3D Scalar Field Visualization: Volume Rendering

Goal: understand what is DVR and why it is useful; how to compute DVR (important steps); how to perform raycasting

Iso-surfacing Could Be limited

- Iso-surfacing is "binary"
- point inside iso-surface?
- voxel contributes to image?
- Is a hard, distinct boundary necessarily appropriate for all the visualization tasks?

Iso-surfacing Could Be limited

- Iso-surfacing is "binary"
- point inside iso-surface?
- voxel contributes to image?
- Is a hard, distinct boundary necessarily appropriate for all the visualization tasks?

Slice

Isosurface

Volume Rendering

Iso-surfacing Could Be Limited

- Iso-surfacing poor for ...
- measured, "real-world" (noisy) data
- Amorphous (fog-like), "soft" objects

virtual angiography

bovine combustion simulation

What is Direct Volume Rendering

- Any rendering process which maps from volume data to an image without introducing binary distinctions / intermediate geometry
- How do you make the data visible?

What is Direct Volume Rendering

- Any rendering process which maps from volume data to an image without introducing binary distinctions / intermediate geometry
- How do you make the data visible? : Via Color and Opacity
- How to achieve that?

What is Direct Volume Rendering

- Any rendering process which maps from volume data to an image without introducing binary distinctions / intermediate geometry
- How do you make the data visible? : Via Color and Opacity
- How to achieve that?
- The data is considered to represent a semi-transparent light-emitting medium
- Approaches are based on the laws of physics (emission, absorption, scattering)
- The volume data is used as a whole (look inside, see interior structures). Think of color plots in 3D!

Volume Rendering is Useful

- Measured sources of volume data
- CT (computed tomography)
- PET (positron emission tomography)
- MRI (magnetic resonance imaging)
- Ultrasound
- Confocal Microscopy

Volume Rendering is Useful

- Synthetic sources of volume data
- CFD (computational fluid dynamics)
- Voxelization of discrete geometry

Data Representation

- Volume rendering techniques
- depend strongly on the grid type
- exist for both structured and unstructured grids
- are predominantly applied to uniform grids (3D images).
- for uniform grid, voxels are the basic unit

Data Representation

- Volume rendering techniques
- depend strongly on the grid type
- exist for both structured and unstructured grids
- are predominantly applied to uniform grids (3D images).
- for uniform grid, voxels are the basic unit
- Cell-centered data for uniform grids
- are attributed to cells (pixels, voxels) rather than nodes
- can also occur in (finite volume) CFD datasets
- are converted to node data (e.g., for iso-surfacing)
- by taking the dual grid (easy for uniform grids, n cells $->\mathrm{n}-1$ cells!)
- or by interpolating.

Important Concepts

- Interpolation
- trilinear common, others possible
- Color and opacity transfer function
- Turning scalar values to colors
- Gradient
- direction of fastest change
- Compositing
- "over operator"

Trilinear Interpolation

This is useful, for example, if we have passed an oblique cutting plane through a 3D mesh of points and are trying to interpolate scalar values from the 3D mesh to the 2D plane.

Color and Opacity Transfer Functions

- $C(f(p)), \boldsymbol{\alpha}(f(p))-p$ is a point in volume
- Functions of input data value $f(p)$
$-C(f), \alpha(f)$ - these are 1D functions
- Can include lighting effects
- C(f, $N(p), L)$ where $N(p)=\operatorname{grad}(f)$
- Derivatives of f
- C(f, grad $(f)), \alpha(f, \operatorname{grad}(f))$

Transfer Functions (TFs)

Human Tooth CT

Transfer Functions (TFs)

tooth

Transfer Functions (TFs)

tooth

Human Tooth CT

Transfer Functions (TFs)

Map data value f to color and opacity

tooth

Human Tooth CT

Transfer Functions (TFs)

Map data value f to color

Shading,
Compositing...
Human Tooth CT

tooth

Gradient

$$
\begin{gathered}
\nabla \mathrm{f}=(\mathrm{df} / \mathrm{dx}, \mathrm{df} / \mathrm{dy}, \mathrm{df} / \mathrm{dz}) \\
=((\mathrm{f}(1,0,0)-\mathrm{f}(-1,0,0)) / 2, \\
(\mathrm{f}(0,1,0)-\mathrm{f}(0,-1,0)) / 2, \\
(\mathrm{f}(0,0,1)-\mathrm{f}(0,0,-1)) / 2)
\end{gathered}
$$

Central difference

$$
\begin{aligned}
& \frac{d f}{d x}=\frac{f(x+h)-f(x-h)}{2 h} \\
& \frac{d f}{d y}=\frac{f(y+h)-f(y-h)}{2 h}
\end{aligned}
$$

Approximates "surface normal" (of iso-surface!)

Pipelines: Iso vs. Vol Ren

- The standard line - "no intermediate geometric structures"

Computational Strategies

- How can the basic ingredients be combined:
- Image Order (in screen coordinate)
- Ray casting (many options)
- Object Order (in world coordinate)
- splatting, texture-mapping
- Combination (neither)
- Shear-warp, Fourier

Computational Strategies

- How can the basic ingredients be combined:
- Image Order (in screen coordinate)
- Ray casting (many options)
- Object Order (in world coordinate)
- splatting, texture-mapping
- Combination (neither)
- Shear-warp, Fourier

Image Order

- Render image one pixel at a time

ray 1

Image Order

- Render image one pixel at a time

ray 1
ray 2

profile 2
For each pixel ...
- cast ray
- sampling along ray
- interpolate
- get colors/opacity
- composite

Raycastine

- Raycasting is historically the first volume rendering technique.
- It shares some similarity with raytracing:
- image-space method: main loop is over pixels of output image
- a view ray per pixel (or per sub-pixel) is traced backward
- samples are taken along the ray and composited to a single color

Image source: wikipedia

Raycastine

- Raycasting is historically the first volume rendering technique.
- It shares some similarity with raytracing:
- image-space method: main loop is over pixels of output image
- a view ray per pixel (or per sub-pixel) is traced backward
- samples are taken along the ray and composited to a single color
- Differences are:
- no secondary (reflected, shadow) rays
- transmitted ray is not refracted
- more elaborate compositing functions
- samples are taken at intervals (not at object intersections) inside volume

Image Order

- Render image one pixel at a time

For each pixel ...

- cast ray
- sampling along ray
- interpolate
- get colors/opacity
- composite

Raycasting

Sampling interval can be fixed or adjusted to voxels:

uniform sampling

2.0

1.0

0.1

Images generated using a ray casting method with three different step sizes (or sample rate).
Vase data courtesy of SUNY Stony Brook.

Image Order

- Render image one pixel at a time

ray 1
ray 2

profile 2
For each pixel ...
- cast ray
- sampling along ray
- interpolate
- get colors/opacity
- composite

Raycasting

Sampling interval can be fixed or adjusted to voxels:

Connectedness of "voxelized" rays:

6-connected (strongest)

18-connected

26-connected (weakest)

Accelerate the sampling and interpolation

Line rasterization process

If we still increase along x, what will happen?

Line rasterization process

If we still increase along x, what will happen?

Line rasterization process

There will be many gaps between the pixels!!!

Line rasterization process

The correct way is to increase along y!!!

Line rasterization process

Lesson learned? We have to march along the axis that is most parallel to the line!

Ray Templates

A ray template (Yagel 1991) is a voxelized ray which by translating generates all view rays.
Ray templates speed up the sampling process, but are obviously restricted to orthographic views.

Algorithm:

- Rename volume axes such that z is the one "most orthogonal" to the image plane (without loss of generality).
- Create ray template with 3D version of line pixelized algorithm, giving 26connected rays which are functional in z coordinate (have exactly one voxel per z-layer)
- Translate ray template in base plane, not in image plane

Accelerate the sampling and interpolation

Ray Templates

Incorrect: translated in image plane

Correct: translated in base plane

Image Order

- Render image one pixel at a time

For each pixel ...

- cast ray
- sampling along ray
- interpolate
- get colors/opacity
- composite

Important topic for the later

Image Order

- Render image one pixel at a time

ray 1
ray 2

profile 2
For each pixel ...
- cast ray
- sampling along ray
- interpolate
- get colors/opacity
- composite

Compositing

Two simple compositing functions can be used for previewing:

- Maximum intensity projection (MIP):
- maximum of sampled values
- result resembles X-ray image

Source: wikipedia

Compositing

Two simple compositing functions can be used for previewing:

- Maximum intensity projection (MIP):
- maximum of sampled values
- result resembles X-ray image
- Local maximum intensity projection (LMIP):
- first local maximum which is above a prescribed threshold
- approximates occlusion
- faster \& better(!)

Compositing

Comparison of techniques (Y. Sato, dataset of a left kidney): Iso-surface vs. raycasting with MIP, LMIP, $\boldsymbol{\alpha}$-compositing
fast
(1 parameter)
-
lighting
occlusion (transparency)

fast
parameter free full data range noise insensitive

Compositing

Comparison of techniques (Y. Sato, dataset of a left kidney): Iso-surface vs. raycasting with MIP, LMIP, α-compositing

fast
(1 parameter)
-
lighting
occlusion (transparency) -

fast
parameter free full data range noise insensitive

- -
- (occlusion)

fast
(1 parameter) full data range noise insensitive
-
-

-
-
full data range noise insensitive lighting occlusion transparency

α-compositing

Assume that each sample on a view ray has color and opacity:

$$
\left(C_{0}, \alpha_{0}\right), \cdots,\left(C_{N}, \alpha_{N}\right) \quad C_{i} \in[0,1]^{3}, \alpha_{i} \in[0,1]
$$

where the $0^{\text {th }}$ sample is next to the camera and the $\mathrm{N}^{\text {th }}$ one is a (fully opaque) background sample:

$$
\begin{aligned}
& C_{N}=(r, g, b)_{\text {background }} \\
& \alpha_{N}=1
\end{aligned}
$$

α-compositing

Assume that each sample on a view ray has color and opacity:

$$
\left(C_{0}, \alpha_{0}\right), \cdots,\left(C_{N}, \alpha_{N}\right) \quad C_{i} \in[0,1]^{3}, \alpha_{i} \in[0,1]
$$

where the $0^{\text {th }}$ sample is next to the camera and the $\mathrm{N}^{\text {th }}$ one is a (fully opaque) background sample:

$$
\begin{aligned}
& C_{N}=(r, g, b)_{\text {background }} \\
& \alpha_{N}=1
\end{aligned}
$$

α-compositing can be defined recursively:
Let C_{f}^{b} denote the composite color of samples $f, f+1, \ldots, b$
Recursion formula for back-to-front compositing:

$$
C_{b}^{b}=\alpha_{b} C_{b} \quad \text { background color and opacity }
$$

Composite color of $C^{b}=a^{b}$ Composite color of the the current iteration
Composite opacity $\longrightarrow \alpha_{f}^{b}=\alpha_{f}+\left(1-\alpha_{f}\right) \alpha_{f+1}{ }^{b}$

α-compositing

The first few generations, written with transparency $T_{i}=1-\alpha_{i}$

$$
\begin{aligned}
& C_{b}^{b}=\alpha_{b} C_{b} \\
& C_{b-1}^{b}=\alpha_{b-1} C_{b-1}+\alpha_{b} C_{b} T_{b-1} \\
& C_{b-2}^{b}=\alpha_{b-2} C_{b-2}+\alpha_{b-1} C_{b-1} T_{b-2}+\alpha_{b} C_{b} T_{b-1} T_{b-2} \\
& C_{b-3}^{b}=\alpha_{b-3} C_{b-3}+\alpha_{b-2} C_{b-2} T_{b-3}+\alpha_{b-1} C_{b-1} T_{b-2} T_{b-3}+\alpha_{b} C_{b} T_{b-1} T_{b-2} T_{b-3}
\end{aligned}
$$

reveal the closed formula for α-compositing:

$$
C_{f}^{b}=\sum_{i=f}^{b} \alpha_{i} C_{i} \prod_{j=f}^{i-1} T_{j}
$$

α-compositing

front-to-back compositing can be derived from the closed formula:
Let T_{f}^{b} denote the composite transparency of samples $f, f+1, \ldots, b$

$$
T_{f}^{b}=\prod_{j=f}^{b} T_{j}
$$

Then the simultaneous recursion for front-to-back compositing is:

$$
\begin{aligned}
C_{f}^{f} & =\alpha_{f} C_{f} \\
T_{f}^{f} & =1-\alpha_{f} \\
C_{f}^{b+1} & =C_{f}^{b}+\alpha_{b+1} C_{b+1} T_{f}^{b} \\
T_{f}^{b+1} & =\left(1-\alpha_{b+1}\right) T_{f}^{b}
\end{aligned}
$$

α-compositing

front-to-back compositing can be derived from the closed formula:
Let T_{f}^{b} denote the composite transparency of samples $f, f+1, \ldots, b$

$$
T_{f}^{b}=\prod_{j=f}^{b} T_{j}
$$

Then the simultaneous recursion for front-to-back compositing is:

$$
\begin{aligned}
C_{f}^{f} & =\alpha_{f} C_{f} \\
T_{f}^{f} & =1-\alpha_{f} \\
C_{f}^{b+1} & =C_{f}^{b}+\alpha_{b+1} C_{b+1} T_{f}^{b} \\
T_{f}^{b+1} & =\left(1-\alpha_{b+1}\right) T_{f}^{b}
\end{aligned}
$$

Advantage of front-to-back compositing: early ray termination when composite transparency falls below a threshold.

Compositing Example I

Compositing Example I

Compositing Example II

$C_{f}=(0,1,1)$
$a_{f}=0.4$
Coseres)
$C_{b}=(1,0,0)$
$a_{b}=0.9$
$\angle C_{f}=(0,1,0)$
$a_{f}=0.4$
$c_{\text {red }}=0.4 * 0+(1-0.4) \star 0.9 * 1=0.6 * 0.9=0.54$
$c_{\text {green }}=0.4^{\star} 1+(1-0.4)^{\star} 0.9^{\star} 0=0.4$
$c_{\text {blue }}=0.4^{\star} 0+(1-0.4)^{\star} 0.9^{\star} 0=0$
$a=0.4+(1-0.4) *(0.9)=0.4+0.6 * 0.9)$
$c_{b}=(0.54,0.4,0)$
$a_{b}=0.94$
$\mathrm{c}=\mathrm{a}_{\mathrm{f}} * \mathrm{Cff}_{\mathrm{f}}+\left(1-\mathrm{a}_{\mathrm{f}}\right) * \mathrm{ab}_{\mathrm{b}} * \mathrm{Cb}_{\mathrm{b}}$
$a=a_{f}+\left(1-a_{f}\right) * a_{b}$
$\mathrm{C}_{\mathrm{f}}=(0,1,0)$
$a_{f}=0.4$
$c_{\text {red }}=0.4 * 0+(1-0.4) \star 0.9 * 1=0.6 * 0.9=0.54$
$c_{\text {green }}=0.4^{\star} 1+(1-0.4)^{\star} 0.9^{\star} 0=0.4$
$c_{\text {blue }}=0.4^{\star} 0+(1-0.4)^{\star} 0.9^{\star} 0=0$
$\left.a=0.4+(1-0.4)^{\star}(0.9)=0.4+0.6^{\star} 0.9\right)$
$c_{b}=(0.54,0.4,0)$
$a_{b}=0.94$

Compositing Example II

$$
\begin{aligned}
& C_{f}=(0,1,1) \\
& a_{f}=0.4 \\
& \mathrm{Cf}_{\mathrm{f}}=(0,1,0) \\
& \mathrm{a}_{\mathrm{f}}=0.4 \\
& c_{\text {red }}=0.4^{\star} 0+(1-0.4)^{\star} 0.9^{\star} 1=0.6^{*} 0.9=0.54 \\
& c_{\text {green }}=0.4^{\star} 1+(1-0.4)^{*} 0.9^{\star} 0=0.4 \\
& c_{\text {blue }}=0.4 \star 0+(1-0.4)^{*} 0.9 * 0=0 \\
& \left.a=0.4+(1-0.4)^{\star}(0.9)=0.4+0.6^{*} 0.9\right) \\
& c_{b}=(0.54,0.4,0) \\
& a_{b}=0.94 \\
& C_{b}=(1,0,0) \quad c_{\text {red }}=0.4^{*} 0+(1-0.4)^{\star 0.94^{*} 0.54=0.6^{*} 0.94^{\star} .54=0.30} \\
& a_{b}=0.9 \\
& C_{\text {green }}=0.4^{\star 1}+(1-0.4)^{\star} 0.94^{\star} 0.4=0.6^{*} 0.94^{\star} .4=0.23 \\
& c_{\text {blue }}=0.4^{\star} 1+(1-0.4)^{\star} 0.94^{\star} 0=.4 \\
& \left.a=0.4+(1-0.4)^{\star}(0.94)=0.4+0.6^{*} 0.94\right)=.964 \\
& c=(0.3,0.23,0.4) \\
& a=0.964
\end{aligned}
$$

Compositing Example II

$\mathrm{Cf}_{\mathrm{f}}=(0,1,1)$

$a_{f}=0.4$
\cdots

$$
\angle C_{f}=(0,1,0)
$$

$c=a_{f}^{*} C_{f}+\left(1-a_{f}\right)^{*} a_{b}{ }^{*} c_{b}$
 $a=a_{f}+\left(1-a_{t}\right) * a_{b}$

$$
a_{f}=0.4
$$

$$
c_{\text {red }}=0.4^{*} 0+(1-0.4)^{\star} 0.9^{*} 1=0.6^{*} 0.9=0.54
$$

$$
c_{\text {green }}=0.4^{\star} 1+(1-0.4)^{\star} 0.9 \star 0=0.4
$$

$$
c_{\text {blue }}=0.4^{\star} 1+(1-0.4) \star 0.9 \star 0=0.4
$$

$$
\left.a=0.4+(1-0.4)^{\star}(0.9)=0.4+0.6^{\star 0} 0.9\right)
$$

$$
c_{b}=(0.54,0.4,0.4)
$$

$$
a_{b}=0.94
$$

Compositing Example II

$$
\begin{aligned}
& \mathrm{Cf}_{\mathrm{f}}=(0,1,1) \\
& a_{f}=0.4 \\
& \begin{array}{l}
c=a_{r} *_{i}+\left(1-a_{t}\right) * a_{b} * c_{b} \\
a=a_{f}+\left(1-a_{f}\right) * a_{b}
\end{array} \\
& \angle C_{f}=(0,1,0) \\
& a_{f}=0.4 \\
& c_{\text {red }}=0.4 * 0+(1-0.4)^{\star} 0.9 * 1=0.6^{*} 0.9=0.54 \\
& c_{\text {green }}=0.4^{\star} 1+(1-0.4)^{\star} 0.9^{\star} 0=0.4 \\
& c_{\text {blue }}=0.4 * 1+(1-0.4) * 0.9 * 0=0.4 \\
& \left.a=0.4+(1-0.4)^{\star}(0.9)=0.4+0.6^{*} 0.9\right) \\
& c_{b}=(0.54,0.4,0.4) \\
& \mathrm{a}_{\mathrm{b}}=0.94 \\
& C_{b}=(1,0,0) \quad c_{\text {red }}=0.4^{\star} 0+(1-0.4)^{\star} 0.94^{\star} 0.54=0.6^{\star} 0.94^{\star} .54=0.30 \\
& a_{b}=0.9 \\
& c_{\text {green }}=0.4^{\star} 1+(1-0.4)^{\star} 0.94^{\star} 0.4=0.6^{\star} 0.94^{\star} .4=0.23 \\
& c_{\text {blue }}=0.4 \star 1+(1-0.4)^{\star} 0.94^{\star} 0.4=.23 \\
& \left.a=0.4+(1-0.4)^{\star}(0.94)=0.4+0.6^{\star} 0.94\right)=.964 \\
& c=(0.3,0.23,0.23) \\
& a=0.964
\end{aligned}
$$

Compositing Orders

$$
\begin{aligned}
& c=a_{f}^{*} C_{f}+\left(1-a_{f}\right) * a_{b} * C_{b} \\
& a=a_{f}+\left(1-a_{f}\right) * a_{b}
\end{aligned}
$$

Order Matters!

$$
\begin{array}{ll}
c=(0.3,0.23,0.4) & c=(0.3,0.23,0.23) \\
a=0.964 & a=0.964
\end{array}
$$

The Emission-Absorption Model

How realistic is α-compositing?
The emission-absorption model (Sabella 1988)

The Emission-Absorption Model

 How realistic is α-compositing?The emission-absorption model (Sabella 1988)

Initial intensity at s_{0}

$$
I(s)=I\left(s_{0}\right)
$$

Without absorption all the initial radiant energy would reach the point s.

The Emission-Absorption Model

 How realistic is α-compositing?The emission-absorption model (Sabella 1988)

Initial intensity at s_{0}

$$
I(s)=I\left(s_{0}\right) e^{-\tau\left(s, s_{0}\right)}
$$

The Emission-Absorption Model

 How realistic is α-compositing?The emission-absorption model (Sabella 1988)

Initial intensity at s_{0}

$$
I(s)=I\left(s_{0}\right) e^{-\tau\left(s, s_{0}\right)}
$$

Optical depth τ

Absorption κ

$$
\tau\left(s_{1}, s_{2}\right)=\int_{s_{1}}^{s_{2}} \kappa(s) d s
$$

The Emission-Absorption Model

 How realistic is α-compositing?The emission-absorption model (Sabella 1988)

The Emission-Absorption Model

 How realistic is α-compositing?The emission-absorption model (Sabella 1988)

The Emission-Absorption Model

 How realistic is α-compositing?The emission-absorption model (Sabella 1988)

Numerical Solution

We need to first estimate the optical depth by taking into account the absorption property of the material that the ray is traveling through.

$$
\text { Optical depth: } \tau(0, t)=\int_{0}^{t} \kappa(\hat{t}) d \hat{t}
$$

Numerical Solution

Optical depth: $\tau(0, t)=\int_{0}^{t} \kappa(\hat{t}) d \hat{t}$
Approximate Integral by Riemann sum:

$$
\tau(0, t) \approx \sum_{i=0}^{\lfloor t / \Delta t\rfloor} \kappa(i \cdot \Delta t) \Delta t
$$

The area underneath the smooth curve $\boldsymbol{\kappa}(\boldsymbol{t})$ can be approximated as the sum of the areas of the individual rectangles.

Numerical Solution

Numerical Solution

Now we introduce opacity

$$
1-A_{i}=e^{-\kappa(i \cdot \Delta t) \Delta t}
$$

Numerical Solution

Numerical Solution

The area of each rectangle approximates

Numerical Solution

$$
\begin{gathered}
e^{-\tilde{\tau}(0, t)}=\prod_{i=0}^{\lfloor t / \Delta t\rfloor}\left(1-A_{i}\right) \\
q(t) \approx C_{i}=c(i \cdot \Delta t) \Delta t \\
C_{f}^{b}=\sum_{i=f}^{b} \alpha_{i} C_{i} \prod_{j=f}^{i-1} T_{j} \quad \tilde{C}=\sum_{i=0}^{\lfloor T / \Delta t\rfloor} C_{i} \prod_{j=0}^{i-1}\left(1-A_{j}\right)
\end{gathered}
$$

can be computed recursively/iteratively!

Numerical Solution

Note: we just changed the convention from $i=0$ is at the front of the volume (previous slides) to $i=0$ is at the back of the volume! can be computed recursively/iteratively:

$$
C_{i}^{\prime}=\left\{\begin{array}{l}
C_{i}+\left(1-A_{i}\right) C_{i-1}^{\prime} \\
C_{i}=A_{i} C_{\text {pure_color }}
\end{array}\right.
$$

Numerical Solution

can be computed recursively/iteratively:

Numerical Solution

Back-to-front
compositing

$$
C_{i}^{\prime}=C_{i}+\left(1-A_{i}\right) C_{i-1}^{\prime}
$$

Iterate from $i=0$ (back) to $i=m a x$ (front): i increases
Front-to-back compositing

$$
\begin{aligned}
& C_{i}^{\prime}=C_{i+1}^{\prime}+\left(1-A_{i+1}^{\prime}\right) C_{i} \\
& A_{i}^{\prime}=A_{i+1}^{\prime}+\left(1-A_{i+1}^{\prime}\right) A_{i}
\end{aligned}
$$

Iterate from $i=m a x$ (front) to $i=0$ (back) : i decreases

Other Compositing - Average

Intensity

Depth

Synthetic Reprojection

