
Morse-Smale Complex



Morse Theory

• Investigates the topology of a surface by looking at 

critical points of a function on that surface. 
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• A function �	is a Morse function if 

– � is smooth 

– All critical points are isolated 

– All critical points are non−degenerate det	(�������(�)) 	≠ 	0



Notion of Critical Points and Their Index

• Minima, maxim, and saddles

• Topological changes 

• Piecewise linear interpolation

• Barycentric coordinates on triangles

• Only exist at vertices

Minima MaximaSaddlesRegular



Notion of Critical Points and Their Index

Standard form of a non-degenerate critical point �

of a function �:�� → �

Minima MaximaSaddlesRegular
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Where (��, � , ⋯ , �') are some local coordinate system 

such that � is the origin and �(�) = %.
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Where (��, � , ⋯ , �') are some local coordinate system 

such that � is the origin and �(�) = %.

Then the number of minus signs, λ	is the index of �.



Notion of Critical Points and Their Index

Examples of critical points in 2-manfold

Minima MaximaSaddle
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Notion of Critical Points and Their Index

Examples of critical points in 2-manfold
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Notion of Critical Points and Their Index

Standard form of a non-degenerate critical point �

of a function �:�� → �
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Where (��, � , ⋯ , �') are some local coordinate system 

such that � is the origin and �(�) = %.

Then the number of minus signs, λ	is the index of �.
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Critical Points in 3D
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Reeb Graph

• The Reeb graph maps out the relationship 
between ��2�) � 0 and ��2�) � 1, and 
��2�) � (2 � 1)	and ��2�) � 2 critical points in 
a 2 �dimensional space.
– In 2-manifold, index(0) to index(1), and index(1) to 

index(2)

– In 3-manifold, index(0) to index(1), and index(2) to 
index(3)

• The contour tree is a Reeb graph defined over a 
simply connected Euclidean space 3�



Limitation of Reeb Graph



Limitation of Reeb Graph

Lacking the geometric connectivity of the features



Limitation of Reeb Graph

Lacking the geometric connectivity of the features

Additionally, for higher dimensional manifolds (>2), the saddle-

saddle connections are not represented in the Reeb graph.



Morse Complex

• Instead of partitioning a manifold 
according to the behavior of level 
sets, it is more general to 
partition the manifold based on 
the behavior of the gradient.

• The gradient of a function 
defines a smooth vector field on 
� with zeroes at critical points.



Morse Complex

• Integral line: 

– Integral lines represent the flow 

along the gradient between critical 

points.

• Origin:   456 7 = 7�89→:;7(<)

• Destination:  2��< 7 = 7�89→;7(<)

=

=<
7 < = �� 7 < 							for	all	< ∈ �



Morse Complex

• Integral lines have the following properties

– Two integral lines are either disjoint or the same, 

i.e. uniqueness of each integral line

– Integral lines cover all of �

– The origin and destination of an integral line are 

critical points of � (except at boundary)

– In gradient vector field, integral lines are 

monotonic, i.e. 456(7) ≠ 2��<(7)



Morse Complex

• Ascending/descending Manifolds
– Let � be a critical point of �:� → �.

– The ascending manifold of � is the set of points 
belonging to integral lines whose origin is �.

– The descending manifold of � is the set of points 
belonging to integral lines whose destination is �.

• Note that ascending and descending manifolds 
are also referred to as unstable and stable 
manifolds, lower and upper disks, and right-hand 
and left-hand disks.



Morse Complex

• Morse Complex

– Let �:�� → � be a Morse function. The complex of descending 

manifold of � is called the Morse complex



Morse Complex

• Morse Complex
– Let �:�� → � be a Morse function. The complex of 

descending manifold of � is called the Morse complex

• CW-complexes
– Built on top of cells (0-cells, 1-cells, …., d-cells) via 

topologically gluing.

– The C stands for "closure-finite", and the W for “weak 
topology".

– Triangular mesh is one simple example of CW-
complexes.



Morse-Smale Complex

• Morse-Smale Function

– A Morse function �	is Morse-Smale if the ascending and 
descending manifolds intersect only transversally.

• Intuitively, an intersection of two manifolds as transversal when 
they are not “parallel” at their intersection.

– A pair of critical points that are the origin and destination 
of a integral line in the Morse-Smale function cannot have 
the same index!

– Furthermore, the index of the critical point at the origin is 
less than the index of the critical point at the destination.



Morse-Smale Complex

• Given a Morse-Smale function �, the Morse-

Smale complex of � is the complex formed by 

the intersection of the Morse complex of �

and the Morse complex of – �.



Morse-Smale Complex-1D
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Morse-Smale Complex-1D



Morse-Smale Complex-2D



Morse-Smale Complex-2D



Morse-Smale Complex-2D



Morse-Smale Complex-2D



Morse-Smale Complex-2D



Morse-Smale Complex-2D

Decomposition into monotonic regions



Combinatorial Structure 2D

• Nodes of the MS complex are 

exactly the critical points of the 

Morse function

• Saddles have exactly four arcs 

incident on them

All regions are quads

• Boundary of a region 

alternates between saddle-

extremum

• 2k minima and maxima



Morse-Smale Complex in 3D

Overlay of Asc and Desc
manifolds

3D MS Complex cell



Topological Simplification

(Persistence) Let �E be the critical point creating a boundary component F and 

�G the critical point destroying F, then the pair (�E, �G) is a persistence pair. The 

difference is function value � �E � �(�G) is called the persistence of the 

topological feature (�E , �G) 
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Discrete Morse-Smale Complex

The gradient directions (the arrows) are always pointing from lower-dimensional 

cells to their neighboring cells that are exactly one-dimension higher.



Discrete Morse-Smale Complex

V-path



Application: Surface Segmentation

• Why segmentation?
– Reduce the information overloaded

– Identify unique features and properties

• There have been many proposed surface 
segmentation strategies to encode the structure 
of a function on a surface.
– Surface networks ideally segment terrain-type data into the cells 

of the two-dimensional Morse-Smale complex, i.e., into regions 
of uniform gradient flow behavior. Such a segmentation of a 
surface would identify the features of a terrain such as peaks, 
saddles, dips, and the lines connecting them.

– Image processing: watershed / distance field transform



Applications



Applications

Rayleigh-Taylor 

turbulence analysis



Applications

Quadrangulation of surfaces
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