What we have learned so far...

e Scalar field visualization
— Describe scalar gquantities (0D)
— Methods: direct, geometric-based, feature-based

* Vector field visualization
— Describe directional information (1D)

— Methods: direct, geometric-based, texture-based,
feature-based
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Tensor Field Visualization
Introduction

Goal: understand important concepts of tensors and their basic processing



One Simple Example of Tensor

lllustration of a symmetric second-order tensor as a deformation
tensor. The tensor is uniquely determined by its action on all unit
vectors, represented by the circle in the left image. The eigenvector
directions are highlighted as black arrows.

In this example one eigenvalue (A2) is negative. Therefore, all vectors
are mirrored at the axis spanned by eigenvector el. The eigenvectors
are the directions with strongest normal deformation.



One Simple Example of Tensor

Tensor describes certain higher-order property
of the space that both scalar and vector-valued
cannot




Definition

 Asecond-order tensor T is defined as a bilinear
function from two copies of a vector space V into the

space of real numbers
T-V XV = R inner product



Definition

* Or: asecond-order tensor T as a linear operator that

maps any vector v €V onto another vector w € V
TV -V

* The definition of a tensor as a linear operator is
prevalent in physics. XA



Definition | \l/
* Tensors are generally represented with respect to a
specific Cartesian basis {b4, ... b,;} of the vector space V.

* |n this case, the tensor is uniquely defined by its
components (entries) and is represented as a matrix.



Definition

e Considering definition (1), we have
Twow)=w!l-M-v VYv,weV
wherev = v,by + ---+v,, b, w = wyby + --- +w,, b,

* For definition (2), we have w =T(v) =M - v,



Applications

* Tensors describe entities that scalars and
vectors cannot describe sufficiently.
— continuum mechanics,
— medicine,
— geology,
— astrophysics,
— architecture,
— and many more



Tensors in Mechanical Engineering

Stress tensors describe internal forces or
stresses that act within deformable
bodies as reaction to external forces

(a) External forces f are applied to a
deformable body. Reacting forces
T,,| are described by a three-
(a) M = lrxy ay ’l'yZ‘ dimensional stress tensor that is
Txz Tyz 0, ] composed of three normal stresses
o and three shear stresses .




Tensors in Mechanical Engineering

Stress tensors describe internal forces or
stresses that act within deformable
bodies as reaction to external forces

(a) External forces f are applied to a
deformable body. Reacting forces
are described by a three-
dimensional stress tensor that is
composed of three normal stresses
o and three shear stresses 7.

(b) Given a surface normal n of some
cutting plane, the stress tensor maps n
to the traction vector t, which describes
the internal forces that act on this plane
(normal and shear stresses).




Tensors in Mechanical Engineering

Strain tensor - related to the The Strain Tensor
deformation of a body due to

stress by the material’s

constitutive behavior. {

http://enpub.fulton.asu.edu/concrete/el
asticity2_95/sld006.htm



Tensors in Mechanical Engineering

Strain tensor - related to the
deformation of a body due to
stress by the material’s
constitutive behavior.

Deformation gradient tensor —
gradient of displacements of
material points (think of Jacobian)

The strain tensor is a normalized
measure based on the -
deformation gradient tensor (the
symmetric part of the Jacobian)

The Strain Tensor

http://enpub.fulton.asu.edu/concrete/el
asticity2_95/sld006.htm
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Diffusion Tensor Imaging (DTI)

* For medical applications, diffusion tensors
describe the anisotropic diffusion behavior of
water molecules in tissue.

 Here, the molecule motion is driven by the
Brownian motion and not the concentration

gradient.




Diffusion Tensor Imaging (DTI)

For medical applications, diffusion tensors
describe the anisotropic diffusion behavior of
water molecules in tissue.

Here, the molecule motion is driven by the
Brownian motion and not the concentration
gradient.

The tensor contains the following information
about the diffusion: its strength depending on
the direction and its anisotropy

It is positive semi-definite and symmetric.

Note that in practice the positive
definiteness of diffusion tensors can be
violated due to measurement noise.




Tensors in Medicine

* Diffusion tensors are not the only type
of tensor that occur in the medical
context.

* |n the context of implant design, stress
tensors result from simulations of an
implant’s impact on the distribution of
physiological stress inside a bone.

[DICK et al. Vis09]



Tensors in Medicine

* Diffusion tensors are not the only type
of tensor that occur in the medical
context.

* |n the context of implant design, stress
tensors result from simulations of an
implant’s impact on the distribution of
physiological stress inside a bone.

[DICK et al. Vis09]

* An application related to strain tensors
is used in elastography where MRI, CT |
or ultrasound is used to measure
elastic properties of soft tissues.
Changes in the elastic properties of
tissues can be an important hint to
cancer or other diseases

[SOSA-CABRERA et al., 2009]



Tensors in Geometry

Curvature tensors - change of surface normal in any given
direction

Metric tensors - relates a direction to distances and angles;
defines how angles and the lengths of vectors are measured
independently of the chosen reference frame
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Tensors in Image Analysis

* I[mage analysis

° Computer ViSiOn [Zhang et al, TVCG2007]



Some Math of Tensors



Definition (Recall)

* A second-order tensor T is defined as a bilinear
function from two copies of a vector space V into the

space of real numbers qﬁ.
e ®
T:-VXV->R [/
el

* Or: asecond-order tensor T as linear operator that

maps any vector v €V onto another vector w € V
TV -V

* The definition of a tensor as a linear operator is
prevalent in physics. L




Definition (Recall) 1 \l/
Tensors are generally represented with respect to a
specific Cartesian basis {b4, ... b,;} of the vector space V.

In this case, the tensor is uniquely defined by its
components (entries) and is represented as a matrix.

e Considering definition (1), we have
Twow)=w!l-M-v VYv,weV
wherev = v,by + ---+v,, b, w = wyby + --- +w,, b,

* For(2), wehave T(w) =M -v



Tensor Invariance P
/ |
* Some tensor properties are independent of specific

reference frames, i.e., they are invariant under coordinate
transformations.

* |nvariance qualifies tensors to describe physical processes
independent of the coordinate system.

 More precisely, the tensor components (entries in matrix)
change according to the transformation into another basis;
the characteristics (which ones?) of the tensor are
preserved. Consequently, tensors can be analyzed using
any convenient reference frame.

 Rotational invariant



Tensor Diagonalization

The tensor representation becomes especially simple if it can be
diagonalized.

The complete transformation of T from an arbitrary basis into the
eigenvector basis, is given by

A, 0 0
UTuT =0 A, 0
0 0 Ay

The diagonal elements A4, A,, A5 are the eigenvalues and U is the
orthogonal matrix that is composed of the eigenvectors, that is (e4,

€2, 63)

The diagonalization generally is computed numerically via singular
value decomposition (SVD).



Tensor Properties

* Symmetric Tensors. A tensor S is called symmetric if it
is invariant under permutations of its arguments

Sw,w)=Sw,v) VorweV

Tij = Tji, third-order Tiik = Tire = Tirj = Trij =



Tensor Properties

* Antisymmetric Tensors. A tensor A is called
antisymmetric or skew-symmetric if the sign flips when
two adjacent arguments are exchanged

A(lv,w) = -A(w,v) Yv,weV

a bl]_ [a c . S
[c d __[b d what is the implication of a and d?



Tensor Properties

* Traceless Tensors. Tensors T with zero trace, i.e.,
tr(T) = Y=y Ty, are called traceless.



Tensor Properties

* Positive (Semi-) Definite Tensors. A tensor T is called
positive (semi-) definite if

T.M.
T(U,U)>(Z)O vi-M-v>0 (v+0)
Their eigenvalues and their determinant are greater than zero.



Tensor Properties

Positive (Semi-) Definite Tensors. A tensor T is called
positive (semi-) definite if

T.M.
T(U,U)>(Z)O vi-M-v>0 (v+0)
Their eigenvalues and their determinant are greater than zero.

Negative (Semi-) Definite Tensors. A tensor T is called
negative (semi-) definite if

T(v,v) < (L)0

their eigenvalues are smaller than (smaller than or equal to) zero

vI-M-v<0 (v+0)

Indefinite Tensors. Each tensor that is neither positive
definite nor negative definite is indefinite.



Tensor Decompositions

* Symmetric/Antisymmetric Part. For non-symmetric
tensors T, the decomposition into a symmetric part S
and an antisymmetric part A is a common practice:

T=S+A4
where S =~ (T +TT), A= (T —T7)

3

d 1 6 0 y 1 0 T 0
3 2 (a_g T ) 2 (a_ T E)
1 [ Ouy Jug Ouy 1 [ Ouy Ju
2 (H T a—y) By 3 (? T a—y) . |
1 ou., Ouy 1 0 3uy O Straln tensor.
_5(¥+E) 5(3—1, a—) 5




Tensor Decompositions

* Symmetric/Antisymmetric Part. For non-symmetric
tensors T, the decomposition into a symmetric part S
and an antisymmetric part A is a common practice:

T=S+A4
where S =~ (T +TT), A= (T —T7)

* Physically, antisymmetric part contains rotational
information and the symmetric part contains
information about isotropic scaling and anisotropic
shear



Tensor Decompositions

e Stretch/Rotation. Another useful
decomposition of non-symmetric,
positive-definite tensors T (e.g.,
deformation gradient tensors) is the
polar decomposition. It decomposes the ol jﬂ
transformation represented by T in a
two-stage process: a rotation R and a
right stretch U or a left stretch V

T'=R-U=V-R

* Atensor is called stretch if it is symmetric [cos) —sin(%)
and positive definite. A tensor is called 2 2

[ T
rotation if it is orthogonal with sin(z)  cos(z)
determinant equal to one. _ [0 —1]

1 0



Tensor Decompositions

* Shape/Orientation. Via eigen-analysis
symmetric tensors are separated into shape
and orientation.

— Here, shape refers to the eigenvalues and
orientation to the eigenvectors.

— Note that the orientation field is not a vector field
due to the bi-directionality of eigenvectors



Tensor Decompositions

* Isotropic/Anisotropic Part. Symmetric tensors
can be decomposed into an isotropic T, and an
anisotropic (deviatoric) part D

1
T = §tr(T)I + (T — Ti5p)




Tensor Decompositions

* Isotropic/Anisotropic Part. Symmetric tensors
can be decomposed into an isotropic T, and an
anisotropic (deviatoric) part D

1
T = §tr(T)I + (T — Ti5p)

* From a physical point of view, the isotropic part
represents a direction independent
transformation (e.g., a uniform scaling or uniform
compression); the deviatoric part represents the
distortion (with volume preservation)



Asymmetric Tensor Decomposition
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Second-order Tensor Field



Second-order Tensor Fields

* |n visualization, usually not only a single
tensor but a whole tensor field is of interest.

e [t can be considered as a function which
assigns a tensor at any given position in space.

we consider only second-order tensor which can be

represented in the form of matrices.



What are the Characteristics?

or what can be visualized...

* Scalar related
— Components (or individual entries)
— Determinant
— Trace
— Eigen-values

 Vector related

— Eigen-vectors



Tensor Interpolation

* Challenges

— Natural representation of the original data.

* This includes the preservation of central tensor properties (e.g.,
positive definiteness) and/or important scalar tensor invariants
(e.g., the determinant).

— Consistency.
* consistent with the topology of the original data.

— |nvariance.

* The resulting interpolation scheme needs to be invariant with
respect to orthogonal changes of the reference frame.

— Efficiency.

* The challenge is to design an algorithm that represents a tradeoff
between the criteria mentioned above and computational
efficiency.



Tensor Interpolation

(b)

Comparison of component-wise tensor interpolation (a) and linear interpolation of eigenvectors
and eigenvalues (b). Observing the tensors depicted by ellipses, the comparison reveals that the
separate interpolation of direction and shape is much more shape-preserving (b).



79908\,

(a) Linear interpolation of tensor components: (1 —¢)T; +tT>

7729380\,
Interpolations between two three-

(b) Riemannian interpolation: T,'/* . (T, "/2. 1, . 1,712yt . /2 dimensional positive-definite tensors T1
and T2. The interpolation results are

represented using superquadrics ((a)-(d)).
/7298 O\B%\\ .

The plots (e) show the behavior of four

(c) Log-Euclidean interpolation: exp((1 —¢)log(T;) +rlog(T>)) tensor invariants for the respective
interpolations: det(T), K1 =tr(T), K2 =

|ID|| and K3 =det(D/||D]||), where D is
// / ] the deviator of Tand | |.|| is the Frobenius
norm. Image courtesy Kindlmann et al.

(d) Geodesic-loxodrome 2007.
@ o e @
LK, K, / / /
K, det B

(e)



Challenges in Visualization

Hard to achieve intuitive visualization

— Tensors represent diverse quantities, ranging from the curvature
of a surface to the diffusion of water molecules in tissue. There
is no universal intuition similar to, e.g., arrows for vectors.

Multi-variate nature makes it challenging.

— The multi-variate nature of tensors affects all stages of the
visualization pipeline, making each of them a challenging task,
including interpolation, segmentation, and visualization.

Perception issue: clutter and occlusion

Highly application-dependent



Overview of the Visualization
Techniques for Tensors



Direct Methods

* Color plots or DVR for scalar
properties

* Line field visualization for
vector valued properties for
s.p.d. tensor fields
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Geometric-Based Methods

* Tensor lines and Hyper-streamlines

— Integral curves of eigen-vector fields




Texture-based Method




Feature-based Method

* Topology or other invariants

[Auer and Hotz EuroVis11] [Zhang et al. TVCG 2007] [Zheng and Pang, Vis04]



