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A set of points in the data that have the same scalar value
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What is an iso-contour?

A set of points in the data that have the same scalar value

What are the advantages of iso-contouring?

provide more detailed and precise depiction of the patterns in 2D
scalar fields.



Scalar Field Visualization — 3D

Cutting Planes & Iso-surfacing

Goal: know the simple cutting plane based visualization and the construction
of iso-surfacing
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Here, we focus on axis-aligned cut planes, assuming the
3D volume is also axis-aligned
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Here, we focus on axis-aligned cut planes, assuming the
3D volume is also axis-aligned

Let us concern with a uniform
volume (or 3D image), which
consists of individual voxels.
Its dimension is NX*NY*NZ.

y/ Now let us look at z dimension
7z=0

z=0 defines an XY planes with all voxels whose z
index is zero.
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Here, we focus on axis-aligned cut planes, assuming the
3D volume is also axis-aligned

ST Let us concern with a uniform
volume (or 3D image), which
consists of individual voxels.
Its dimension is NX*NY*NZ.

7z=NZ-1

z Now let us look at z dimension

with different z values (indices), you get
different XY planes with different z indices



Here, we focus on axis-aligned cut planes, assuming the
3D volume is also axis-aligned

: Let us concern with a uniform
L volume (or 3D image), which
consists of individual voxels.
Its dimension is NX*NY*NZ.

z Now let us look at z dimension

This shows an XY cut plane (perpendicular to z)
can be constructed by specifying a z value
between [0, NZ-1].



In VTK

Use the following to get the dimension of the 3D image data or structured grid

dim = reader.GetOutput() .GetDimensions()

# Create a mapper and assign it to the corresponding reader
xy_ plane_Colors = vtk.vtkImageMapToColors()

Xy _plane_Colors.SetlnputConnection(reader.GetOutputPort())
xy_ plane_ Colors.SetLookupTable(]Jyou color look up table])
xy_plane_Colors.Update()



In VTK

Use the following to get the dimension of the 3D image data or structured grid

dim = reader.GetOutput() .GetDimensions()

# Create a mapper and assign it to the corresponding reader
xy_plane_Colors = vtk.vtklImageMapToColors()

Xy _plane_Colors.SetlnputConnection(reader.GetOutputPort())
xy_ plane_ Colors.SetLookupTable(]Jyou color look up table])
xy_plane_Colors.Update()

# Create an 1mage actor for the XY plane

xy plane = vtk.vtklmageActor()

xy_plane.GetMapper() .SetlnputConnection(xy_plane Colors.GetOutputPort())
xy plane.SetDisplayExtent(0, dim[0]-1, O, dim[1]-1, current_zID,
current_zID)

# Current_zID 1s a user-input integer within the range of [0, zdim-1]
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YZ and XZ cut planes can be similarly added!!!

This is a task of your assignment 3.

You also need to play with the transfer function for the
color plots shown in the individual cut planes



Trilinear Interpolation
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This is useful, for example, if we have passed an oblique cutting plane
through a 3D mesh of points and are trying to interpolate scalar values
from the 3D mesh to the 2D plane.



Iso-surfacing



Iso-Surfaces: Applications
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A contour line is often called an iso-line, that is a line/curve of equal value. When
hiking, for example, if you could walk along a single contour line of the terrain,
you would remain at the same elevation.

An iso-surface is the same idea, only in 3D. It is a surface of equal value.

Sometimes the shapes of the iso-surfaces have a physical meaning, such as
bone, skin, different layers of earth etc. (e.g., the left example above).
Sometimes the shape just helps turn an abstract notion into something
physical to help us gain insight (e.g., the other two examples).



Iso-surface Construction:
Marching Cubes

Similar to Marching Squares, we go through individual cubes to construct a patch of
the iso-surface



* For simplicity, we shall work with zero level
(s*=0) iso-surface, and denote

There are EIGHT vertices, each can be positive

or negative - so there are 28 = 256 different cases!



These two are easy!

There is no portion of the iso-surface inside the cube!



Iso-surface Construction - One Positive Vertex - 1

.......................................................................................................................

Intersections with edges found by inverse linear interpolation
(as in iso-contouring)



Iso-surface Construction - One Positive Vertex - 2

Joining edge intersections across faces forms a triangle
as part of the iso-surface



Isosurface Construction -Positive Vertices at Opposite
Corners

.......................................................................................................................




Iso-surface Construction:
Marching Cubes

* One can work through all 256 cases in this way -
although it quickly becomes apparent that many cases
are similar.
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— 16 cases where one vertex has opposite sign from all the
rest



Iso-surface Construction:
Marching Cubes

* One can work through all 256 cases in this way -
although it quickly becomes apparent that many cases
are similar.

* For example:

— 2 cases where all are positive, or all negative, give no
isosurface

— 16 cases where one vertex has opposite sign from all the
rest

* In fact, there are only 15 topologically distinct
configurations
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Marching Cubes — Look-up Table

* Connecting vertices by triangles
— Triangles shouldn’t intersect

— To be a closed manifold:

* Each vertex used by a triangle
Ilfan”

e Each mesh edge used by 2
triangles (if inside grid cell) or 1
triangle (if on a grid face)

* Each mesh edge on the grid face
is shared between adjacent cells

* Look-up table
— 278=256 entries
— For each sign configuration, it Sign:“00010100”
stores indices of the grid edges Triangles: {{2,8,11},{4,7,10}}
whose vertices make up the
triangles




Additional Readings

* Marching Cubes:

* “Marching cubes: A high resolution 3D surface
construction algorithm”, by Lorensen and Cline (1987)
— over 17,000 citations on Google Scholar

° ”A Survey Of the mGrChing CUbes a/gorithm”; by
Newman and Yi (2006)

* Dual Contouring:

* “Dual contouring of hermite data”, by Ju et al. (2002)
— over 800 citations on Google Scholar

* “Manifold dual contouring”, by Schaefer et al. (2007)



In VTK

use the vtkMarchingCubes() filter and its
function SetValue(0, i1so-value)




