
What is direct volume rendering?



What is the difference between iso-surfacing and volume rendering?

What is direct volume rendering?

Any rendering process which maps from volume data to an image 
without introducing binary distinctions / intermediate geometry, i.e., 
using color and opacity



What important concepts/techniques are needed for volume rendering?



What important concepts/techniques are needed for volume rendering?

• Interpolation
• Color/opacity transfer functions
• Color/opacity composition
• Gradient (optional for transfer function design and 

enhancing rendering quality)



What is the process of Raycasting?



What is the process of Raycasting?

For each pixel ...
- cast ray
- sampling along ray
- interpolate
- get colors/opacity
- composite



What color and opacity compositions strategies are there?



What color and opacity compositions strategies are there?

Maximum intensity projection (MIP)
Local maximum intensity projection (LMIP)
Average
\alpha-composition



How does \alpha-composition work?



How does \alpha-composition work?

Recursively compose/blend colors and opacities in order (either 
back-to-front or front-to-back) in a linear fashion. 

c = af*cf + (1 - af)*ab*cb

a = af + (1 - af)*ab

What physical model is \alpha-composition built on?



How does \alpha-composition work?

Recursively compose/blend colors and opacities in order (either 
back-to-front or front-to-back) in a linear fashion. 

c = af*cf + (1 - af)*ab*cb

a = af + (1 - af)*ab

What physical model is \alpha-composition built on?

Emission-absorption



Direct Volume Rendering:
Splatting & Texture-based 



Computational Strategies

• How can the basic ingredients be combined:
• Image Order

• Ray casting (many options)

• Object Order (in world coordinate) 
• splatting, texture-mapping

• Combination (neither)
• Shear-warp, Fourier



Object Order

• Render image one voxel at a time

for each voxel ...
- get color/opacity
- determine image

contribution
- composite



Object Order

• Render image one voxel at a time

for each voxel ...
- get color/opacity
- determine image

contribution
- composite



Splatting-literature

• Lee Westover - Vis 1989; SIGGRAPH 1990
• Object order method
• Front-To-Back or Back-To-Front
• Main idea:

Throw voxels to the image

• Many improvements since then!
– Crawfis’93: textured splats
– Swan’96, Mueller’97: anti-aliasing
– Mueller’98: image-aligned sheet-based splatting
– Mueller’99: post-classified splatting
– Huang’00: new splat primitive: FastSplats



Splatting
Instead of asking which data samples contribute to a pixel value, ask, to 

which pixel values does a data sample contribute?
• Ray casting: pixel value computed from multiple data samples
• Splatting: multiple pixel values (partially) computed from a single data 

sample

Raycasting Splatting
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sample

Idea:  contribute every voxel to the image
• projection from voxel: splat
• composite in image space



Splatting
Instead of asking which data samples contribute to a pixel value, ask, to 

which pixel values does a data sample contribute?
• Ray casting: pixel value computed from multiple data samples
• Splatting: multiple pixel values (partially) computed from a single data 

sample

Idea:  contribute every voxel to the image
• projection from voxel: splat
• composite in image space

Props 
• high-quality, why?
Cons
• relatively costly ->relatively slow, why?



Splatting - Footprint

• Typically, process from closest voxel to furthest voxel (front-to-
back)

• The important step is splat. A biggest problem: determination 
of voxel’s projected area called its  footprint

for each voxel ...
- get color/opacity
- determine image

contribution
- composite



A natural way to compute the footprint is to 
add a filter kernel, which determines how 
much contribution this voxel makes to 
those pixels nearby the projected pixel 
corresponding to the center of the voxel.

Draw each voxel as a cloud of points 
(footprint) that spreads the voxel 
contribution across multiple pixels

Splatting - Footprint



A natural way to compute the footprint is to 
add a filter kernel, which determines how 
much contribution this voxel makes to 
those pixels nearby the projected pixel 
corresponding to the center of the voxel.

Draw each voxel as a cloud of points 
(footprint) that spreads the voxel 
contribution across multiple pixels

Different pixels receive different amount of contribution 
computed as the multiplication of some weight with the 
original color or other value.

Splatting - Footprint



• Footprint geometry
• Orthographic projection: footprint is 

independent of the viewpoint
• Pre integration of footprint (like a 

template)

Splatting - Footprint

image plane



• Footprint geometry
• Orthographic projection: footprint is 

independent of the viewpoint
• Pre integration of footprint (like a 

template)

• Perspective projection: footprint is 
elliptical

• additional computation of the 
orientation of the ellipse

Splatting - Footprint



• Footprint geometry
• Orthographic projection: footprint is 

independent of the viewpoint
• Pre integration of footprint (like a 

template)

• Perspective projection: footprint is 
elliptical

• additional computation of the 
orientation of the ellipse

• Importance of choosing footprint 
size!
• Larger footprint increases blurring and 

used for high pixel-to-voxel ratio

Splatting - Footprint



• Volume = field of 3D interpolation kernels
• One kernel at each grid voxel

• Each kernel leaves a 2D footprint on screen

• Voxel contribution = footprint ·(C, opacity)

• Weighted footprints accumulate into image
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• Volume = field of 3D interpolation kernels
• One kernel at each grid voxel

• Each kernel leaves a 2D footprint on screen

• Voxel contribution = footprint ·(C, opacity)

• Weighted footprints accumulate into image

voxel kernels screen footprints = splats

screen
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• Volume = field of 3D interpolation kernels
• One kernel at each grid voxel

• Each kernel leaves a 2D footprint on screen

• Voxel contribution = footprint ·(C, opacity)

• Weighted footprints accumulate into image

voxel kernels screen footprints = splats

screen

Splatting - Footprint



Splatting - Compositing 

• Voxel kernels are added within sheets
• Sheets are composited front-to-back
• Sheets = volume slices most parallel to the image 

plane (i.e., base plane!)

image plane at 70°image plane at 30°

volume slices

x

y
z

volume slices



Splatting - Implementation

sheet buffer

compositing buffer

volume slices

image plane

• Volume

z=0
z=i



Splatting - Implementation

sheet buffer

compositing buffer

volume slices

image plane

• Add voxel kernels within first sheet



Splatting - Implementation

sheet buffer

compositing buffer

volume slices

image plane

• Transfer to compositing buffer

(Color*opacity)



Splatting - Implementation

sheet buffer

compositing buffer

volume slices

image plane

• Add voxel kernels within second sheet



Splatting - Implementation

sheet buffer

compositing buffer

volume slices

image plane

• Composite sheet with compositing buffer

(Color*opacity)

c = af*cf + (1 - af)*ab*cb
a = af + (1 - af)*ab



Splatting - Implementation

sheet buffer

compositing buffer

volume slices

image plane

• Add voxel kernels within third sheet



Splatting - Implementation

sheet buffer

compositing buffer

volume slices

image plane

• Composite sheet with compositing buffer

(Color*opacity)

c = af*cf + (1 - af)*ab*cb
a = af + (1 - af)*ab



Problems Early Implementation – Axis 
Aligned Splatting

• Inaccurate compositing, result in color bleeding 
and popping artifacts

Part of this voxel

gets composited before
part of this voxel



Image-Aligned Sheet-Buffer 

sheet buffer

compositing buffer

• Slicing slab cuts kernels 
into sections

• Kernel sections are 
added into sheet-buffer  

• Sheet-buffers are               
composited

image plane
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Image-Aligned Sheet-Buffer 

sheet buffer

compositing buffer

• Slicing slab cuts kernels 
into sections

• Kernel sections are 
added into sheet-buffer  

• Sheet-buffers are               
composited

image plane



Splatting
• Simple extension to 

volume data without grids
• Scattered data with 

kernels
• Example: SPH (smooth 

particle hydrodynamics)
• Needs sorting of sample 

points (e.g., front to 
back)



Splatting – Images



Splatting – Conclusion
• Pros:

• high-quality
• works for anisotropic data (dz > dx = dy)
• perspective projection possible
• adaptive rendering possible

• Cons:
• relatively slow
• yields somewhat blurry images (in original)



Splatting vs Ray Casting
Splatting:

• Object-order: FOR each voxel (x,y,z) DO
• sample volume at (x,y,z) using filter kernel
• project reconstruction result to x-y image plane (leaving 

footprint)

• FOR each pixel (x,y) DO:
• composite (color, opacity) result of all footprints

Ray Casting:

• Image-order: FOR each pixel (x,y) DO
• cast ray into volume
• FOR each sample point along ray (x,y,z)

• Sample volume at (x,y,z) using filter kernel
• composite (color, opacity) in image space at pixel 

(x,y)

What parameters control the DVR quality for each method?



Direct Volume Rendering:
Texture-based 



Texture in Graphics
How does it work?

Texture mapping can large 
enhance the reality of the 3D 
objects

Image source: Google image [EuroGraphics 2006 Tutorial]



Texture-based Volume Rendering
• Volume rendering by 2D texture mapping:

– use planes parallel to base plane (front face of volume which is "most 
orthogonal" to view ray). This is an axis-aligned approach!

Image credit: H.W. Shen Ohio State Univ.
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Texture-based Volume Rendering
• Volume rendering by 2D texture mapping:

– use planes parallel to base plane (front face of volume which is "most 
orthogonal" to view ray). This is an axis-aligned approach!

– draw textured rectangles, using bilinear interpolation filter
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Texture-based Volume Rendering
• Volume rendering by 2D texture mapping:

– use planes parallel to base plane (front face of volume which is "most 
orthogonal" to view ray). This is an axis-aligned approach!

– draw textured rectangles, using bilinear interpolation filter
– render back-to-front, using α-blending for the α-compositingIs texture-based volume rendering an object-order or 

image-order approach? Why?



Texture-based Volume Rendering
• Volume rendering by 2D texture mapping:

– use planes parallel to base plane (front face of volume which is "most 
orthogonal" to view ray). This is an axis-aligned approach!

– draw textured rectangles, using bilinear interpolation filter
– render back-to-front, using α-blending for the α-compositing

Essentially, a simplified version of splatting without 
splatting! 



Texture-based Volume Rendering

• Volume rendering by 3D texture mapping:
– use the voxel data as the 3D texture
– render an arbitrary number of slices (eg. 100 or 1000) parallel to 

image plane (3- to 6-sided polygons)
– back-to-front compositing as in 2D texture method
Limited by size of texture memory.



Slicing

color
opacity

object (color, opacity) Similar to ray-casting 
with simultaneous rays1.0



Effect of the Sample Rate
Slices

View 
direction

1 slice

5 slices

20 slices 45 slices 85 slices 170 slices



Slice Based Problems?
• Does not perform correct 
– Illumination
– Accumulation - but can get close

• Can not easily add correct illumination and 
shadowing

– See the Van Gelder paper for their addition for illumination
• Stored in LUT quantized normal vector directions



Additional Reading
For Ray casting

• Marc Levoy: “Display of Surfaces from Volume Data” in IEEE Computer Graphics & Applications, 
Vol. 8, No. 3, June 1988

• Data Visualization, Principles and Practice, Chapter 10 Volume Visualization, by A. Telea, AK 
Peters, 2008

For splatting, please see,

• Data Visualization, Principles and Practice, Chapter 9, Image Visualization, by A Telea, AK Peters 
2008

• Footprint Evaluation for Volume Rendering, by Lee Westover, in ACM Computer Graphics Volume 
24, Number 4, August 1990, pages, 367-376

For shear-warp factorization, please see,

• Philippe Lacroute and Marc Levoy, Fast Volume Rendering Using a Shear-Warp Factorization of the 
Viewing Transformation, Proc. SIGGRAPH '94, Orlando, Florida, July, 1994, pp. 451-458
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