
Tensor Field Visualization I 



Recall: One Simple Example of Tensor

Tensor describes certain higher-order property 
of the space that both scalar and vector-valued 
cannot



Definition

• A second-order tensor T is defined as a bilinear
function from two copies of a vector space V into the
space of real numbers

𝑇𝑇:𝑉𝑉 × 𝑉𝑉 → 𝑅𝑅

• Or: a second-order tensor T as linear operator that
maps any vector v ∈V onto another vector w ∈ V

𝑇𝑇:𝑉𝑉 → 𝑉𝑉

• The definition of a tensor as a linear operator (the
second definition) is prevalent in physics.
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Stress tensors describe internal forces or 
stresses that act within deformable 
bodies as reaction to external forces

(a) External forces f are applied to a 
deformable body. Reacting forces 
are described by a three-
dimensional stress tensor that is 
composed of three normal stresses s
and three shear stresses τ.

(b) Given a surface normal n of some 
cutting plane, the stress tensor maps n 
to the traction vector t, which describes 
the internal forces that act on this plane 
(normal and shear stresses).

Tensors in Mechanical Engineering



Tensor Properties
• Symmetric Tensors. A tensor S is called symmetric if it

is invariant under permutations of its arguments
𝑆𝑆 𝑣𝑣,𝑤𝑤 = 𝑆𝑆 𝑤𝑤, 𝑣𝑣 ∀𝑣𝑣,𝑤𝑤 ∈ 𝑉𝑉

• Antisymmetric Tensors. A tensor A is called
antisymmetric or skew-symmetric if the sign flips when
two adjacent arguments are exchanged

𝐴𝐴 𝑣𝑣,𝑤𝑤 = −𝐴𝐴 𝑤𝑤, 𝑣𝑣 ∀𝑣𝑣,𝑤𝑤 ∈ 𝑉𝑉

• Traceless Tensors. Tensors T with zero trace, i.e.
𝑡𝑡𝑡𝑡(𝑇𝑇) = ∑𝑖𝑖=0𝑛𝑛−1 𝑇𝑇𝑖𝑖𝑖𝑖, are called traceless.



Tensor Properties
• Positive (Semi-) Definite Tensors. A tensor T is called

positive (semi-) definite if for all v
𝑇𝑇 𝑣𝑣, 𝑣𝑣 > ≥ 0

Their eigenvalues and their determinant are greater than zero.

• Negative (Semi-) Definite Tensors. A tensor T is called
negative (semi-) definite if for all v

𝑇𝑇  𝑣𝑣 , 𝑣𝑣  < ≤ 0
their eigenvalues are smaller than (smaller than or equal to) zero

• Indefinite Tensors. Each tensor that is neither positive
definite nor negative definite is indefinite.



Tensor Decomposition

• Symmetric/Antisymmetric
• Stretch/Rotation
• Isotropic/Anisotropic
• Shape/Orientation
• Asymmetric tensor decomposition
• Others (e.g., eigen-modes)



What are the Characteristics of Tensors?

• Scalar related
– Components (or individual entries)
– Determinant
– Trace
– Eigen-values

• Vector related
– Eigen-vector fields

or what can be visualized…



The Data: Second-order Tensor Fields

• In visualization, usually not only a single 
tensor but a whole tensor field is of interest.

• It can be considered as a function which 
assigns a tensor at any given position in space.

From now on, we consider only second-order tensor 
which can be represented in the form of matrices.



Visualizing tensor fields is challenging

• Hard to achieve intuitive visualization

• Highly application-dependent

• Multi-variate nature makes it challenging

• Difficulty in preserving tensor characteristics 
during interpolation

• Perception issue: clutter and occlusion

Context

Technical



Techniques for tensor field visualization

Direct methods

Geometric-based methods

Texture-based methods

Feature-based methods
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DIRECT METHODS:
PSEUDO-COLORS AND GLYPHS



Pseudo-Colors

• Any derived scalar properties of the tensor 
can be mapped to color plots (or DVR in 3D)



Pseudo-Colors

• Any derived scalar properties of the tensor 
can be mapped to color plots (or DVR in 3D)

• Assume a tensor T is defined at each vertex
– Components (or entries) 𝑇𝑇𝑖𝑖𝑖𝑖
– Tensor magnitude

𝑇𝑇 𝐹𝐹 =
1
2
�𝑇𝑇𝑖𝑖𝑖𝑖2

– Trace, 𝑡𝑡𝑡𝑡 𝑇𝑇 = ∑𝑇𝑇𝑖𝑖𝑖𝑖. If T is the Jacobian of a flow 
field, this tells how much divergence it has. 
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Pseudo-Colors

Divergence and curl of a vector field



Pseudo-Colors

• Scalar properties of tensor (continued)
– Determinant
– Eigen-values

• 𝑇𝑇𝑇𝑇 = λ𝑒𝑒
• Can be used to compute the determinant for 

diagonalizable tensor



Pseudo-Colors

• Scalar properties of tensor (continued)
– Determinant
– Eigen-values

• 𝑇𝑇𝑇𝑇 = λ𝑒𝑒
• Can be used to compute the determinant for 

diagonalizable tensor

• More importantly, it can be used to study the 
anisotropy of the symmetric tensor, e.g., 
diffusion tensor used in medical applications

Anisotropy direction 
mapped to hue  + 
strength mapped to 
saturation



Line field visualization for 
vector valued properties (e.g., 
eigen-vectors) for s.p.d.
tensor fields 

Line plots



GLYPH-BASED METHODS



GLYPH DESIGN
A glyph is the visual representation of a piece of data where the attributes of 
a graphical entity (geometry) are dictated by one or more attributes of a 
data record. [From Wikipedia]



Glyphs for Tensors
• 2D/3D shapes: better visualization of the local property of 

tensor, such as anisotropy

The glyphs for visualizing the anisotropy of a symmetric tensor 

2D

Orientation Shape -> anisotropy



Glyphs for Tensors
• 2D/3D shapes: better visualization of the local property of 

tensor, such as anisotropy

The glyphs for visualizing the anisotropy of a symmetric tensor 

3D

2D



Glyphs for Tensors
Consider symmetric tensors at this moment. They have real
eigenvalues and orthogonal eigenvectors. Therefore, they can be 
intuitively represented as ellipsoids.
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Glyphs for Tensors
Consider symmetric tensors at this moment. They have real
eigenvalues and orthogonal eigenvectors. Therefore, they can be 
intuitively represented as ellipsoids.

Three types of anisotropy:

• linear anisotropy

• planar anisotropy

• isotropy (spherical)

Anisotropy measure

𝑐𝑐𝑙𝑙 = �(λ1 − λ2)
(λ1 + λ2 + λ3)

𝑐𝑐𝑝𝑝 = �2(λ2 − λ3)
(λ1 + λ2 + λ3)

𝑐𝑐𝑠𝑠 = �3λ3
(λ1 + λ2 + λ3)

𝝀𝝀𝟏𝟏 ≥ 𝝀𝝀𝟐𝟐 ≥ 𝝀𝝀𝟑𝟑

[Westin et al., 97]



Ellipsoidal glyphs provide nice symmetry and smoothness



Problem of ellipsoidal glyphs:
• Shape is poorly recognized in projected view

8 different ellipsoids



Problem of ellipsoidal glyphs:
• Shape is poorly recognized in projected view

8 different ellipsoids but in two different views (two rows)



Problem of cuboid glyphs
• Missing symmetry
• Doesn’t give the sense of smooth

Problem of cylinder glyphs
• Seam at 𝑐𝑐𝑙𝑙 = 𝑐𝑐𝑝𝑝
• Losing symmetric close to 𝑐𝑐𝑠𝑠 = 1

Two Types of Glyphs for the Barycentric Space



Combining advantages: superquadrics
Superquadrics with Z as primary axis

Cylinders for the linear and planar cases, 
spheres for the spherical case, and cuboids 
for intermediate cases with smooth blending 
in between.

The general strategy is that the edge on the 
glyph surface signifies the anisotropy.
When two eigenvalues are equal, the 
indeterminacy of the eigen-vector can be 
conveyed with a circular glyph cross-
section.



Combining advantages: superquadrics
Superquadrics with Z as primary axis

𝑞𝑞𝑧𝑧 𝜃𝜃,∅ =
cos𝛼𝛼𝜃𝜃sin𝛽𝛽∅
sin𝛼𝛼𝜃𝜃sin𝛽𝛽∅

cos𝛽𝛽∅
0 ≤ 𝜃𝜃 ≤ 2𝜋𝜋, 0 ≤ ∅ ≤ 2𝜋𝜋

Superquadrics for some pairs (𝛼𝛼,𝛽𝛽)
Shaded: sub-range used for glyphs

Barr, 1981

Similarly, one can define 𝑞𝑞𝑥𝑥 𝜃𝜃,∅



Superquadric glyphs (Kindlmann): Given 𝒄𝒄𝒍𝒍, 𝒄𝒄𝒑𝒑, 𝒄𝒄𝒔𝒔
• Compute a base superquadric using an edge sharpness value 𝜸𝜸:

𝑞𝑞 𝜃𝜃,∅ = �
𝑖𝑖𝑓𝑓𝑐𝑐𝑙𝑙 < 𝑐𝑐𝑝𝑝: 𝑞𝑞𝑧𝑧 𝜃𝜃,∅ 𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝛼𝛼 = 1 − 𝑐𝑐𝑝𝑝

𝛾𝛾 𝑎𝑎𝑎𝑎𝑎𝑎 𝛽𝛽 = 1 − 𝑐𝑐𝑙𝑙 𝛾𝛾

𝑖𝑖𝑓𝑓𝑐𝑐𝑙𝑙 ≥ 𝑐𝑐𝑝𝑝: 𝑞𝑞𝑥𝑥 𝜃𝜃,∅ 𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝛼𝛼 = 1 − 𝑐𝑐𝑙𝑙 𝛾𝛾 𝑎𝑎𝑎𝑎𝑎𝑎 𝛽𝛽 = 1 − 𝑐𝑐𝑝𝑝
𝛾𝛾

• Scale with 𝑐𝑐𝑙𝑙 , 𝑐𝑐𝑝𝑝, 𝑐𝑐𝑠𝑠 along x, y, z and rotate into eigenvector frame 



Comparison of shape perception (previous example)

• With ellipsoid glyphs

• With superquadrics glyphs



[Schultz and Kindlmann, Vis10]

Superquadric Glyphs for Symmetric Second-Order Tensors

Extended to general second-order symmetric tensors that can be indefinite (hyperbolic)



Comparison: Ellipsoids vs. superquadrics (Kindlmann)

Color map 𝑅𝑅
𝐺𝐺
𝐵𝐵

= 𝑐𝑐𝑙𝑙

|𝑒𝑒𝑥𝑥
1

|

|𝑒𝑒𝑦𝑦
1

|

|𝑒𝑒𝑧𝑧
1

|

+ (1 − 𝑐𝑐𝑙𝑙)
1
1
1

This is half of the brain, looking at the posterior part of the 
corpus callosum, which is the main bridge between the two 
hemispheres. And with the superquadrics, you can see that 
on the surface of the corpus callosum, the glyphs have 
more of a planar component, but on the inside, they're 
basically very linear.



Spherical Harmonic Glyphs



Spherical Harmonic Glyphs

1o bins

2o bins



Spherical Harmonic Glyphs

Spherical Harmonic
Fourier series in spherical coordinates

1o bins

2o bins



Spherical Harmonic Glyphs

The distribution of all fibers in the region can be 
modeled as a set of spherical harmonic functions 
and their coefficients

We perform a least-squares fitting of every segment in a 
region to a function defined in terms of a set of spherical 
harmonic: a cost K

𝐾𝐾 𝑐𝑐 = �
𝑛𝑛−1

𝑁𝑁

�
𝑖𝑖=0

𝐵𝐵−1

𝑐𝑐𝑖𝑖𝑦𝑦𝑖𝑖 𝜃𝜃𝑁𝑁 ,𝜙𝜙𝑁𝑁 − 𝑠𝑠𝑛𝑛

2

We solve by setting a derivative with respect to c to 0 and 
minimizing to get 𝑐𝑐𝑖𝑖

𝑦𝑦𝑖𝑖 𝜃𝜃,𝜙𝜙 = 𝑦𝑦𝑙𝑙 𝑙𝑙+1 +𝑚𝑚 𝜃𝜃,𝜙𝜙 = 𝑦𝑦𝑙𝑙𝑚𝑚 𝜃𝜃,𝜙𝜙
B = L(L+2) + 1, the maximum number of harmonic 
coefficients



Spherical Harmonic Glyphs

superquadric glyphs spherical harmonic glyphs 

The glyph shape and colormap indicate two different 
features: the glyph shape indicates vessel 
volume/direction, while the glyph color indicates vessel 
radius/direction

SH glyphs are better than superquadrics at showing anisotropy 
and connectivity

The glyph shape demonstrates the larger 
trends present in the data. See the upper 
left of the domain.



GLYPH PACKING



Glyph Packing

[Kindlmann and Westin, Vis06]

Glyphs are placed at regular grids



Glyph Packing

[Kindlmann and Westin, Vis06]

Glyphs are placed at regular grids Glyphs are packed in better locations



Requirements (Ideal Situation)

• No obvious patterns induced by the 
underlying spatial discretization

• No gaps between glyphs
• No overlapping



• Basic pipeline
– Seeding based on some statistical property
– Force repelling *

• Each particle tries to push away its neighboring 
particles

• This process should eventually converge to a stable 
configuration.

– Rendering glyphs

Energy-based Particle Systems



Energy-based Particle Systems
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Energy-based Particle Systems



Energy-based Particle Systems



Energy-based Particle Systems



Energy-based Particle Systems



Overall Pipeline

Initialize particle positions
Do the following until convergence
For each particle

Compute the accumulated force added by other particles
Determine a direction and velocity
Move this particle to the new location based on this vector



Computation of the 
Energy

[Kindlmann and Westin, Vis06]

𝛼𝛼 is the glyph scaling factor



Computation of the Forces

[Kindlmann and Westin, Vis06]

𝛼𝛼 is the glyph scaling factor



[Kindlmann and Westin, Vis06]

Artificial patterns
Overlapping glyphs



Improvement- Parallel Computation

Original method considers all the particles in the domain



Improvement- Parallel Computation

[Kim et al. GPGPU5 2012]



Multithreaded (cont)

 Given the current bin Bi
 Gather every particle in Bi plus the immediate 

surrounding bins
− This is a neighborhood

 For every particle pi in the bin Bi
− For every particle pj in the neighborhood

 If distance from pi to pj < 1.0
− sum the velocity and energy

− Advect pi

[Kim et al. GPGPU5 2012]



Multithreaded (cont.)

Current Bin

 Process each 
particle in the 
current bin

[Kim et al. GPGPU5 2012]



Multithreaded (cont.)

Current Particle

 Process each 
particle in the 
current bin

[Kim et al. GPGPU5 2012]



Multithreaded (cont.)

 sum Energy 
and Force

[Kim et al. GPGPU5 2012]



Multithreaded (cont.)

 Move current 
particle

[Kim et al. GPGPU5 2012]



Multithreaded (cont.)

 Process the 
next particle in 
the current 
bin.

[Kim et al. GPGPU5 2012]



Y Z

W X

Multithreaded (cont)

 While there are bins to be 
processed
− For every particle p in the current 

bin
 For every other particle in the 

neighborhood
− calculate force and energy

 Move the particle in the direction F

[Kim et al. GPGPU5 2012]



Y Z

W X

Multithreaded (cont)

 While there are bins to be 
processed
− For every particle p in the current 

bin
 For every other particle in the 

neighborhood
− calculate force and energy

 Move the particle in the direction F

[Kim et al. GPGPU5 2012]



Anisotropy Sampling

[Feng et al. TVCG2008]



[Feng et al. TVCG2008]

Anisotropy Sampling



Anisotropy Sampling

[Feng et al. TVCG2008]



Glyph Packing in Bounded Regions

[Chen et al. Vis11]



Additional Readings
• G. Kindlmann. “Superquadric Tensor Glyphs“. In Proceedings IEEE TVCG/EG Symposium on 

Visualization 2004, pages 147-154, May 2004.

• G. Kindlmann and C-F Westin. “Diffusion Tensor Visualization with Glyph Packing." IEEE Trans. on 
Visualization and Computer Graphics, 12(5):1329-1336, October 2006.

• T. Schultz, G. L. Kindlmann. “Superquadric Glyphs for Symmetric Second-Order Tensors”. IEEE Trans. 
on Visualization and Computer Graphics, Nov/Dec 2010, 16(6):1595-1604. 

• Mark Kim, Guoning Chen, and Charles D. Hansen. Dynamic Particle System for Mesh Extraction on 
the GPU, In Proceeding of 5th Workshop on General Purpose Processing of Graphics Processing 
Units (GPGPU5), London, March, 2012.

• N Seltzer and G Kindlmann. Glyphs for Asymmetric Second-Order 2D Tensors. Comp. Graph. Forum, 
35(3): 141-150, 2016.

• Tim Gerrits, Christian Rössl, and Holger Theisel. Glyphs for General Second-Order 2D and 3D 
Tensors, IEEE Visualization 2016.
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