What is direct volume rendering?

What is direct volume rendering?

Any rendering process which maps from volume data to an image
without introducing binary distinctions / intermediate geometry, i.e.,
using color and opacity

What is the difference between iso-surfacing and volume rendering?

What important concepts/techniques are needed for volume rendering?

What important concepts/techniques are needed for volume rendering?

* Interpolation

e Color/opacity transfer functions

e Color/opacity composition

e Gradient (optional for transfer function design and
enhancing rendering quality)

What is the process of Raycasting?

What is the process of Raycasting?

For each pixel ...
- cast ray
- sampling along ray
- interpolate
- get colors/opacity
- composite

What color and opacity compositions strategies are there?

What color and opacity compositions strategies are there?

Maximum intensity projection (MIP)
Local maximum intensity projection (LMIP)

Average
\alpha-composition

How does \alpha-composition work?

How does \alpha-composition work?

Recursively compose/blend colors and opacities in order (either
back-to-front or front-to-back) in a linear fashion.

c = ar*cr + (1 - ar)™an™Co

a=ar+ (1 - ar)*av

What physical model is \alpha-composition built on?

How does \alpha-composition work?

Recursively compose/blend colors and opacities in order (either
back-to-front or front-to-back) in a linear fashion.

c = ar*cr + (1 - ar)™an™Co

a=ar+ (1 - ar)*av

What physical model is \alpha-composition built on?

Emission-absorption

Direct Volume Rendering:
Splatting & Texture-based

Computational Strategies

e How can the basic ingredients be combined:

e Object Order (in world coordinate)
e splatting, texture-mapping

Object Order

 Render image one voxel at a time

for each voxel ...
- get color/opacity
- determine image
contribution
- composite

Object Order

 Render image one voxel at a time

for each voxel ...
- get color/opacity

- determine image
contribution

- composite

Splatting-literature

Lee Westover - Vis 1989; SIGGRAPH 1990
Object order method
Front-To-Back or Back-To-Front
Main idea:
Throw voxels to the image

Many improvements since then! . -3
— Crawfis’93: textured splats

— Swan’96, Mueller’97: anti-aliasing

— Mueller’98: image-aligned sheet-based splatting

— Mueller’99: post-classified splatting

— Huang’00: new splat primitive: FastSplats

iy /[4

IENE e

Splatting

Instead of asking which data samples contribute to a pixel value, ask, to

which pixel values does a data sample contribute?

Ray casting: pixel value computed from multiple data samples

Splatting: multiple pixel values (partially) computed from a single data
sample

1

SEEE

/

Raycasting Splatting

IENE e

Splatting

Instead of asking which data samples contribute to a pixel value, ask, to

which pixel values does a data sample contribute?

Ray casting: pixel value computed from multiple data samples

Splatting: multiple pixel values (partially) computed from a single data
sample

Idea: contribute every voxel to the image

projection from voxel: splat

A

i [|

composite in image space

IENE e

Splatting

Instead of asking which data samples contribute to a pixel value, ask, to
which pixel values does a data sample contribute?

® Ray casting: pixel value computed from multiple data samples

® Splatting: multiple pixel values (partially) computed from a single data
sample

Idea: contribute every voxel to the image

® projection from voxel: splat

A

i [|

® composite in image space

IENE e

Props
®* high-quality, why?
Cons

* relatively costly ->relatively slow, why?

Splatting - Footprint

e Typically, process from closest voxel to furthest voxel (front-to-

back)

e The important step is splat. A biggest problem:
of voxel’s projected area called its footprint

determination

Projection Algorithms

sy £

for each voxel ...
- get color/opacity

- determine image
contribution

- composite

[1] gany | | S

IENE W

data
volume

Splatting - Footprint

e

?
~_1

loulay I8}l az

Draw each voxel as a cloud of points
(footprint) that spreads the voxel
contribution across multiple pixels

A natural way to compute the footprint is to
add a filter kernel, which determines how
much contribution this voxel makes to
those pixels nearby the projected pixel
corresponding to the center of the voxel.

Splatting - Footprint

Draw each voxel as a cloud of points
(footprint) that spreads the voxel

contribution across multiple pixels

A natural way to compute the footprint is to
add a filter kernel, which determines how

much contribution this voxel makes to
those pixels nearby the projected pixel
corresponding to the center of the voxel.

loulay I8}l az

. 'I' A% ' T ‘1
Different pixels receive different amount of contribution "ﬁ:}f_ﬁi{v}}j-
computed as the multiplication of some weight with the

original color or other value.

Splatting - Footprint

® Footprint geometry

Orthographic projection: footprint is
independent of the viewpoint

Pre integration of footprint (like a
template)

image plane

Splatting - Footprint

® Footprint geometry

®* Perspective projection: footprint is
elliptical

® additional computation of the
orientation of the ellipse

Splatting - Footprint

® Footprint geometry

®* Importance of choosing footprint
size!

® Larger footprint increases blurring and
used for high pixel-to-voxel ratio

Splatting - Footprint

®* Volume = field of 3D interpolation kernels
® One kernel at each grid voxel

® Each kernel leaves a 2D footprint on screen
* Voxel contribution = footprint :(C, opacity)

®* Weighted footprints accumulate into image

Splatting - Footprint

®* Volume = field of 3D interpolation kernels
® One kernel at each grid voxel
® Each kernel leaves a 2D footprint on screen

* Voxel contribution = footprint -(C, opacity)

®* Weighted footprints accumulate into image

>5c:reen footprints = splats

screen

voxel kernels

Splatting - Footprint
®* Volume = field of 3D interpolation kernels
® One kernel at each grid voxel
® Each kernel leaves a 2D footprint on screen
* Voxel contribution = footprint :(C, opacity)

®* Weighted footprints accumulate into image

voxel kernels screen footprints = splats

creen

Splatting - Footprint
®* Volume = field of 3D interpolation kernels
® One kernel at each grid voxel
® Each kernel leaves a 2D footprint on screen
* Voxel contribution = footprint :(C, opacity)

®* Weighted footprints accumulate into image

voxel kernels — - screen footprints = splats

\

screen

Splatting - Compositing

 Voxel kernels are added within sheets
 Sheets are composited front-to-back

 Sheets = volume slices most parallel to the image

plane (i.e., base plane!)

volume slices

/"’

[——
image plane at 30°

X

volume slices
A~

A@ plane at 70°

Splatting - Implementation

e \Volume
yd /
volume slices
yi=l|
sheet buffe
image plan

compositing buffe

Splatting - Implementation

e Add voxel kernels within first sheet

EaYaVaVal
S eeee

volume slices w

sheet buffe
image plan
compositing buffe

Splatting - Implementation

* Transfer to compositing buffer

AaVaVaVal
S eeee

volume slices %

(Color*opacity)

sheet buffe

image plan
compositing buffe

Splatting - Implementation

e Add voxel kernels within second sheet

CANANAN

volume slices %
sheet buffe//
image plcmz\A/v

compositing buffe

Splatting - Implementation

 Composite sheet with compositing buffer

CANNNAN

volume slices %
(CO|Or*OpaCiV
sheet buffe
image plcmz\A/v

compositing buffe

c = af*cf + (1 - af)®™ab™cb
a=af+ (1 - af)*ap

Splatting - Implementation

e Add voxel kernels within third sheet

volume slices

sheet buffe

image plan
compositing buff

Splatting - Implementation

 Composite sheet with compositing buffer

volume slices

(Color*opacity)

sheet buffe
image plan

|

c = af*cf + (1 - af)®™ab™cb

compositing buffe

a=af+ (1 - af)*ap

Problems Early Implementation — Axis
Aligned Splatting

e |naccurate compositing, result in color bleeding
and popping artifacts

44.9° 45.1°

Part of this voxel

Problem:

“popping” of brightness when the image plane
becomes more parallel to a different volume
face

gets composited before
part of this voxel

=

Image-Alighed Sheet-Buffer

e Slicing slab cuts kernels
Into sections

e Kernel sections are
added into sheet-buffer

e Sheet-buffers are
composited

sheet buffer
image plane /

compositing buffer

Image-Aligned Sheet-Buffer

e Slicing slab cuts kernels
Into sections

e Kernel sections are
added into sheet-buffer

e Sheet-buffers are
composited

sheet buffer
image plane /
~

compositing buffer

Image-Alighed Sheet-Buffer

e Slicing slab cuts kernels
into sections

e Kernel sections are
added into sheet-buffer

e Sheet-buffers are
composited

sheet buffer
image plane /
~

compositing buffer

Image-Alighed Sheet-Buffer

e Slicing slab cuts kernels
Into sections

e Kernel sections are
added into sheet-buffer

e Sheet-buffers are
composited

sheet buffer
image plane /
~

compositing buffer

Image-Alighed Sheet-Buffer

e Slicing slab cuts kernels
Into sections

e Kernel sections are
added into sheet-buffer

e Sheet-buffers are
composited

sheet buffer
image plane /

compositing buffer

Image-Alighed Sheet-Buffer

e Slicing slab cuts kernels
Into sections

e Kernel sections are
added into sheet-buffer

e Sheet-buffers are
composited

sheet buffer
image plane /

compositing buffer

Image-Alighed Sheet-Buffer

e Slicing slab cuts kernels
Into sections

e Kernel sections are
added into sheet-buffer

e Sheet-buffers are
composited _

sheet buffer
image plane /

compositing buffer

Splatting

®* Simple extension to
volume data without grids

® Scattered data with
kernels

® Example: SPH (smooth
particle hydrodynamics)

®* Needs sorting of sample

points (e.g., front to
back)

Splatting — Images

Splatting — Conclusion

* Pros:
®* high-quality
® works for anisotropic data (dz > dx = dy)
® perspective projection possible
® adaptive rendering possible

e Cons:

®* relatively slow
® vyields somewhat blurry images (in original)

Splatting vs Ray Casting

Splatting:
® QObject-order: FOR each voxel (x,y,z) DO

® sample volume at (x,y,z) using filter kernel

® project reconstruction result to x-y image plane (leaving . - I
footprint)

® FOR each pixel (x,y) DO:

®* composite (color, opacity) result of all footprints
Ray Casting:
®* Image-order: FOR each pixel (x,y) DO

[] f fast | | &

[/]

IENE PR

® castray into volume

® FOR each sample point along ray (x,y,z)

® Sample volume at (x,y,z) using filter kernel

® composite (color, opacity) in image space at pixel /
(x,y)

What parameters control the DVR quality for each method?

Direct Volume Rendering:
Texture-based

Image credit: H.W.Shen, Ohio State U.

Texture in Graphics

Texture mapping can large

enhance the reality of the 3D How does it work?
objects
Texture
(S0, %0)
(s,) °
(s2,%2) At
(317 tl) RGBA
For each fragment: Texture-Lookup:
interpolate the interpolate the
texture coordinates texture color
(barycentric) (bilinear)

Image source: Google image [EuroGraphics 2006 Tutorial]

Texture-based Volume Rendering

* Volume rendering by 2D texture mapping:

— use planes parallel to base plane (front face of volume which is "most
orthogonal" to view ray). This is an axis-aligned approach!

Image credit: H.W. Shen Ohio State Univ.

Texture-based Volume Rendering

* Volume rendering by 2D texture mapping:

— use planes parallel to base plane (front face of volume which is "most
orthogonal" to view ray). This is an axis-aligned approach!

— draw textured rectangles, using bilinear interpolation filter

Image credit: H.W. Shen Ohio State Univ.

Texture-based Volume Rendering

* Volume rendering by 2D texture mapping:

— use planes parallel to base plane (front face of volume which is "most
orthogonal" to view ray). This is an axis-aligned approach!

— draw textured rectangles, using bilinear interpolation filter
— render back-to-front, using a-blending for the a-compositing

2D Textures Fnalin age

Image credit: H.W. Shen Ohio State Univ.

Texture-based Volume Rendering

Is texture-based volume rendering an object-order or
image-order approach? Why?

Texture-based Volume Rendering

Essentially, a simplified version of splatting without
splatting!

Texture-based Volume Rendering

 Volume rendering by 3D texture mapping:
— use the voxel data as the 3D texture

— render an arbitrary number of slices (eg. 100 or 1000) parallel to
image plane (3- to 6-sided polygons)

— back-to-front compositing as in 2D texture method

Limited by size of texture memory.

Polgon S Ires 3D Textir Fnalin age

Image credit: H.W.Shen, Ohio State U.

opacity

~

object (color, opacity) 5!"“”“!" to ray-casting
1.0 with simultaneous rays

Effect of the Sample Rate

Slices

View

i
dlreitﬂn S&) \

Slice Based Problems?

* Does not perform correct
— Illumination
— Accumulation - but can get close

e Can not easily add correct illumination and
shadowing
— See the Van Gelder paper for their addition for illumination

e Stored in LUT quantized normal vector directions

Additional Reading

For Ray casting

® Marc Levoy: “Display of Surfaces from Volume Data” in /EEE Computer Graphics & Applications,
Vol. 8, No. 3, June 1988

e Data Visualization, Principles and Practice, Chapter 10 Volume Visualization, by A. Telea, AK
Peters, 2008

For splatting, please see,

e Data Visualization, Principles and Practice, Chapter 9, Image Visualization, by A Telea, AK Peters
2008

* Footprint Evaluation for Volume Rendering, by Lee Westover, in ACM Computer Graphics Volume
24, Number 4, August 1990, pages, 367-376

For shear-warp factorization, please see,

e Philippe Lacroute and Marc Levoy, Fast Volume Rendering Using a Shear-Warp Factorization of the
Viewing Transformation, Proc. SSGGRAPH '94, Orlando, Florida, July, 1994, pp. 451-458

Acknowledgment

Thanks for materials from

e Prof. Charles D. Hansen, SCI, University of
Jtah

e Prof. Ronald Peikert (ETH)

* Prof. Robert Laramee, Swansea University
e Prof. Markus Hadwiger, KAUST

e Prof. Jian Huang, University of Tennessee

* Prof. Mike Bailey, Oregon State University

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Direct Volume Rendering:�Splatting & Texture-based
	Computational Strategies
	Object Order
	Object Order
	Splatting-literature
	Splatting
	Splatting
	Splatting
	Splatting - Footprint
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Splatting - Compositing
	Splatting - Implementation
	Splatting - Implementation
	Splatting - Implementation
	Splatting - Implementation
	Splatting - Implementation
	Splatting - Implementation
	Splatting - Implementation
	Problems Early Implementation – Axis Aligned Splatting
	Image-Aligned Sheet-Buffer
	Slide Number 40
	Image-Aligned Sheet-Buffer
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Splatting
	Splatting – Images
	Splatting – Conclusion
	Splatting vs Ray Casting
	Direct Volume Rendering:�Texture-based
	Slide Number 51
	Texture-based Volume Rendering
	Texture-based Volume Rendering
	Texture-based Volume Rendering
	Texture-based Volume Rendering
	Texture-based Volume Rendering
	Texture-based Volume Rendering
	Slicing
	Effect of the Sample Rate
	Slice Based Problems?
	Additional Reading
	Acknowledgment

