
Tensor Field Visualization II

Goal: have a basic understanding of the geometric-based, texture-based 
visualization techniques, and simple topology-based method for second-order 
tensor fields.



GEOMETRIC-BASED METHOD
--TRACING HYPERSTREAMLINES



Hyperstreamlines
• Let T(x) be a (2nd order) symmetric tensor field

– real eigenvalues, orthogonal eigenvectors

• Hyperstreamline: by integrating along one of the 
eigenvector fields si+1 = si + v(si) · dt



Hyperstreamlines
• Let T(x) be a (2nd order) symmetric tensor field

– real eigenvalues, orthogonal eigenvectors

• Hyperstreamline: by integrating along one of the 
eigenvector fields

• Important: Eigenvector fields are not vector fields!
– eigenvectors have no magnitude and no direction (are 

bidirectional)
– the choice of the eigenvector can be made consistently as long 

as eigenvalues are all different
– Hyperstreamlines can intersect only at points where two or 

more eigenvalues are equal, i.e., degenerate points.

si+1 = si + v(si) · dt

??



Compute One Hyperstreamline
• Choose integrator:

– Euler
– Runge-Kutta (2nd, 4th , 4/5)
– Others

• Choose step size (can be adaptive)
• Provide seed point position and determine starting direction
• Advance the front
• Termination conditions



Compute One Hyperstreamline
• Choose integrator:

– Euler
– Runge-Kutta (2nd, 4th , 4/5)
– Others

• Choose step size (can be adaptive)
• Provide seed point position and determine starting direction
• Advance the front
• Termination conditions

• Note that the direction/angle ambiguity. This is because the computation 
of the eigenvector at each sample point (i.e., a vertex/grid point of the 
mesh) is independent of each other. Therefore, inconsistent directions (a 
direction of an eigenvector needs to be chosen) may be chosen to store at 
neighboring vertices.
– Additional step to remove angle ambiguity. A dot product between the 

current advancing direction and the eigenvector direction at current position 
is performed. A positive value indicates the consistent direction; otherwise, 
the inverse direction should be used!Any solution?

in theory representation
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Evenly-Spaced Placement
• Input: 

– dsep … start distance
– dtest … minimum distance

• Compute an initial hyperstreamline from a random seed point, put to queue
• current hyperstreamline = initial hyperstreamline
• WHILE not finished DO:

– TRY: get new seed point which is dsep away from current hyperstreamline
– IF successful THEN

• compute new hyperstreamline until distance dtest is reached (or other…) AND put it to queue
– ELSE IF no more hyperstreamline in queue THEN

• exit loop
– ELSE next hyperstreamline in queue becomes current hyperstreamline



Red – major
Green – minor



Widely used in diffusion tensor imaging  tractography

Applications of Hyper-Streamline Placement



Widely used in diffusion tensor imaging  tractography

Hyperstreamlines rendered as 
tubes with elliptic cross section, 
radii proportional to 2nd and 3rd

eigenvalue

[Shen and Pang 2004]

Applications of Hyper-Streamline Placement



Hyperstreamlines can also be 
used to convey some physical 
behaviors in the tensor. For 
instance, in flow analysis, the 
hyperstreamlines computed  
based on the eigen analysis of 
the Jacobian of the flow field 
can convey stretching and 
rotational flow deformation

[Zhang et al. TVCG 2009]

Applications of Hyper-Streamline Placement



– Street network modeling [Chen et al. Siggraph 2008]

Applications of Hyper-Streamline Placement

According to different applications, the termination conditions may be different



Hyperstreamlines + Glyphs

Hybrid visualization: hyperstreamlines + glyphs

Good for some non-symmetric tensor visualization where the rotational 
components can be encoded by the glyphs 

[Prckovska et al. 2010]



Problem of Hyperstreamlines
• Ambiguity in (nearly) isotropic regions:

– Partial volume effect, especially in low resolution images 
(MR images)

– Noise in data

eigen-vectors are not well-
defined or perturbed



Problem of Hyperstreamlines
• Ambiguity in (nearly) isotropic regions:

– Partial volume effect, especially in low resolution images 
(MR images)

– Noise in data

• Solution: tensorlines
[Weinstein, Kindlmann 1999]

Tensorline
Hyperstreamline
Arrows: major eigenvector



Tensorlines
• Advection vector
• Stabilization of propagation by considering the 
following components

 Input velocity vector (previous direction)
 Output velocity vector (after application of tensor 

operation, i.e. transformation by tensor)
 Vector along major eigenvector

[Weinstein et al.1999]



Tensorlines
• Advection vector
• Stabilization of propagation by considering the 
following components

 Input velocity vector (previous direction)
 Output velocity vector (after application of tensor 

operation, i.e. transformation by tensor)
 Vector along major eigenvector

• Weighted sum of the three components depends on 
anisotropy at specific position:

 Linear anisotropy: only along major eigenvector
 Other cases: input or output vector

[Weinstein et al.1999]

𝐯𝐯𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑐𝑐𝑙𝑙𝐞𝐞1 + (1 − 𝑐𝑐𝑙𝑙)( 1 − 𝜔𝜔𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝐯𝐯𝑖𝑖𝑝𝑝 + 𝜔𝜔𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐯𝐯𝑝𝑝𝑝𝑝𝑝𝑝)

𝜔𝜔𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 is a user-controlled parameter

Two linear interpolation!

3D case



Tensorlines

[Weinstein et al.1999]
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• Advection vector
• Stabilization of propagation by considering the 
following components

 Input velocity vector (previous direction)
 Output velocity vector (after application of tensor 

operation, i.e. transformation by tensor)
 Vector along major eigenvector

• Weighted sum of the three components depends on 
anisotropy at specific position:

 Linear anisotropy: only along major eigenvector
 Other cases: input or output vector



TEXTURE-BASED METHOD



LIC

The LIC pipeline

How to extend it to symmetric 
tensor field?



HyperLIC

The LIC pipeline

[Zheng and Pang]

Instead of using a 1D kernel along the 
streamline, HyperLIC uses a 2D kernel



HyperLIC

The LIC pipeline

[Zheng and Pang]

Instead of using a 1D kernel along the 
streamline, HyperLIC uses a 2D kernel

𝐼𝐼𝑝𝑝 is the input noise and 𝐼𝐼𝑝𝑝 is the output
λ𝑝𝑝 𝑃𝑃 , 𝑒𝑒𝑝𝑝 𝑃𝑃 , 𝑘𝑘 𝑖𝑖, 𝑗𝑗 , 𝑛𝑛 = 1,2 are the nth

eigenvalues, eigenvectors, and the weight 
function at point P. ∆𝑡𝑡 is the integration step.



HyperLIC

The LIC pipeline

[Zheng and Pang]

If we define

Decompose the computation

First, advect along the minor eigen vector direction 
corresponding to the minimal eigen value.



HyperLIC

The LIC pipeline

[Zheng and Pang]

Then

Decompose the computation

Second, use 𝐼𝐼1 as input texture, then advect
along the major eigen vector direction.



HyperLIC

The LIC pipeline

[Zheng and Pang]

Then

This is a two-pass process

𝐼𝐼1and 𝐼𝐼0 are the output images of the un-
normalized LIC on λ2𝑒𝑒2 and λ1𝑒𝑒1 vector fields 
with input images 𝐼𝐼𝑝𝑝 and 𝐼𝐼1, respectively.

Decompose the computation



HyperLIC

The LIC pipeline

[Zheng and Pang]

Then

This is a two-pass process
Theoretically, the order in which the eigenvector 
fields are processed will affect the final image. In 
practice, the differences are not noticeable

Decompose the computation



Applications

A 2D slice from single point load stress tensors. It is taken from the middle of 
the volume and viewed from the point load direction. It is mostly composed of 
components from medium or minor eigenvectors. We see that the center of 
this slice is quite isotropic. Around the center is a ring formed by lines, which 
means tensors are highly anisotropic. It is the boundary where the minor 
eigenvalues are zero.



Applications

Flow past a cylinder with hemispherical cap. HyperLIC of two different 
computational layers of the strain rate tensor. Arrows point to 
locations of degenerate wedge points



A Simplified HyperLIC
• Compute two LIC images along the major 

and minor eigen-vector fields, separately.
• These two computations are independent 

of each other, and thus, can be 
parallelized.

• Note, the direction/angle ambiguity needs 
to be properly handled as in the 
hyperstreamline tracing.

• NOTE, this is only meaningful for 
symmetric positive definite tensors



A Simplified HyperLIC
• Compute two LIC images along the major 

and minor eigen-vector fields, separately.
• These two computations are independent 

of each other, and thus, can be 
parallelized.

• Note, the direction/angle ambiguity needs 
to be properly handled as in the 
hyperstreamline tracing.

• NOTE, this is only meaningful for 
symmetric positive definite tensors The image represents a xz-plane slice of a 

two-force dataset. The left circle 
corresponds to the pushing and the right to 
the pulling force. The fluctuation of the 
color is a result of the low resolution of the 
simulation [Hotz et al. 2004]



Extended IBFV
IBFV does not trace out hyperstreamlines. So it 
cannot address the angle ambiguity explicitly!

[Zhang et al. TVCG07]

(a)                         (b)

(c)                         (d)

𝐼𝐼𝑥𝑥 𝐼𝐼𝑦𝑦

𝑊𝑊𝑥𝑥

The system first produces images according to two direction assignments: ((a), in the positive 
x-direction) 𝑉𝑉𝑥𝑥 and ((b), in the positive y-direction) 𝑉𝑉𝑦𝑦 . The images are then blended according 
to weight functions 𝑊𝑊𝑥𝑥 (a color coding shown in (c)) and 𝑊𝑊𝑦𝑦 = 1 −𝑊𝑊𝑥𝑥. (d) The resulting image 
no longer contains the visual artifacts from 𝑉𝑉𝑥𝑥 and 𝑉𝑉𝑦𝑦 .



Some Results

[Zhang et al. TVCG07]



Extension to N-Symmetric Field 
Visualization

[Palacios and Zhang TVCG 2011]



BRIEF REVIEW OF 2D TENSOR FIELD 
TOPOLOGY



Topological Skeleton in 2D

Image by Xavier Tricoche

We only consider the topology for 2nd symmetric tensor fields!



Degenerate Points

• The topology for 2nd symmetric tensor fields is 
extracted by identifying their degenerate points 
and their connectivity.

• A point p is a degenerate point of the tensor field 
T iff the two eigenvalues of T(p) are equal to each 
other. 
– There are infinite many eigenvectors at p.
– Hyperstreamlines cross each other at only degenerate 

points (similar to streamlines) ??



Degenerate Points in 2D
Three linear (first-order) types exist

None of these patterns would be possible in vector fields!



Degenerate Points in 2D
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Degenerate Points in 2D

• Classifying tensor degenerate points

– Depending on the determinant of
• >0 wedge
• <0 trisector
• =0 higher-order degenerate points 
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A few degenerate points used in tensor field design

>0 wedge
<0 trisector
=0 higher-order degenerate points 
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[Delmarcelle and Hesselink, 1994]



Degenerate Points in 2D

• Tensor index: wedges



Degenerate Points in 2D

• Tensor index: trisectors



Separatrices

Hyperbolic sectors  𝑛𝑛ℎ
Parabolic sectors 𝑛𝑛𝑝𝑝

Index 𝐼𝐼 = 1 − 𝑝𝑝ℎ
2



Separatrices



Separatrices

• Separatrices
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Image by Eugene Zhang
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• Eugene Zhang, Harry Yeh, Zhongzang Lin, and Robert S. Laramee, "Asymmetric Tensor Analysis for 
Flow Visualization", IEEE Transactions on Visualization and Computer Graphics, Vol. 15(1), 2009, pp. 
106-122.



Compared With Vector Field Topology

Comparison between the 
vector-based image edge field 
(VIEF, left) and the tensor-based 
image edge field (TIEF, right) for 
painterly rendering of an image 
of a duck.

Notice that TIEF is much 
smoother than VIEF (top row), 
and their impact on the 
painterly results are clearly 
visible near the beak of the 
duck.

Image by Eugene Zhang
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