and curl of the following vector field?

𝑉𝑉 = �
𝑣𝑣𝑥𝑥 = −𝑦𝑦

𝑣𝑣𝑣𝑣 =
1
2
𝑥𝑥 𝛻𝛻𝑉𝑉 =

0 −1
1
2

0



What are the divergence and curl of the following vector field?

𝑉𝑉 = �
𝑣𝑣𝑥𝑥 = −𝑦𝑦

𝑣𝑣𝑣𝑣 =
1
2
𝑥𝑥 𝛻𝛻𝑉𝑉 =

0 −1
1
2

0

𝑑𝑑𝑑𝑑𝑑𝑑 𝑉𝑉 =
𝜕𝜕𝑓𝑓𝑥𝑥
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝑓𝑓𝑦𝑦
𝜕𝜕𝜕𝜕

= 0 + 0 = 0

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑉𝑉 = −
𝜕𝜕𝑓𝑓𝑥𝑥
𝜕𝜕𝑦𝑦

−
𝜕𝜕𝑓𝑓𝑦𝑦
𝜕𝜕𝑥𝑥

= −(−1 −
1
2

) =
3
2



What are the divergence and curl of the following vector field?

𝑉𝑉 = �
𝑣𝑣𝑥𝑥 = 𝑥𝑥 + 2𝑦𝑦 + 𝑧𝑧 + 0.5
𝑣𝑣𝑣𝑣 = 𝑥𝑥 − 3𝑧𝑧 − 1
𝑣𝑣𝑣𝑣 = −𝑦𝑦 + 𝑧𝑧 + 2



What are the divergence and curl of the following vector field?

𝛻𝛻𝑉𝑉 =
1 2 1
1 0 −3
0 −1 1

𝑉𝑉 = �
𝑣𝑣𝑥𝑥 = 𝑥𝑥 + 2𝑦𝑦 + 𝑧𝑧 + 0.5
𝑣𝑣𝑣𝑣 = 𝑥𝑥 − 3𝑧𝑧 − 1
𝑣𝑣𝑣𝑣 = −𝑦𝑦 + 𝑧𝑧 + 2



What are the divergence and curl of the following vector field?

𝑉𝑉 = �
𝑣𝑣𝑥𝑥 = 𝑥𝑥 + 2𝑦𝑦 + 𝑧𝑧 + 0.5
𝑣𝑣𝑣𝑣 = 𝑥𝑥 − 3𝑧𝑧 − 1
𝑣𝑣𝑣𝑣 = −𝑦𝑦 + 𝑧𝑧 + 2

𝛻𝛻𝑉𝑉 =
1 2 1
1 0 −3
0 −1 1

𝑑𝑑𝑑𝑑𝑑𝑑 𝑉𝑉 = 𝛻𝛻 � 𝑉𝑉 =
𝜕𝜕𝑓𝑓𝑥𝑥
𝜕𝜕𝑥𝑥

+
𝜕𝜕𝑓𝑓𝑦𝑦
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝑓𝑓𝑧𝑧
𝜕𝜕𝑧𝑧

= 1 + 0 + 1 = 2

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑉𝑉 = 𝛻𝛻 × 𝑉𝑉 =
𝜕𝜕𝑓𝑓𝑧𝑧
𝜕𝜕𝑦𝑦

−
𝜕𝜕𝑓𝑓𝑦𝑦
𝜕𝜕𝜕𝜕

𝜕𝜕𝑓𝑓𝑥𝑥
𝜕𝜕𝜕𝜕

−
𝜕𝜕𝑓𝑓𝑧𝑧
𝜕𝜕𝑥𝑥

𝜕𝜕𝑓𝑓𝑦𝑦
𝜕𝜕𝑥𝑥

−
𝜕𝜕𝑓𝑓𝑥𝑥
𝜕𝜕𝑦𝑦



What are the divergence and curl of the following vector field?

𝑉𝑉 = �
𝑣𝑣𝑥𝑥 = 𝑥𝑥 + 2𝑦𝑦 + 𝑧𝑧 + 0.5
𝑣𝑣𝑣𝑣 = 𝑥𝑥 − 3𝑧𝑧 − 1
𝑣𝑣𝑣𝑣 = −𝑦𝑦 + 𝑧𝑧 + 2

𝛻𝛻𝑉𝑉 =
1 2 1
1 0 −3
0 −1 1

𝑑𝑑𝑑𝑑𝑑𝑑 𝑉𝑉 = 𝛻𝛻 � 𝑉𝑉 =
𝜕𝜕𝑓𝑓𝑥𝑥
𝜕𝜕𝑥𝑥

+
𝜕𝜕𝑓𝑓𝑦𝑦
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝑓𝑓𝑧𝑧
𝜕𝜕𝑧𝑧

= 1 + 0 + 1 = 2

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑉𝑉 = 𝛻𝛻 × 𝑉𝑉 =
𝜕𝜕𝑓𝑓𝑧𝑧
𝜕𝜕𝑦𝑦

−
𝜕𝜕𝑓𝑓𝑦𝑦
𝜕𝜕𝜕𝜕

𝜕𝜕𝑓𝑓𝑥𝑥
𝜕𝜕𝜕𝜕

−
𝜕𝜕𝑓𝑓𝑧𝑧
𝜕𝜕𝑥𝑥

𝜕𝜕𝑓𝑓𝑦𝑦
𝜕𝜕𝑥𝑥

−
𝜕𝜕𝑓𝑓𝑥𝑥
𝜕𝜕𝑦𝑦

= −1 − −3 , 1 − 0, 1 − 2 = [2, 1,−1]

vorticity vector!!



Examples of Divergence and Curl of 
2D Vector Fields

Divergence and curl of a vector field
Rainbow color coding is used.

Examples of vector-valued data reduction!



Volume rendering of vorticity in various flows (images from Google images)



Jacobian and its derived physical quantities can 
be applied to the extraction of certain physics-
based features.



Vortices

There is NO unified definition of vortices!!!!



ource:  
ttp://www.onera.fr/cahierdelabo/english/aerod_ind03.htm

Post et al. STAR report 2003

Blood Flow Analysis [Köhler et al. 2013]

Vortices



Vortices in turbulent flows



Typical vortex detection techniques

• Region-based – using one of the following attributes and some ad-hoc 
thresholds

𝑱𝑱 = 𝐒𝐒 + 𝐑𝐑, 𝐒𝐒 =
1
2
𝑱𝑱 + 𝑱𝑱T , 𝐑𝐑 =

1
2
𝑱𝑱 − 𝑱𝑱T

𝑄𝑄 =
1
2

𝐑𝐑 𝟐𝟐 − 𝐒𝐒 𝟐𝟐

𝜆𝜆2 is the second largest eigenvalue of the tensor 𝐒𝐒𝟐𝟐 + 𝐑𝐑𝟐𝟐

Q-criterion

Vorticity



Typical vortex detection techniques

• Line-based – detecting vortex cores

PV-parallel vector operator
𝐯𝐯||𝛻𝛻𝐯𝐯 � 𝐯𝐯

the acceleration is parallel to the velocity

the Jacobian matrix has a complex pair of 
eigenvalues



Typical vortex detection techniques

• Line-based – detecting vortex cores

PV-parallel vector operator
𝐯𝐯||𝛻𝛻𝐯𝐯 � 𝐯𝐯

the acceleration is parallel to the velocity

• Geometric-based – finding returning streamline using winding angles

the Jacobian matrix has a complex pair of 
eigenvalues



Recent vortex detection techniques

Vortex patches

Velocity Data Binary 
classification

Objectivity-based – extract optimal reference frame

Vortex boundary extraction

Machine learning approach

[Elliptic LCS, Haller et al. 2016]

[Berenjkoub et al., IEEE VIS 2020]

[Guenther et al., SIGGRAPH 2017]



Hairpin vortex extraction and visualization

[Zafar et al. IEEE VIS 2023]
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Hairpin vortex extraction and visualization

[Zafar et al. IEEE VIS 2023]



Separation Flows

Separation flow on delta wing surface [Tricoche et al. AIAA 2004]



Separation Flows



Separation and attachment line detection is again based on the 
parallel vector operator (in 2D)

PV-parallel vector operator
𝐯𝐯||𝛻𝛻𝐯𝐯 � 𝐯𝐯

both eigen-values of the Jacobian 
matrix are real number, leading to real 
eigen-vectors

[Peikert and Roth, IEEE VIS 99]



Coherent structures in turbulent flows

Images from [Nguyen et al, IEEE VIS 2020, TVCG2022]
Coherent structures in turbulent flows are in different scales and tangled in space and time



Helmholtz decomposition

𝑉𝑉 = 𝛻𝛻𝛻𝛻 + 𝛻𝛻 × 𝐴𝐴

𝛻𝛻𝛻𝛻 is the gradient of a scalar field 𝜑𝜑

Curl (or rotation) free Divergence free

Divergence free (or no-solenoidal field)



Helmholtz decomposition

𝑉𝑉 = 𝛻𝛻𝛻𝛻 + 𝛻𝛻 × 𝐴𝐴

Hodge decomposition
𝑉𝑉 = 𝛻𝛻𝛻𝛻 + 𝛻𝛻 × 𝐴𝐴 + 𝛾𝛾

Curl (or rotation) free Divergence free

Curl (or 
rotation) free

Divergence 
free Harmonic



Example: Helmholtz decomposition

curl-free divergence-freegeneral



Additional Materials

Günther, Tobias, and Holger Theisel. "The state of the art in vortex 
extraction." In Computer Graphics Forum, vol. 37, no. 6, pp. 149-173. 2018.

Bhatia, Harsh, Gregory Norgard, Valerio Pascucci, and Peer-Timo Bremer. 
"The Helmholtz-Hodge decomposition—a survey." IEEE Transactions on 
visualization and computer graphics 19, no. 8 (2012): 1386-1404.
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