Tensor Field Visualization Il

Goal: have a basic understanding of the geometric-based, texture-based
visualization techniques, and simple topology-based method for second-order
tensor fields.



GEOMETRIC-BASED METHOD
--TRACING HYPERSTREAMLINES



Hyperstreamlines

 Let T(x) be a (2nd order) symmetric tensor field
— real eigenvalues, orthogonal eigenvectors

 Hyperstreamline: by integrating along one of the A\
eigenvector fields S,y =S+ V(S)) - dt




Hyperstreamlines

Let T(x) be a (2nd order) symmetric tensor field
— real eigenvalues, orthogonal eigenvectors

Hyperstreamline: by integrating along one of the |§
eigenvector fields s =s +v(s) - dt |

Important: Eigenvector fields are not vector fields!

— eigenvectors have no magnitude and no direction (are
bidirectional)

— the choice of the eigenvector can be made consistently as long
as eigenvalues are all different

— Hvperstreamlines can intersect onlv at points where two or
more eigenvalues are equal, i.e., degenerate points. ?2?




Compute One Hyperstreamline

Choose integrator:
— Euler
— Runge-Kutta (29, 4th , 4/5)
— Others
Choose step size (can be adaptive)
Provide seed point position and determine starting direction
Advance the front
Termination conditions



Compute One Hyperstreamline

Choose integrator:
— Euler
— Runge-Kutta (29, 4th, 4/5)
— Others
Choose step size (can be adaptive)
Provide seed point position and determine starting direction
Advance the front
Termination conditions

Note that the direction/angle ambiguity. This is because the computation
of the eigenvector at each sample point (i.e., a vertex/grid point of the
mesh) is independent of each other. Therefore, inconsistent directions (a
direction of an eigenvector needs to be chosen) may be chosen to store at
neighboring vertices.

Any solution? _ :
in theory representation



Compute One Hyperstreamline

Choose integrator:
— Euler
— Runge-Kutta (29, 4th, 4/5)
— Others
Choose step size (can be adaptive)
Provide seed point position and determine starting direction
Advance the front
Termination conditions

Note that the direction/angle ambiguity. This is because the computation
of the eigenvector at each sample point (i.e., a vertex/grid point of the
mesh) is independent of each other. Therefore, inconsistent directions (a
direction of an eigenvector needs to be chosen) may be chosen to store at
neighboring vertices.
— Additional step to remove direction/angle ambiguity. A dot product between
the current advancing direction and the eigenvector direction at current

position is performed. A positive value indicates the consistent direction;
otherwise, the inverse direction should be used!



Evenly-Spaced Placement

Input:
—  dsep... start distance
—  dtest ... minimum distance

Compute an initial hyperstreamline from a random seed point, put to queue
current hyperstreamline = initial hyperstreamline

WHILE not finished DO:

— TRY: get new seed point which is dsepaway from current hyperstreamline
— IF successful THEN
* compute new hyperstreamline until distance dtest is reached (or other...) AND put it to queue

— ELSE IF no more hyperstreamline in queue THEN
e exitloop
— ELSE next hyperstreamline in queue becomes current hyperstreamline




Red — major
Green — minor



Applications of Hyper-Streamline Placement

Widely used in diffusion tensor imaging tractography



Applications of Hyper-Streamline Placement

Hyperstreamlines rendered as
tubes with elliptic cross section,
radii proportional to 2"4 and 3™
eigenvalue

[Shen and Pang 2004]

Widely used in diffusion tensor imaging tractography



Applications of Hyper-Streamline Placement
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Hyperstreamlines can also be
used to convey some physical
behaviors in the tensor. For
instance, in flow analysis, the
hyperstreamlines computed

based on the eigen analysis of
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rotational flow deformation

[Zhang et al. TVCG 2009]



Applications of Hyper-Streamline Placement

Street network modeling [Chen et al. Siggraph 2008]
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According to different applications, the termination conditions may be different



Hyperstreamlines + Glyphs

A

[Prckovska et al. 2010]

Hybrid visualization: hyperstreamlines + glyphs

Good for some non-symmetric tensor visualization where the rotational
components can be encoded by the glyphs



Problem of Hyperstreamlines

 Ambiguity in (nearly) isotropic regions:
— Partial volume effect, especially in low resolution images
(MR images)
— Noise in data

eigen-vectors are not well-
defined or perturbed
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Problem of Hyperstreamlines

Ambiguity in (nearly) isotropic regions:
— Partial volume effect, especially in low resolution images
(MR images) FeEE N N R
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Tensorlines

e Advection vector
e Stabilization of propagation by considering the

following components
v Input velocity vector (previous direction)
v Output velocity vector (after application of tensor
operation, i.e. transformation by tensor)

v Vector along major eigenvector

[Weinstein et al.1999]



Tensorlines

e Advection vector
e Stabilization of propagation by considering the

following components
v Input velocity vector (previous direction)

v Output velocity vector (after application of tensor
operation, i.e. transformation by tensor)
v Vector along major eigenvector
e Weighted sum of the three components depends on
anisotropy at specific position:
v’ Linear anisotropy: only along major eigenvector
v’ Other cases: input or output vector

Wpynct IS a user-controlled parameter

Anisotropy Direction In Desired Out
Linear Any e1
Planar Tangential to disk Vin OF Vout
Planar Normal to disk plane Vout 3D case
Spherical Any Vin OF Vout [Weinstein et al.1999]




Tensorlines

e Advection vector
e Stabilization of propagation by considering the
following components
v Input velocity vector (previous direction)
v Output velocity vector (after application of tensor
operation, i.e. transformation by tensor)
v Vector along major eigenvector
e Weighted sum of the three components depends on
anisotropy at specific position:
v’ Linear anisotropy: only along major eigenvector
v’ Other cases: input or output vector

Vprop = C1€1 T (1- Cl)((l - a)punct)vin + wpunctvout)

Wpynct IS a user-controlled parameter

Anisotropy Direction In Desired Out
Linear Any €1
Planar Tangential to disk Vin O Vout
Planar Normal to disk plane Vout

Spherical Any Vin OI Vout
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TEXTURE-BASED METHOD



LIC

How to extend it to symmetric
tensor field?

The LIC pipeline



B // o / H y p er L I C [Zheng and Pang]

Instead of using a 1D kernel along the
streamline, HyperLIC uses a 2D kernel

The LIC pipeline



- // | ; / H y p er L I C [Zheng and Pang]
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Instead of using a 1D kernel along the
streamline, HyperLIC uses a 2D kernel

I(P) = @12?A-fk(tj)ln(ﬂ.,j)
S N ey k(i)

Pi; = P +HM\Pi—ij)ei(Pic1,)At
Fo ; Po i1 (Poj—1)e2(Poj—1)At

Poo = P

L, is the input noise and I, is the output
A,(P),e,(P),k(i,j),n = 1,2 are the nt"
eigenvalues, eigenvectors, and the weight =
function at point P. At is the integration step.

The LIC pipeline



Hype rLI C [Zheng and Pang]

——

Decompose the computation

If we define

N -
Li(P) = Z‘}__;? 2 ( J =4
Zj:—N k2 (J) /
P; = P+ Xa(Pi1)eaP;-1)At T

P = P

First, advect along the minor eigen vector direction
corresponding to the minimal eigen value.

The LIC pipeline



Hype rLI C [Zheng and Pang]

——

Decompose the computation
Then
N .
S k(e P;
I,(P) = Z’f'——;} 109 1.(.
Zfﬁ:—N kl(?’)
P, = Pi_1+M(Pi-1)ei(P
P, = P

Second, use I; as input texture, then advect
along the major eigen vector direction.

The LIC pipeline



Hype rLI C [Zheng and Pang]

——

Decompose the computation
Then
N .
S ki) (P
IO(P) _ Z'z,_—ii?- 1( ) 1‘( )
Zfﬁ:—N kl(?’)
P, = P+ M(Pi-1)ei(Pi-1)At
P, = P

This is a two-pass process

I;and [, are the output images of the un- =
normalized LIC on A, e, and A; e, vector fields
with input images I,, and I, respectively.

The LIC pipeline



Hype rLI C [Zheng and Pang]

——

Decompose the computation
Then
N .
ie_n k() 1 (P
IO(P) _ Za_ N () ( )

Zf\:j\ Al(?) LT
P = P+ (Pio1)e(Pio1)At //{;

P, = P
This is a two-pass process

Theoretically, the order in which the eigenvector ==
fields are processed will affect the final image. In
practice, the differences are not noticeable

The LIC pipeline



Applications

(a) Top view (b) Side view (c) Side view using Inverse HyperLIC

e,

(d) Zoomed view of the top portion of (b)

A 2D slice from single point load stress tensors. It is taken from the middle of
the volume and viewed from the point load direction. It is mostly composed of
components from medium or minor eigenvectors. We see that the center of
this slice is quite isotropic. Around the center is a ring formed by lines, which
means tensors are highly anisotropic. It is the boundary where the minor
eigenvalues are zero.



Applications

(a) Inner layer (b) Middle layer

Flow past a cylinder with hemispherical cap. HyperLIC of two different
computational layers of the strain rate tensor. Arrows point to
locations of degenerate wedge points



A Simplified HyperLIC

Compute two LIC images along the major
and minor eigen-vector fields, separately.

These two computations are independent
of each other, and thus, can be
parallelized.

Note, the direction/angle ambiguity needs
to be properly handled as in the
hyperstreamline tracing.

NOTE, this is only meaningful for
symmetric positive definite tensors




A Simplified HyperLIC

Compute two LIC images along the major
and minor eigen-vector fields, separately.

These two computations are independent
of each other, and thus, can be
parallelized.

Note, the direction/angle ambiguity needs
to be properly handled as in the

hyperstreamline tracing. N7 :"Jng

ST ’\ o
The image represents a xz-plane slice of a
two-force dataset. The left circle
corresponds to the pushing and the right to
the pulling force. The fluctuation of the
color is a result of the low resolution of the
simulation [Hotz et al. 2004]

NOTE, this is only meaningful for
symmetric positive definite tensors




Extended IBFV

IBFV does not trace out hyperstreamlines. So it
cannot address the angle ambiguity explicitly!

C'.DSH) if cosf >0

— cos 0 .
. otherwise,

,0(0986) if sinf) > 0

—cos b .
) otherwise.

© (d)

The system first produces images according to two direction assignments: ((a), in the positive
x-direction) V; and ((b), in the positive y-direction) V,, . The images are then blended according
to weight functions W, (a color coding shown in (c)) and W,, = 1 — W,. (d) The resulting image
no longer contains the visual artifacts from I, and 1, .

[Zhang et al. TVCGO7]



Some Results

[Zhang et al. TVCGO7]



Extension to N-Symmetric Field
Visualization

[Palacios and Zhang TVCG 2011]

(a) (b) (c)

(f) (@) (h) (i) ()
Fig. 5. Our visualization algorithm is demonstrated with an example 3-RoSy field S. In (a), (b), and (c), we applied the LIC algorithm to V4, V1, and 15
(the guiding angle for each is shown in the upper-right corner) to obtain I, I;, and I, respectively. Notice that while (a), (b), and (c) provide a
complete coverage of the streamlines passing through any regular point in the domain, they have the same regions of breaking points (left X-axis).
By blending them uniformly, we obtain I (d), a visualization of S with visual artifacts in the same place (a closeup of the artifact, highlighted in red, is
seen as an inset with the contrast enhanced; note the curving patterns in a region that should be regular). To remedy the problem, we also apply the
LIC algorithm to Vjj, V], and VJ, generating the images [ (f), I} (g), and I} (h), and blend them uniformly to obtain I’ (i). The visual artifacts in I’
appear on the right side (again, a closeup is inset) of the X-axis. By blending I and I’ using the weight map w (e), we obtain the final image in (j) in

which the artifacts due to field discontinuities are no longer visible. Note that the image in (j) has had its contrast corrected via the transformation
described in Section 5.



BRIEF REVIEW OF 2D TENSOR FIELD
TOPOLOGY



Topological Skeleton in 2D

We only consider the topology for 2" symmetric tensor fields!

hyperbolic
sectors

Image by Xavier Tricoche



Degenerate Points

* The topology for 2"d symmetric tensor fields is
extracted by identifying their degenerate points
and their connectivity.

A point pis a degenerate point of the tensor field
T iff the two eigenvalues of T(p) are equal to each
other.

— There are infinite many eigenvectors at p.

— Hyperstreamlines cross each other at only degenerate
points (similar to streamlines) 2




Degenerate Points in 2D

Three linear (first-order) types exist

A

Trisector

\'4

Wedge |

]

Wedge |

None of these patterns would be possible in vector fields!

/ discontinuity of




Degenerate Points in 2D

e Find degenerate points , deviatoric

o ® =D o> D= (1)

e Solveineach cellfor D(x,y) = 0

T T
D= ( 11 12)
Ty Ty

Ty1 + Ty 0
1 T T 2
D — =trace(D)I =< 1 12)— =
2 (D)L, Ty Ty 0 Ti1 + Ty

2




Degenerate Points in 2D

e Classifying tensor degenerate points

(a(x,y) ﬂ(x,y)j (alxmzy ﬂ1><+ﬂ2yj
B(X,y) —a(Xy) Bx+ By —(ax+a,y)

— Depending on the determinant of (;1 ;2]
e >0 wedge L
e <0 trisector

=0 higher-order degenerate points



A few degenerate points used in tensor field design

(m2——y2 — 2y )
—2zy  —(2% — )

wedge trisector node focus center saddle

B G B (P iy o
y - -y — 2xy — (2% — y?) —2xy  —(y* —2?)

(alx +a,y BX+ B,y j — (Oﬁ az) >0 wedge

<0 trisector
BX+ By —(aX+a,y) b B =0 higher-order degenerate points
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Degenerate Points in 2D

 Tensor index: wedges




Degenerate Points in 2D

e Tensor index: trisectors




Separatrices

TRISECTOR WEDGE POINT S
Hyperbolic sectors ny Index ] = 1 =2t
2

Parabolic sectors ny



Separatrices

e Find degenerate points , deviatoric

o 1 5
° FOl’ng — Etrace(D)I D = (

e Solveineach cellfor D(z,y) = 0

@ R

e Compute separatrices

e Linear analysis at each singularity { gg zg

e Determine angular coordinate of separatrices

L
"
et
"

a1 T+ ooy
Brz+ Boy

Bou® + (B + 2a9) u® + (21 — Bo)u— 1 =0

U = tan 9 (Delmarcelle and Hesselink, 1994)

e [ntegrate separatrices (standard ODE solver with

embedded orientation consistency check)



Separatrices
e Separatrices

sin26  p,cos@+ B,siné radial direction

cos260 oa,cosf+a,sind 2V

/ -radial direction

--. radial direction




Image by Eugene Zhang
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Compared With Vector Field Topology

Comparison between the
vector-based image edge field
(VIEF, left) and the tensor-based
image edge field (TIEF, right) for
painterly rendering of an image
of a duck.

Notice that TIEF is much
smoother than VIEF (top row),
and their impact on the
painterly results are clearly
visible near the beak of the
duck.

Image by Eugene Zhang
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