
What is direct volume rendering?

What is the difference between iso-surfacing and volume rendering?

What is direct volume rendering?

Any rendering process which maps from volume data to an image
without introducing binary distinctions / intermediate geometry, i.e.,
using color and opacity

What important concepts/techniques are needed for volume rendering?

What important concepts/techniques are needed for volume rendering?

• Interpolation
• Color/opacity transfer functions
• Color/opacity composition
• Gradient (optional for transfer function design and

enhancing rendering quality)

What is the process of Raycasting?

What is the process of Raycasting?

For each pixel ...
- cast ray
- sampling along ray
- interpolate
- get colors/opacity
- composite

What color and opacity compositions strategies are there?

What color and opacity compositions strategies are there?

Maximum intensity projection (MIP)
Local maximum intensity projection (LMIP)
Average
\alpha-composition

How does \alpha-composition work?

How does \alpha-composition work?

Recursively compose/blend colors and opacities in order (either
back-to-front or front-to-back) in a linear fashion.

c = af*cf + (1 - af)*ab*cb

a = af + (1 - af)*ab

What physical model is \alpha-composition built on?

How does \alpha-composition work?

Recursively compose/blend colors and opacities in order (either
back-to-front or front-to-back) in a linear fashion.

c = af*cf + (1 - af)*ab*cb

a = af + (1 - af)*ab

What physical model is \alpha-composition built on?

Emission-absorption

Direct Volume Rendering:
Splatting & Texture-based

Computational Strategies

• How can the basic ingredients be combined:
• Image Order

• Ray casting (many options)

• Object Order (in world coordinate)
• splatting, texture-mapping

• Combination (neither)
• Shear-warp, Fourier

Object Order

• Render image one voxel at a time

for each voxel ...
- get color/opacity
- determine image

contribution
- composite

Object Order

• Render image one voxel at a time

for each voxel ...
- get color/opacity
- determine image

contribution
- composite

Splatting-literature

• Lee Westover - Vis 1989; SIGGRAPH 1990
• Object order method
• Front-To-Back or Back-To-Front
• Main idea:

Throw voxels to the image

• Many improvements since then!
– Crawfis’93: textured splats
– Swan’96, Mueller’97: anti-aliasing
– Mueller’98: image-aligned sheet-based splatting
– Mueller’99: post-classified splatting
– Huang’00: new splat primitive: FastSplats

Splatting
Instead of asking which data samples contribute to a pixel value, ask, to

which pixel values does a data sample contribute?
• Ray casting: pixel value computed from multiple data samples
• Splatting: multiple pixel values (partially) computed from a single data

sample

Raycasting Splatting

Splatting
Instead of asking which data samples contribute to a pixel value, ask, to

which pixel values does a data sample contribute?
• Ray casting: pixel value computed from multiple data samples
• Splatting: multiple pixel values (partially) computed from a single data

sample

Idea: contribute every voxel to the image
• projection from voxel: splat
• composite in image space

Splatting
Instead of asking which data samples contribute to a pixel value, ask, to

which pixel values does a data sample contribute?
• Ray casting: pixel value computed from multiple data samples
• Splatting: multiple pixel values (partially) computed from a single data

sample

Idea: contribute every voxel to the image
• projection from voxel: splat
• composite in image space

Props
• high-quality, why?
Cons
• relatively costly ->relatively slow, why?

Splatting - Footprint

• Typically, process from closest voxel to furthest voxel (front-to-
back)

• The important step is splat. A biggest problem: determination
of voxel’s projected area called its footprint

for each voxel ...
- get color/opacity
- determine image

contribution
- composite

A natural way to compute the footprint is to
add a filter kernel, which determines how
much contribution this voxel makes to
those pixels nearby the projected pixel
corresponding to the center of the voxel.

Draw each voxel as a cloud of points
(footprint) that spreads the voxel
contribution across multiple pixels

Splatting - Footprint

A natural way to compute the footprint is to
add a filter kernel, which determines how
much contribution this voxel makes to
those pixels nearby the projected pixel
corresponding to the center of the voxel.

Draw each voxel as a cloud of points
(footprint) that spreads the voxel
contribution across multiple pixels

Different pixels receive different amount of contribution
computed as the multiplication of some weight with the
original color or other value.

Splatting - Footprint

• Footprint geometry
• Orthographic projection: footprint is

independent of the viewpoint
• Pre integration of footprint (like a

template)

Splatting - Footprint

image plane

• Footprint geometry
• Orthographic projection: footprint is

independent of the viewpoint
• Pre integration of footprint (like a

template)

• Perspective projection: footprint is
elliptical

• additional computation of the
orientation of the ellipse

Splatting - Footprint

• Footprint geometry
• Orthographic projection: footprint is

independent of the viewpoint
• Pre integration of footprint (like a

template)

• Perspective projection: footprint is
elliptical

• additional computation of the
orientation of the ellipse

• Importance of choosing footprint
size!
• Larger footprint increases blurring and

used for high pixel-to-voxel ratio

Splatting - Footprint

• Volume = field of 3D interpolation kernels
• One kernel at each grid voxel

• Each kernel leaves a 2D footprint on screen

• Voxel contribution = footprint ·(C, opacity)

• Weighted footprints accumulate into image

Splatting - Footprint

• Volume = field of 3D interpolation kernels
• One kernel at each grid voxel

• Each kernel leaves a 2D footprint on screen

• Voxel contribution = footprint ·(C, opacity)

• Weighted footprints accumulate into image

voxel kernels screen footprints = splats

screen

Splatting - Footprint

• Volume = field of 3D interpolation kernels
• One kernel at each grid voxel

• Each kernel leaves a 2D footprint on screen

• Voxel contribution = footprint ·(C, opacity)

• Weighted footprints accumulate into image

voxel kernels screen footprints = splats

screen

Splatting - Footprint

• Volume = field of 3D interpolation kernels
• One kernel at each grid voxel

• Each kernel leaves a 2D footprint on screen

• Voxel contribution = footprint ·(C, opacity)

• Weighted footprints accumulate into image

voxel kernels screen footprints = splats

screen

Splatting - Footprint

Splatting - Compositing

• Voxel kernels are added within sheets
• Sheets are composited front-to-back
• Sheets = volume slices most parallel to the image

plane (i.e., base plane!)

image plane at 70°image plane at 30°

volume slices

x

y
z

volume slices

Splatting - Implementation

sheet buffer

compositing buffer

volume slices

image plane

• Volume

z=0
z=i

Splatting - Implementation

sheet buffer

compositing buffer

volume slices

image plane

• Add voxel kernels within first sheet

Splatting - Implementation

sheet buffer

compositing buffer

volume slices

image plane

• Transfer to compositing buffer

(Color*opacity)

Splatting - Implementation

sheet buffer

compositing buffer

volume slices

image plane

• Add voxel kernels within second sheet

Splatting - Implementation

sheet buffer

compositing buffer

volume slices

image plane

• Composite sheet with compositing buffer

(Color*opacity)

c = af*cf + (1 - af)*ab*cb
a = af + (1 - af)*ab

Splatting - Implementation

sheet buffer

compositing buffer

volume slices

image plane

• Add voxel kernels within third sheet

Splatting - Implementation

sheet buffer

compositing buffer

volume slices

image plane

• Composite sheet with compositing buffer

(Color*opacity)

c = af*cf + (1 - af)*ab*cb
a = af + (1 - af)*ab

Problems Early Implementation – Axis
Aligned Splatting

• Inaccurate compositing, result in color bleeding
and popping artifacts

Part of this voxel

gets composited before
part of this voxel

Image-Aligned Sheet-Buffer

sheet buffer

compositing buffer

• Slicing slab cuts kernels
into sections

• Kernel sections are
added into sheet-buffer

• Sheet-buffers are
composited

image plane

Image-Aligned Sheet-Buffer

sheet buffer

compositing buffer

• Slicing slab cuts kernels
into sections

• Kernel sections are
added into sheet-buffer

• Sheet-buffers are
composited

image plane

Image-Aligned Sheet-Buffer

sheet buffer

compositing buffer

• Slicing slab cuts kernels
into sections

• Kernel sections are
added into sheet-buffer

• Sheet-buffers are
composited

image plane

Image-Aligned Sheet-Buffer

sheet buffer

compositing buffer

• Slicing slab cuts kernels
into sections

• Kernel sections are
added into sheet-buffer

• Sheet-buffers are
composited

image plane

Image-Aligned Sheet-Buffer

sheet buffer

compositing buffer

• Slicing slab cuts kernels
into sections

• Kernel sections are
added into sheet-buffer

• Sheet-buffers are
composited

image plane

Image-Aligned Sheet-Buffer

sheet buffer

compositing buffer

• Slicing slab cuts kernels
into sections

• Kernel sections are
added into sheet-buffer

• Sheet-buffers are
composited

image plane

Image-Aligned Sheet-Buffer

sheet buffer

compositing buffer

• Slicing slab cuts kernels
into sections

• Kernel sections are
added into sheet-buffer

• Sheet-buffers are
composited

image plane

Splatting
• Simple extension to

volume data without grids
• Scattered data with

kernels
• Example: SPH (smooth

particle hydrodynamics)
• Needs sorting of sample

points (e.g., front to
back)

Splatting – Images

Splatting – Conclusion
• Pros:

• high-quality
• works for anisotropic data (dz > dx = dy)
• perspective projection possible
• adaptive rendering possible

• Cons:
• relatively slow
• yields somewhat blurry images (in original)

Splatting vs Ray Casting
Splatting:

• Object-order: FOR each voxel (x,y,z) DO
• sample volume at (x,y,z) using filter kernel
• project reconstruction result to x-y image plane (leaving

footprint)

• FOR each pixel (x,y) DO:
• composite (color, opacity) result of all footprints

Ray Casting:

• Image-order: FOR each pixel (x,y) DO
• cast ray into volume
• FOR each sample point along ray (x,y,z)

• Sample volume at (x,y,z) using filter kernel
• composite (color, opacity) in image space at pixel

(x,y)

What parameters control the DVR quality for each method?

Direct Volume Rendering:
Texture-based

Texture in Graphics
How does it work?

Texture mapping can large
enhance the reality of the 3D
objects

Image source: Google image [EuroGraphics 2006 Tutorial]

Texture-based Volume Rendering
• Volume rendering by 2D texture mapping:

– use planes parallel to base plane (front face of volume which is "most
orthogonal" to view ray). This is an axis-aligned approach!

Image credit: H.W. Shen Ohio State Univ.

Texture-based Volume Rendering
• Volume rendering by 2D texture mapping:

– use planes parallel to base plane (front face of volume which is "most
orthogonal" to view ray). This is an axis-aligned approach!

– draw textured rectangles, using bilinear interpolation filter

Image credit: H.W. Shen Ohio State Univ.

Texture-based Volume Rendering
• Volume rendering by 2D texture mapping:

– use planes parallel to base plane (front face of volume which is "most
orthogonal" to view ray). This is an axis-aligned approach!

– draw textured rectangles, using bilinear interpolation filter
– render back-to-front, using α-blending for the α-compositing

Image credit: H.W. Shen Ohio State Univ.

Texture-based Volume Rendering
• Volume rendering by 2D texture mapping:

– use planes parallel to base plane (front face of volume which is "most
orthogonal" to view ray). This is an axis-aligned approach!

– draw textured rectangles, using bilinear interpolation filter
– render back-to-front, using α-blending for the α-compositingIs texture-based volume rendering an object-order or

image-order approach? Why?

Texture-based Volume Rendering
• Volume rendering by 2D texture mapping:

– use planes parallel to base plane (front face of volume which is "most
orthogonal" to view ray). This is an axis-aligned approach!

– draw textured rectangles, using bilinear interpolation filter
– render back-to-front, using α-blending for the α-compositing

Essentially, a simplified version of splatting without
splatting!

Texture-based Volume Rendering

• Volume rendering by 3D texture mapping:
– use the voxel data as the 3D texture
– render an arbitrary number of slices (eg. 100 or 1000) parallel to

image plane (3- to 6-sided polygons)
– back-to-front compositing as in 2D texture method
Limited by size of texture memory.

Slicing

color
opacity

object (color, opacity) Similar to ray-casting
with simultaneous rays1.0

Effect of the Sample Rate
Slices

View
direction

1 slice

5 slices

20 slices 45 slices 85 slices 170 slices

Slice Based Problems?
• Does not perform correct
– Illumination
– Accumulation - but can get close

• Can not easily add correct illumination and
shadowing

– See the Van Gelder paper for their addition for illumination
• Stored in LUT quantized normal vector directions

Additional Reading
For Ray casting

• Marc Levoy: “Display of Surfaces from Volume Data” in IEEE Computer Graphics & Applications,
Vol. 8, No. 3, June 1988

• Data Visualization, Principles and Practice, Chapter 10 Volume Visualization, by A. Telea, AK
Peters, 2008

For splatting, please see,

• Data Visualization, Principles and Practice, Chapter 9, Image Visualization, by A Telea, AK Peters
2008

• Footprint Evaluation for Volume Rendering, by Lee Westover, in ACM Computer Graphics Volume
24, Number 4, August 1990, pages, 367-376

For shear-warp factorization, please see,

• Philippe Lacroute and Marc Levoy, Fast Volume Rendering Using a Shear-Warp Factorization of the
Viewing Transformation, Proc. SIGGRAPH '94, Orlando, Florida, July, 1994, pp. 451-458

Acknowledgment

Thanks for materials from
• Prof. Charles D. Hansen, SCI, University of

Utah
• Prof. Ronald Peikert (ETH)
• Prof. Robert Laramee, Swansea University
• Prof. Markus Hadwiger, KAUST
• Prof. Jian Huang, University of Tennessee
• Prof. Mike Bailey, Oregon State University

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Direct Volume Rendering:�Splatting & Texture-based
	Computational Strategies
	Object Order
	Object Order
	Splatting-literature
	Splatting
	Splatting
	Splatting
	Splatting - Footprint
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Splatting - Compositing
	Splatting - Implementation
	Splatting - Implementation
	Splatting - Implementation
	Splatting - Implementation
	Splatting - Implementation
	Splatting - Implementation
	Splatting - Implementation
	Problems Early Implementation – Axis Aligned Splatting
	Image-Aligned Sheet-Buffer
	Slide Number 40
	Image-Aligned Sheet-Buffer
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Splatting
	Splatting – Images
	Splatting – Conclusion
	Splatting vs Ray Casting
	Direct Volume Rendering:�Texture-based
	Slide Number 51
	Texture-based Volume Rendering
	Texture-based Volume Rendering
	Texture-based Volume Rendering
	Texture-based Volume Rendering
	Texture-based Volume Rendering
	Texture-based Volume Rendering
	Slicing
	Effect of the Sample Rate
	Slice Based Problems?
	Additional Reading
	Acknowledgment

