Graph Visualization

Goals: understand important concepts and characteristics of graphs; know the classic
graph layout and visualization techniques



What is a Graph

Graphs, denoted as G = (V, E), are structures
formed by a set of vertices, V (also called
nodes) and a set of edges, E = {v,w}, that
are connections between pairs of vertices.




Magwene et al. Genome
Biology 2004 5:R100

Graphs are everywhere
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Graphs are everywhere
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(a) mouse coronal volumetric slice (b) vascular volume visualization (c) vascular graph encoding

WikiLeaks Iraq SIGACTS (redacted) - Dec 2006




Basic Concepts

— The order of the graph G, n = ||
— The size of the graph G, m = |E|

— A graph is planar if it can be drawn in a plane
without any of the edges crossing
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Image source: Google images

Planar graphs
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Image source:
http://www.sagemath.org/doc/thematic_tutorials/linear_progra
mming.html/

Non-planar graphs
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Basic Concepts

— The degree of a node, deg(v), is the number of
edges that connect to the node 3

the degrees of the individual
graph nodes



Basic Concepts

— A graph of density 1 is called complete

— The density of the graph G,
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Which of these graphs are complete?
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Basic Concepts (ll)

— Apathfromvtouinagraph G = (V,E) is a sequence of
edges in E starting at vertex vy = v and ending at vertex
UVk+1 = U.

— The path is simple if no vertex is repeated




Basic Concepts (ll)

— Apathfromvtouinagraph G = (V,E) is a sequence of
edges in E starting at vertex vy = v and ending at vertex
UVk+1 = U.

— The path is simple if no vertex is repeated




Basic Concepts (ll)

— The length of the path is the number of edges on it

— The distance between two nodes is the shortest path
connecting them.

what is the
shortest
path
between
node 2 and
node 9 ?

weighted graph



Basic Concepts (ll)

— The length of the path is the number of edges on it

— The distance between two nodes is the shortest path
connecting them.

distance
between
node 2 and
node 9 is 7

weighted graph



Basic Concepts (ll)

— A graph is connected if there exist paths between all pairs of
vertices; otherwise, it is disconnected.

— The minimum number of edges that would need to be removed
from G in order to make the graph disconnected is the edge-
connectivity of the graph.

connected




Basic Concepts (lIl)

— A cycle is a simple path that begins and ends at the same
vertex.

— A graph that contains no cycle is acyclic and is also called

forest.

— A connected forest is called a tree.




Basic Concepts (V)

— A subgraph G, = (S5,Eg) of G = (V,E) is
composed of a set of vertices S € IV and a set of
edges E¢ € E. G is then a supergraph of G..




Basic Concepts (V)

— A connected acyclic subgraph that includes all
vertices in V is called a spanning tree of G.

* A spanning tree has exactly n — 1 edges

* |f the edges have weights, the spanning tree with
smallest total weights is called the minimum spanning
tree (there may exist several of them)

http://www.i-cherubini.it/mauro/blog/2006/04/06/minimum-spanning-tree-of-
urban-tapestries-messages/
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Some free graph layout tools
Gephi: https://gephi.org/ \
Graphviz: http://www.graphviz.org/ N/ e




How is a graph represented?

Usually stored as a list of graph nodes, followed by a list of edges

File formats according to Gephi (https://gephi.org/users/supported-graph-formats/)

Many features
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GEXF
Spreadsheet
GraphML
Guess GDF
sV
GML DL Ucinet
UCINet DL DOT Graphviz
Netdraw YNA GDF
. GEXF
Gr.aphwz DOT oL
Pajek NET File Type GraphML
Ccsv B XML NET Pajek
Tulip TLP B Tabular TLP Tulip
Few features B Text VNA Netdraw
Spreadsheet*




Basic Graph Layout Techniques

Force-directed layout
Arc-diagram
Adjacency matrix
Circular layout



Basic Graph Layout Techniques

[.

Force-directed layout |

Arc-diagram
Adjacency matrix
Circular layout



Force-Directed Layout of Graph

* Presumption:

— The most common graphical representation of a network is a
node-link diagram, where each node is shown as a point, circle,
polygon, or some other small graphical object, and each edge is
shown as a line segment or curve connecting two nodes.




Force-Directed Layout of Graph

* Presumption:
— The most common graphical representation of a network is a
node-link diagram, where each node is shown as a point, circle,

polygon, or some other small graphical object, and each edge is
shown as a line segment or curve connecting two nodes.

 Force-Direct Layout idea:

— We imagine the nodes as physical particles that are initialized
with random positions, but are gradually displaced under the
effect of various forces, until they arrive at a final position. The
forces are defined by the chosen algorithm, and typically seek to
position adjacent nodes near each other, but not too close.




Force-Directed Layout of Graph

* Specifically, imagine that we simulate two forces: 1) a repulsive force
between all pairs of nodes, and 2) a spring force between all pairs of
adjacent nodes.




Force-Directed Layout of Graph

1) a repulsive force

between all pairs of nodes,

 Let d be the current distance between two nodes, and define the
repulsive force between them to be 4
Fr = Kr / d? e
(a definition inspired by inverse-square laws such as Coulomb’s law), where
Kr is some constant.



Force-Directed Layout of Graph

2) a spring force between all pairs of

adjacent nodes.

* |f the nodes are adjacent, let the spring force between them be
Fs = Ks(d — L)
(inspired by Hooke’s law), where Ks is the spring constant and L is the rest

length of the spring (i.e., the length “preferred” by the edge, ignoring the
repulsive force)
Py



Force-Directed Layout of Graph

* Implementation

— Data structure: assume that the nodes are stored in
an array nodes|[ ], where each element of the array
contains a position X, y and the net force
force_x, fTorce y acting on the node.

— Algorithm: The forces are simulated in a loop that
computes the net forces at each time step and
updates the positions of the nodes, hopefully until the
layout converges to some good distributed positions.



Force-Directed Layout of Graph

1L=..//springrestlength

2 K_r=...// repulsive force constant
3 K_s=...// spring constant

4 delta_t=...// time step

5

6 N = nodes.length

7

8 // initialize net forces
9fori=0toN-1

10 nodesli].force_x=0

11 nodesli].force_y=0

12

13 // repulsion between all pairs
14 foril=0to N-2

15 nodel = nodes]il]

16 fori2=0&i2!=i1lto N-1

17 node2 = nodes[i2]

18 dx = node2.x - nodel.x
19 dy = node2.y - nodel.y
20 ifdx!=0ordy!=0

21 distanceSquared = dx *dx + dy*dy
22 distance = sqrt( distanceSquared )
23 force = K_r / distanceSquared

24 fx = force * dx / distance

25 fy = force * dy / distance

26 nodel.force_x = nodel.force_x - fx
27 nodel.force_y = nodel.force_y - fy
28 node2.force_x = node2.force_x + fx
29 node2.force_y = node2.force_y + fy
30

31 // spring force between adjacent pairs
32 foril=0to N-1

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

nodel = nodesJil]
for j =0 to nodel.neighbors.length-1
i2 = nodel.neighbors[j]
node2 = nodes[i2]
ifil<i2
dx = node2.x - nodel.x
dy = node2.y - nodel.y
ifdx!=0ordy!=0
distance = sqrt( dx*dx + dy*dy )
force = K_s*( distance- L)
fx = force*dx / distance
fy = force*dy / distance
nodel.force_x = nodel.force_x + fx
nodel.force_y = nodel.force_y + fy
node2.force_x = node2.force_x - fx
node2.force_y = node2.force_y - fy

50 // update positions
51 fori=0to N-1

52
53
54
55
56
57
58
59
60
61

node = nodesJi]

dx = delta_t*node.force_x

dy = delta_t*node.force_y

displacementSquared = dx*dx + dy*dy

if ( displacementSquared > MAX_DISPLACEMENT_SQUARED )
s = sqrt( MAX_DISPLACEMENT_SQUARED / displacementSquared )
dx = dx *s
dy = dy*s

node.x = node.x + dx

node.y = node.y + dy



Force- Dlrected Layout of Graph

(1 L=...// spring rest length

2 K_r = ... // repulsive force constant
3 K_s=...// spring constant

4 delta_t=...// time step

5

6 N = nodes.length

\_7

[8 // initialize net forces
9fori=0toN-1

10 nodesli].force_x=0

\_ 11 nodes]i].force_y =0 y,

N




Force-Directed Layout of Graph

13 // repulsion between all pairs \
14 foril=0to N-2

15 nodel = nodes]il]

16 fori2 =0 & i2!=i1to N-1
17 node2 = nodes[i2]

18 dx = node2.x - nodel.x
19 dy = node2.y - nodel.y
20 ifdx!=0ordy!=0

21 distanceSquared = dx *dx + dy*dy
22 distance = sqrt( distanceSquared )
23 force = K_r / distanceSquared

24 fx = force * dx / distance

25 fy = force * dy / distance

26 nodel.force_x = nodel.force_x - fx
27 nodel.force_y = nodel.force_y - fy
28 node2.force_x = node2.force_x + fx

\i?) node2.force_y = node2.force_y + fyj




Force-Directed Layout of Graph

@ // spring force between adjacent pairs

32 foril=0toN-1

33 nodel = nodesJil]

34 forj=0tonodel.neighbors.length-1

35 i2 = nodel.neighbors[j]

36 node2 = nodes[i2]

37 ifil<i2

38 dx = node2.x - nodel.x

39 dy = node2.y - nodel.y

40 ifdx!=0ordy!=0

41 distance = sqrt( dx*dx + dy*dy )

42 force = K_s*( distance- L)

43 fx = force*dx / distance

44 fy = force*dy / distance

45 nodel.force_x = nodel.force_x + fx

46 nodel.force_y = nodel.force_y + fy

47 node2.force_x = node2.force_x - fx
@ node2.force_y = node2.force_y - fy j

Vi)



Force-Directed Layout of Graph

52
53
54
55
56
57
58
59
60
61

60 // update positions \
51 fori=0to N-1

node = nodes][i]

dx = delta_t*node.force_x

dy = delta_t*node.force_y

displacementSquared = dx*dx + dy*dy

if ( displacementSquared > MAX_DISPLACEMENT_SQUARED )
s = sqrt( MAX_DISPLACEMENT_SQUARED / displacementSquared )
dx = dx *s
dy = dy*s

node.x = node.x + dx

node.y = node.y + dy j




Force-Directed Layout of Graph

Force-directed node-link diagrams of a 43-node, 80-edge network.
Left: a low spring constant makes the edges more flexible.
Right: a high spring constant makes them more stiff



Force-Directed Layout of Graph

e Limitations and Improvements

— Difficult to choose a proper delta t :If the time step delta_t
(used at lines 53, 54) is too small, many iterations will be
needed to converge. On the other hand, if the time step is too
large, or if the net forces generated are too large, the positions
of nodes may oscillate and never converge. Line 56 imposes a
limit on such movement.

— As a minor optimization, line 56 compares squares (i.e.,
displacementSquared>MAX_DISPLACEMENT SQUARED rather
than displacement >MAX_DISPLACEMENT), to avoid the cost of
computing a square root (unless the if succeeds)



Force-Directed Layout of Graph

* Limitations and Improvements

— The GEM[16] algorithm speeds up convergence by
decreasing a “temperature” parameter as the layout
progresses, allowing nodes to move larger distances earlier
in the process, and then constraining their movements
progressively toward the end.




Force-Directed Layout of Graph
* Limitations and Improvements

— A minor improvement to the above pseudocode
would be to detect if the distance between two nodes
is zero (by adding an else clause to the if statement at
line 20), and in that case to generate a small force
between the two nodes in some random direction, to
push them apart. Without this, if the two nodes
happen to have the same neighbors, they may remain
forever “stuck” to each other.




Force-Directed Layout of Graph

* Limitations and Improvements

— There are infinitely many pairs of (K7, Ks) values
that cause the layout to converge to the same
final “shape” (i.e., the same angles between
edges, differing only in edge lengths). A simpler
user interface would allow the user to change a
single parameter corresponding to a kind of ratio
of the strength of the two forces. The final shape
of the layout will depend on both Kr/Ks and L.



Force-Directed Layout of Graph

* |nthe pseudocode above, the computation of repulsive
forces is a bottleneck, since it requires O(N?) time, where
N is the number of nodes.

e Possible solution:

— We could eliminate the repulsive force, and instead simulate
springs of length L between all adjacent nodes, as well as
springs of length 2L between all nodes that are two edges
apart, and possibly springs of length 3L between nodes that are
three edges apart, etc., up to some limit. The extra springs
would help to spread apart the network, as did the original
repulsive forces. As long as the number of edges is not too high,
and there aren’t too many springs (low density graph), the
computation time may be much less than O(N <) .




Force-direct layout is one the most important graph layout
techniques!
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GEM, LGL, GRIP, FMA3, implemented in Tulip . Risis
https://en.wikipedia.org/wiki/Tulip_(software) A ji"w';

Force-Directed Drawing Algorithms. e
http://cs.brown.edu/people/rtamassi/gdhand
book/chapters/force-directed.pdf



Force-Directed Layout of Graph
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Force-directed node-link diagram of a
random 50-node, 200-edge graph.

Limitations and Improvements

As can be seen in the left example, the
multiple crossings of edges can make it unclear
when certain edges pass close to a node or are
connected to a node. Also, in such layouts
where the nodes are rather closely packed,
there isn’t much room left to display labels or
other information associated with each node

This leads to the next layout method




Basic Graph Layout Techniques

* Force-directed layout
[- Arc-diagram ]
e Adjacency matrix

e Circular layout




Arc Diagrams and Barycenter Ordering

* |tis sometimes useful to layout
the nodes of a network along a
straight line, in what might be
called linearization. With such
a layout, edges can be drawn as
circular arcs, yielding an arc
diagram.

* [tisimportant that the arcs in
the diagram all cover the same
angle, such as 180 degrees.
This way, an arc between nodes
n1l and n2 will extend outward
by a distance proportional to
the distance between nl and
n2, making it easier to
disambiguate the arcs.

Arc diagrams of a 43-node, 80-edge network



Arc Diagrams and Barycenter Ordering

To program a subroutine that draws an arc
covering angle 8 connecting points A =
(x,y1) and B = (x,y,), we need to find the
center C of the arc.

Image to the right shows a right triangle connecting
A, C and the midpoint between A and B. The length
of one side of the triangleisd = |y; — y,1/2, and

we also have tan (g) =d/e, hence C = (x +
e, 20 yz) where e = d/(tan (9))

An arc covering angle 6,
with center C



Arc Diagrams and Barycenter Ordering

Sorting the nodes:

We might order the nodes to reduce the total length of the arcs, making the topology

Left: with a random ordering
and 180-degree arcs.
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Arc Diagrams and Barycenter Ordering

Sorting the nodes:

We might order the nodes to reduce the total length of the arcs, making the topology

Left: with a random ordering
and 180-degree arcs.

Right: after applying the
barycenter heuristic to order
the nodes.

Same graph, two different
arc diagram layouts!




Arc Diagrams and Barycenter Ordering

Sorting the nodes:

We might order the nodes to reduce the total length of the arcs, making the topology
of the network easier to understand.

i Ui

Left: with a random ordering
and 180-degree arcs.
Middle: after applying the
barycenter heuristic to order
the nodes.

Right: after changing the
angles of the arcs to 100
degrees.
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Same graph, three different
arc diagram layouts!




Arc Diagrams and Barycenter Ordering

Sorting the nodes:

We might order the nodes to reduce the total length of the
arcs, making the topology of the network easier to
understand. There are many algorithms for computing such
an ordering. However, we will discuss an easy-to-

program technique called the barycenter heuristic.

The barycenter heuristic is an iterative technique where
we compute the average position (or “barycenter”) of the
neighbors of each node, and then sort the nodes by this
average position, and then repeat. Intuitively, this should
move nodes closer to their neighbors, making the arcs
shorter.

before after



Arc Diagrams and Barycenter Ordering

An implementation of barycenter heuristic method:

we will assume that the nodes[] array is fixed, and use a second data structure,
called orderedNodes|[ ], to store the current ordering of nodes to use for the arc
diagram.



Arc Diagrams and Barycenter Ordering

An implementation of barycenter heuristic method:

We will use the term index to refer to a node’s fixed location within nodes| ], and
position to refer to the node’s current location within orderedNodes| ]. Each
element of orderedNodes| ] will store an index and an average. For example, if
orderedNodes[3]-1ndex == 7, then orderedNodes|[3] corresponds to
nodes|7], and nodes| 7] is to be displayed at position 3 in the arc diagram. To
find the index corresponding to a given position, we can simply perform a look-up in
orderedNodes|[]. To perform an inverse look-up, we define a function that
computes the position p of a node given its index I:

function positionOfNode( 1 )
for p = 0 to N-1
iIT orderedNodes|[p]-index == 1
return p




Arc Diagrams and Barycenter Ordering

Given the positionOfNode(), we can implement the inner body of
the barycenter heuristic like the following:

// compute average position of neighbors
for 11 = 0 to N-1 function positionOfNode( i )
nodel = nodes[il] fohgzzg'ﬂhmfi S ]
- 4 = = 1 orderediNodes -1naex == 1
pl = pOiltlonOfNOde(ll) return p P
sum = p

for J = 0 to nodel.neighbors.length-1
12 = nodel.neighbors|[j]
node2 = nodes[i12]
p2 = positionOfNode(12)
10 sum = sum + p2
11  orderedNodes|[pl].-average = sum/ (nodel.neighbors.length + 1)
12
13 // sort the array according to the values of average
14 sort( orderedNodes, comparator )

©OCooO~NOOOUA~WNE

Lines 1 through 14 would be inside a loop that iterates several times,
hopefully until convergence to a near-optimal ordering.



Arc Diagrams and Barycenter Ordering

In practice, rather than converging, the algorithm sometimes enters a cycle. Thus, a
limit on the number of iterations should be imposed, stopping the loop if the limit is
reached (one rule of thumb is to limit the number of iterations to kN, where N is the
number of nodes and k is a small positive constant). Simple ways to improve the
algorithm would be to (1) detect if it has converged to an ordering that does not
change with additional iterations, and in such a case stop the loop; (2) detect cycles,

and similarly stop the loop.

Line 14 of the pseudo-code sorts the contents of orderedNodes| ]
according to a comparator defined by the calling code. Typical programming
environments provide an efficient O (NlogN) implementation of sort (such

as gsort in C).



Arc Diagrams and Barycenter Ordering

Other sorting of the nodes:

The nodes within an arc diagram might be sorted in other
ways. For example, if each node has an associated label,
and represents an object with a size, time-stamp, or other
attribute, the nodes in the arc diagram might be sorted
alphabetically, or by size, time, etc., helping the user to
analyze the network. Furthermore, every node has a
degree, as well as additional metrics that can be computed,
and any of these might be used to sort the nodes within
the linear ordering of an arc diagram.



Arc Diagrams and Barycenter Ordering

The linear arrangement of nodes in an arc diagram has many advantages.

As already mentioned, there is room to the right of each node for a long text label,
if desired. The space to the right (or left or bottom) of nodes can also be used to
display small graphics, such as line charts for each node, possibly to show a
guantity associated with the node that evolves with time.
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Arc Diagrams and Barycenter Ordering

The linear arrangement of nodes in an arc diagram has many advantages.

As already mentioned, there is room to the right of each node for a long text label,
if desired. The space to the right of nodes can also be used to display small
graphics, such as line charts for each node, possibly to show a quantity associated
with the node that evolves with time.

Arc diagrams can also be incorporated as an axis within a larger graphic or
visualization
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Variations of arc-diagram
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https://en.wikipedia.org/wiki/Arc_diagram



