Tensor Field Visualization |



Recall: One Simple Example of Tensor

Tensor describes certain higher-order property
of the space that both scalar and vector-valued
cannot




Definition

* A second-order tensor T is defined as a bilinear
function from two copies of a vector space V into the
space of real numbers

T:V XV >R

 Or: asecond-order tensor T as linear operator that
maps any vector v €V onto another vector w € V

T:V -V



Definition

 Or: asecond-order tensor T as linear operator that
maps any vector v €V onto another vector w € V

T:V -V

e The definition of a tensor as a linear operator (the
second definition) is prevalent in physics.




Tensors in Mechanical Engineering

Stress tensors describe internal forces or
stresses that act within deformable
bodies as reaction to external forces

(a) External forces f are applied to a
deformable body. Reacting forces
are described by a three-
dimensional stress tensor that is
composed of three normal stresses s
and three shear stresses .

(b) Given a surface normal n of some
cutting plane, the stress tensor maps n
to the traction vector t, which describes
the internal forces that act on this plane
(normal and shear stresses).




Tensor Properties

e Symmetric Tensors. A tensor S is called symmetric if it
is invariant under permutations of its arguments

S(vy,w)=Sw,v) Vv weV

e Antisymmetric Tensors. A tensor A is called
antisymmetric or skew-symmetric if the sign flips when
two adjacent arguments are exchanged

Alv,w) = —A(w,v) Vo,w eV

* Traceless Tensors. Tensors T with zero trace, i.e.
tr(T) = Y=, Ty, are called traceless.



Tensor Properties

e Positive (Semi-) Definite Tensors. A tensor T is called
positive (semi-) definite if for all v

T(v,v) > (=)0

Their eigenvalues and their determinant are greater than zero.

 Negative (Semi-) Definite Tensors. A tensor T is called
negative (semi-) definite if for all v

rCv )v €40

their eigenvalues are smaller than (smaller than or equal to) zero

* Indefinite Tensors. Each tensor that is neither positive
definite nor negative definite is indefinite.



Tensor Decomposition

Symmetric/Antisymmetric
Stretch/Rotation
Isotropic/Anisotropic
Shape/Orientation

Asymmetric tensor decomposition
Others (e.g., eigen-modes)



What are the Characteristics of Tensors?

or what can be visualized...

e Scalar related
— Components (or individual entries)
— Determinant
— Trace

— Eigen-values

e Vector related

— Eigen-vector fields



The Data: Second-order Tensor Fields

e In visualization, usually not only a single
tensor but a whole tensor field is of interest.

e |t can be considered as a function which
assigns a tensor at any given position in space.

From now on, we consider only second-order tensor

which can be represented in the form of matrices.



Visualizing tensor fields is challenging

—_

e Hard to achieve intuitive visualization

— Context

* Highly application-dependent
e Multi-variate nature makes it challenging —

e Difficulty in preserving tensor characteristics

during interpolation —  Technical

e Perception issue: clutter and occlusion



Techniques for tensor field visualization

Direct methods

Geometric-based methods

Texture-based methods

Feature-based methods



Techniques for tensor field visualization

Direct methods
\ Scalar related

Components (or
individual entries)
Determinant
Trace
Eigen-values

Vector related
Eigen-vector fields




Techniques for tensor field visualization

Scalar related
Components (or
individual entries)
Determinant
Trace
Eigen-values

Geometric-based method

Vector related
Eigen-vector fields




Techniques for tensor field visualization

Scalar related
Components (or
individual entries)
Determinant
Trace
Eigen-values
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Texture-based methods Ntor related
Eigen-vector fields




Techniques for tensor field visualization

Scalar related
Components (or
individual entries)
Determinant
Trace
Eigen-values

Vector related
Eigen-vector fields

Feature-based methods /




DIRECT METHODS:
PSEUDO-COLORS AND GLYPHS



Pseudo-Colors

* Any derived scalar properties of the tensor
can be mapped to color plots (or DVR in 3D)



Pseudo-Colors

* Any derived scalar properties of the tensor
can be mapped to color plots (or DVR in 3D)

e Assume a tensor T is defined at each vertex

— Components (or entries) T
— Tensor magnitude

1 2
ITllr = |5 ) T2

N
— Trace, tr(T) = ), T;. If Tis the Jacobian of a flow
field, this tells how much divergence it has.




Pseudo-Colors

* Any derived scalar properties of the tensor
can be mapped to color plots (or DVR in 3D)

e Assume a tensor T is defined at each vertex

g ik

— Components (or entries) Tl-j\
— Tensor magnitude

1
ITllr = |5 ) T2

N
— Trace, tr(T) = ), T;. If Tis the Jacobian of a flow
field, this tells how much divergence it has.




Pseudo-Colors

Divergence and curl of a vector field



Pseudo-Colors

e Scalar properties of tensor (continued)
— Determinant
— Eigen-values
e Te = Ae

e Can be used to compute the determinant for
diagonalizable tensor



Pseudo-Colors

Scalar properties of tensor (continued)
— Determinant
— Eigen-values

e Te = Ae

e Can be used to compute the determinant for
diagonalizable tensor

Anisotropy direction
mapped to hue +
strength mapped to
anisotropy of the symmetric tensor, e.g., saturation

diffusion tensor used in medical applications

 More importantly, it can be used to study the



Line plots

Line field visualization for
vector valued properties (e.g.,
eigen-vectors) for s.p.d.
tensor fields

i i i o e ans i S o T, T, T, T, Wy,

Ty, Ty, T, T, Tm, e e i A i gl o

T o o o e e e o iy Ty Ty g, g, o,

M T M Ty T e S S S e i g e

T T T e g o e e v e e T, T
S T T T T T e o T e ey Ty Y, Yy w, Twy

T, T, T, Tme e ey e S e w2
T e T e, e, T, T e e R e e

P e
P e e e e e T T U N
PV A i e e e e T T T L

T e e ey e T e e e e e
T e T e T T, e e e e
T N N TR T, T e e et e S S

AP AP R
P
P e e
P
P e
T T e m
e
P S
T, T T e Temy S — —
T L ]
T e e e e
T T R e e T e
e e L
T i
T
T T e

A L L
VAV AV AV A AV AV A TN Y

s
rd

NONONOR N N N e e e
R
L T
T T T T e T
R T
T T
NN N TR T e e e

F A et e e
ViV A A e
VA AV P P g gy
P A P e gy
VAV A S e
PV P P P R
PV P P A g g



GLYPH-BASED METHODS



GLYPH DESIGN

A glyph is the visual representation of a piece of data where the attributes of
a graphical entity (geometry) are dictated by one or more attributes of a
data record. [From Wikipedia]



Glyphs for Tensors

e 2D/3D shapes: better visualization of the local property of
tensor, such as anisotropy

> OO —Q

Orientation Shape -> anisotropy

The glyphs for visualizing the anisotropy of a symmetric tensor



Glyphs for Tensors

e 2D/3D shapes: better visualization of the local property of
tensor, such as anisotropy

= oDE o= f
SOO—0P

3D

The glyphs for visualizing the anisotropy of a symmetric tensor



Glyphs for Tensors

Consider symmetric tensors at this moment. They have real
eigenvalues and orthogonal eigenvectors. Therefore, they can be
intuitively represented as ellipsoids.




Glyphs for Tensors

Consider symmetric tensors at this moment. They have real

eigenvalues and orthogonal eigenvectors. Therefore, they can be
intuitively represented as ellipsoids.

Three types of anisotropy:

e linear anisotropy sl

e planar anisotropy £V

« isotropy (spherical) L/



Glyphs for Tensors

Consider symmetric tensors at this moment. They have real
eigenvalues and orthogonal eigenvectors. Therefore, they can be

intuitively represented as ellipsoids.

Three types of anisotropy:

e linear anisotropy

Anisotropy measure
[Westin et al., 97]
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Ellipsoidal glyphs provide nice symmetry and smoothness
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Problem of ellipsoidal glyphs:
e Shape is poorly recognized in projected view

8 different ellipsoids

CLOULUWULUOLU OO O



Problem of ellipsoidal glyphs:
e Shape is poorly recognized in projected view

8 different ellipsoids but in two different views (two rows)
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Two Types of Glyphs for the Barycentric Space

Problem of cuboid glyphs Problem of cylinder glyphs
* Missing symmetry * Seamatc¢; = ¢y,
e Doesn’t give the sense of smooth e Losing symmetric closetocg =1




Combining advantages: superquadrics Cylinders for the linear and planar cases,
Superquadrics with Z as primary axis spheres for the spherical case, and cuboids

for intermediate cases with smooth blending
in between.

Combine
LS X X

bestcases W wee

The general strategy is that the edge on the
NN ® e glyph surface signifies the anisotropy.
il When two eigenvalues are equal, the
indeterminacy of the eigen-vector can be
conveyed with a circular glyph cross-
section.




Combining advantages: superquadrics
Superquadrics with Z as primary axis

Combine
LS X X

bestcases W wee
NN maee

cos*@sinf @

q,(0,0) = | sin*@sinf @
cosP @

0<60<2m,0<0<2m

Similarly, one can define q,.(6, )

Barr, 1981

Superquadrics for some pairs (a, )

Shaded: sub-range used for glyphs




Superquadric glyphs (Kindlmann): Given ¢;, ¢, ¢4
e Compute a base superquadric using an edge sharpness value y:

(6,0) = ifeL < ¢t 4,0, M witha = (1-¢,)" and p = (1~ )"
T i 2 00 qu(0, 0 witha = (1— ) and = (1 - c,)”

e Scale with ¢, Cp, Cs along X, y, Z and rotate into eigenvector frame




mple)




Superquadric Glyphs for Symmetric Second-Order Tensors
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regular superquadric hybrid superquadric
(a.B) = (0.4) {a.B.p) =(0.4.2)

Extended to general second-order symmetric tensors that can be indefinite (hyperbolic)

[Schultz and Kindlmann, Vis10]



Color map R
G

B

el a\\ .'
WM

This is half of the brain, looking at the posterior part of the
corpus callosum, which is the main bridge between the two
hemispheres. And with the superquadrics, you can see that
on the surface of the corpus callosum, the glyphs have
more of a planar component, but on the inside, they're
basically very linear.



Spherical Harmonic Glyphs




Spherical Harmonic Glyphs

2° bins

20



Spherical Harmonic Glyphs

Spherical Harmonic O R
Fourier series in spherical coordinates

‘ =1 [ ] . e ]
Original 42 harmoniecs 8? harmonics 122 harmonies ) ~ ' “
=2 *. ‘ L] ’ [ x.“ ®
- ‘ ‘ 1=3 ] (-] e ® [ ] B ]
16% harmonics  20% harmonies 242 harmonies * * * ’ * ” *
1=4*.*.*.‘.‘.*.*.*.*.




Spherical Harmonic Glyphs

The distribution of all fibers in the region can be
modeled as a set of spherical harmonic functions

and their coefficients
We perform a least-squares fitting of every segment in a
region to a function defined in terms of a set of spherical
harmonic: a cost K
N [B-1

K() = Z Z ¢iYi(On, dn) — Sn
n—1 | i=0

We solve by setting a derivative with respect to ¢ to 0 and
minimizing to get ¢;
Vi (67 ¢) - .YZ(Z+1)+m(0' 4)) - y{n(er (l))
B = L(L+2) + 1, the maximum number of harmonic
coefficients

2




Spherical Harmonic Glyphs

(b)
990 \\\\\oocceccrsssfsrsssseececcas
99NN\ VVo0o0ceccorrsissseaessssccas
99900\ V0000cccccccosseeeeecasscans
099900000 10000 eecreccceceeccecssanan
0000000000000 000000seeccccceee

superquadric glyphs spherical harmonic glyphs
trends present in the data. See the upper features: the glyph shape indicates vessel
left of the domain. volume/direction, while the glyph color indicates vessel

radius/direction

SH glyphs are better than superquadrics at showing anisotropy
and connectivity



GLYPH PACKING



Glyph Packing

Glyphs are placed at regular grids

[Kindlmann and Westin, Vis06]



Glyph Packing

Glyphs are packed in better locations

[Kindlmann and Westin, Vis06]



Requirements (ldeal Situation)

 No obvious patterns induced by the
underlying spatial discretization

 No gaps between glyphs
 No overlapping



Energy-based Particle Systems

e Basic pipeline
— Seeding based on some statistical property

— Force repelling *

e Each particle tries to push away its neighboring
particles

e This process should eventually converge to a stable
configuration.

— Rendering glyphs



Energy-based Particle Systems




Energy-based Particle Systems




Energy-based Particle Systems




Energy-based Particle Systems
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Energy-based Particle Systems
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Energy-based Particle Systems



Overall Pipeline

Initialize particle positions

Do the following until convergence

For each particle
Compute the accumulated force added by other particles
Determine a direction and velocity
Move this particle to the new location based on this vector



Computation of the
Energy

a is the glyph scaling factor

[Kindlmann and Westin, Vis06]

3.2 Tensor-based Potential Energy

The behavior of particles in our system is determined by the forces
acting upon them. The most important of these are the forces between
particles, which gives rise to the glyph packing. The inter-particle
forces are created by a potential energy field around each particle,
shaped by the local tensor value. The energy E,p, at position p, due to
the potential energy field around a particle at p;, is the composition of
,and ¢:

functions g, |-

o(1g(Yan)|) = ¢ (rap) (1)

Pa — Pb (2)
_b] Yab

L . (3)

(4)

(5)

Note that by construction, g inverts the transform that creates ellip-
soidal glyphs from spheres. Conceptually, g maps vectors y,p in the
field of anisotropic tensors to vectors X, In an isotropic space, in
which particles have a rotationally symmetric potential energy pro-
file ¢. O Donnell er al. also use the tensor inverse as a metric for
computing geodesics under diffusion tensor warping [30]. One way
to characterize the local tensor value D, is to sample the tensor field
at the midpoint between the two particles, which ensures symmetry
Eqp = Epg. In Equation 3, the factor of two in the denominator of g
allows mutually tangent glyphs to map to mutually tangent spheres of
radius 1/2, with unit distance between centers (relevant for the later
definition of ¢).



Computation of the Forces

R o(lg(Yap)|) = 0(rap)
e Yab = Pa—Pb §
« is the glyph scaling factor " igL Xgp = &Vap) = D%:*‘”’ :
Pa + Pb

[Kindlmann and Westin, Vis06]

Dn!; = D{

' 2
’J’Ef Fab = |xnb |

With the assumption of local tensor constancy, the force fg, on a
particle at p, from a particle at pp 1s (written as a column vector):

T /
dEab (I) (lxab‘) —1
- — 7Rl 8
( ) za‘xabl ab Yab { )

)

dY.ab

where (D_] )T = D! because diffusion tensors are symmetric. Note
that the force between two particles i1s not in general aligned with the
vector between them, which is an unusual property of our particle sys-
tem. This is analogous to how an object’s surface normals are trans-
formed by the inverse-transpose of the object transform, as is com-

monly used for instancing in ray-tracing [38].
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Improvement- Parallel Computation
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Original method considers all the particles in the domain



Improvement- Parallel Computation
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[Kim et al. GPGPUS5 2012]



Multithreaded (cont)

e Given the current bin B,

o Gather every particle in B, plus the immediate
surrounding bins

— This is a neighborhood

» For every particle p; in the bin B.

— For every particle P, in the neighborhood
o If distance from p. to p,<1.0
— sum the velocity and energy

- Advect p.

[Kim et al. GPGPUS 2012]



Multithreaded (cont.)

¢ e Process each
o °® particle in the
current bin
o O \\
O .
O Current Bin
o O

[Kim et al. GPGPUS 2012]



Multithreaded (cont.)

e Process each
particle in the
current bin

N

Current Particle

[Kim et al. GPGPUS 2012]



Multithreaded (cont.)

\

Ox%\\}‘

e SUM Energy
and Force

[Kim et al. GPGPUS 2012]



Multithreaded (cont.)

@
o« Move current
o °® particle
O

O

O

O

O
O

[Kim et al. GPGPUS 2012]



Multithreaded (cont.)

¢ e Process the
o °® next particle in
the current
o, bin.
- O
@)
o O

[Kim et al. GPGPUS 2012]



Multithreaded (cont)

'« While there are bins to be

() [ ] d
rocesse
D@
2 L For every particle p in the current
) °| e bin
o For every other particle in the
° neighborhood

— calculate force and energy

« Move the particle in the direction F

[Kim et al. GPGPUS 2012]



Multithreaded (cont)

o While there are bins to be
processed

+ For every particle p in the current
bin

o For every other particle in the
neighborhood

— calculate force and energy
« Move the particle in the direction F

[Kim et al. GPGPUS 2012]



Anisotro

py Sampling
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Fig. 5. (a) Voronoi cells resulting from the approximate distance function

defined by the metric in the sample points. The green Voronoi cell is en

example for a non-connected cell, having one orphan. Such orphans are

undesirable for the relaxation process. (b) Comparison of the various Voronoi

cells. The red lines show the boundaries of the standard Euclidean Voronoi

cells. The gray lines show the boundaries of the anisotropic Voronoi cells

with orphans as defined by Equation 8. Most of the lines are covered by the

blue lines, which represent the localized anisotropic Voronoi cells as defined

in Equation 9. The green line indicates the area to which the green Voronoi [Feng et al. TVCG2008]
cell is restricted. These examples are based on Labelle and Shewchuk [7].




Anisotropy Sampling

Anisotropic Voronoi cells resulting from the simplified distance

measure. The grid used for relaxation has a resolution of 512 x 512,

Fig. 7.

[Feng et al. TVCG2008]



Anisotropy Sampling

Fig. 15. Slice of a numerical simulation of a solid block with two forces Fig. 19. Mosaic-like image generated by our technique. The metric used
acting on the block, one pushing and one pulling force. This image shows for ellipse generation results from the gradient field of the blurred original
the tensor data as ellipses. The ellipses provide an idea about the directions 1image. The ellipses automatically align with edges with high gradients and
of contraction or expansion inside the material. thus emphasize image structure.

[Feng et al. TVCG2008]



Glyph Packing in Bounded Regions

[Chen et al. Vis11]



Additional Readings

G. Kindlmann. “Superquadric Tensor Glyphs”. In Proceedings IEEE TVCG/EG Symposium on
Visualization 2004, pages 147-154, May 2004.

G. Kindlmann and C-F Westin. “Diffusion Tensor Visualization with Glyph Packing." IEEE Trans. on
Visualization and Computer Graphics, 12(5):1329-1336, October 2006.

T. Schultz, G. L. Kindlmann. “Superquadric Glyphs for Symmetric Second-Order Tensors”. IEEE Trans.
on Visualization and Computer Graphics, Nov/Dec 2010, 16(6):1595-1604.

Mark Kim, Guoning Chen, and Charles D. Hansen. Dynamic Particle System for Mesh Extraction on
the GPU, In Proceeding of 5th Workshop on General Purpose Processing of Graphics Processing
Units (GPGPUS5), London, March, 2012.

N Seltzer and G Kindlmann. Glyphs for Asymmetric Second-Order 2D Tensors. Comp. Graph. Forum,
35(3): 141-150, 2016.

Tim Gerrits, Christian Rossl, and Holger Theisel. Glyphs for General Second-Order 2D and 3D
Tensors, IEEE Visualization 2016.
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