Morse Theory

- Investigates the topology of a surface by looking at critical points of a function on that surface. $\nabla f(p) = \left(\frac{\partial f}{\partial x}(p) \quad \frac{\partial f}{\partial y}(p)\right) = 0$
- A function *f* is a Morse function if
 - -f is smooth
 - All critical points are isolated
 - All critical points are non-degenerate $det(Hessian(\mathbf{p})) \neq 0$

- Minima, maxim, and saddles
- Topological changes
- Piecewise linear interpolation
- Barycentric coordinates on triangles
- Only exist at vertices

Standard form of a non-degenerate critical point p of a function $f: M^d \rightarrow R$

$$f = -X_1^2 - X_2^2 - \dots - X_{\lambda}^2 + X_{\lambda+1}^2 + \dots + X_d^2 + c$$

Where (X_1, X_2, \dots, X_n) are some local coordinate system such that p is the origin and f(p) = c.

Regular

Standard form of a non-degenerate critical point p of a function $f: M^d \rightarrow R$

$$f = -X_1^2 - X_2^2 - \dots - X_{\lambda}^2 + X_{\lambda+1}^2 + \dots + X_d^2 + c$$

Where (X_1, X_2, \dots, X_n) are some local coordinate system such that p is the origin and f(p) = c.

Then the number of minus signs, λ is the **index** of p.

Minima

Saddles

Examples of critical points in 2-manfold

Minima

Saddle

Maxima

|--|

Examples of critical points in 2-manfold

Regular

i = 1

Standard form of a non-degenerate critical point p of a function $f: M^d \to R$

$$f = -X_1^2 - X_2^2 - \dots - X_{\lambda}^2 + X_{\lambda+1}^2 + \dots + X_d^2 + c$$

Where (X_1, X_2, \dots, X_n) are some local coordinate system such that p is the origin and f(p) = c.

Then the number of minus signs, λ is the **index** of p.

i = 0

Critical Points in 3D

Critical Points in 3D

Reeb Graph

- The Reeb graph maps out the relationship between *index* - 0 and *index* - 1, and *index* - (d - 1) and *index* - d critical points in a d - dimensional space.
 - In 2-manifold, index(0) to index(1), and index(1) to index(2)
 - In 3-manifold, index(0) to index(1), and index(2) to index(3)
- The contour tree is a Reeb graph defined over a simply connected Euclidean space E^d

Limitation of Reeb Graph

Limitation of Reeb Graph

Lacking the geometric connectivity of the features

Limitation of Reeb Graph

Lacking the geometric connectivity of the features

Additionally, for higher dimensional manifolds (>2), the saddlesaddle connections are not represented in the Reeb graph.

- Instead of partitioning a manifold according to the behavior of level sets, it is more general to partition the manifold based on the behavior of the gradient.
- The gradient of a function defines a smooth vector field on *M* with zeroes at critical points.

- Integral line: $\frac{\partial}{\partial t}l(t) = \nabla f(l(t)) \quad \text{for all } t \in R$ - Integral lines represent the flow
 - along the gradient between critical points.
- Origin: $org(l) = lim_{t \to -\infty} l(t)$
- Destination: $dest(l) = lim_{t \to \infty} l(t)$

- Integral lines have the following **properties**
 - Two integral lines are either disjoint or the same,
 i.e. uniqueness of each integral line
 - Integral lines cover all of M
 - The origin and destination of an integral line are critical points of f (except at boundary)
 - In gradient vector field, integral lines are monotonic, i.e. $org(l) \neq dest(l)$

- Ascending/descending Manifolds
 - Let p be a critical point of $f: M \rightarrow R$.
 - The **ascending manifold** of p is the set of points belonging to integral lines whose origin is p.
 - The descending manifold of p is the set of points belonging to integral lines whose destination is p.
- Note that ascending and descending manifolds are also referred to as unstable and stable manifolds, lower and upper disks, and right-hand and left-hand disks.

- Morse Complex
 - Let $f: M^d \rightarrow R$ be a Morse function. The complex of descending manifold of f is called the Morse complex

- Morse Complex
 - Let $f: M^d \rightarrow R$ be a Morse function. The complex of descending manifold of f is called the Morse complex
- CW-complexes
 - Built on top of cells (0-cells, 1-cells,, d-cells) via topologically gluing.
 - The C stands for "closure-finite", and the W for "weak topology".
 - Triangular mesh is one simple example of CWcomplexes.

- Morse-Smale Function
 - A Morse function f is Morse-Smale if the ascending and descending manifolds intersect only transversally.
 - Intuitively, an intersection of two manifolds as transversal when they are not "parallel" at their intersection.

- A pair of critical points that are the origin and destination of a integral line in the Morse-Smale function cannot have the same index!
- Furthermore, the index of the critical point at the origin is less than the index of the critical point at the destination.

• Given a Morse-Smale function f, the Morse-Smale complex of f is the complex formed by the intersection of the Morse complex of fand the Morse complex of -f.

Ascending manifold Origin = minimum

Morse-Smale cell Origin = minimum and Dest = maximum

Decomposition into monotonic regions

Combinatorial Structure 2D

- Nodes of the MS complex are exactly the critical points of the Morse function
- Saddles have exactly four arcs incident on them

All regions are quads

- Boundary of a region alternates between saddleextremum
- 2k minima and maxima

Morse-Smale Complex in 3D

Topological Simplification

(Persistence) Let p_a be the critical point creating a boundary component B and p_b the critical point destroying B, then the pair (p_a, p_b) is a persistence pair. The difference is function value $|f(p_a) - f(p_b)|$ is called the persistence of the topological feature (p_a, p_b)

Topological Simplification

(Persistence) Let p_a be the critical point creating a boundary component B and p_b the critical point destroying B, then the pair (p_a, p_b) is a persistence pair. The difference is function value $|f(p_a) - f(p_b)|$ is called the persistence of the topological feature (p_a, p_b)

Discrete Morse-Smale Complex

The gradient directions (the arrows) are always pointing from lower-dimensional cells to their neighboring cells that are exactly one-dimension higher.

Discrete Morse-Smale Complex

V-path

Application: Surface Segmentation

- Why segmentation?
 - Reduce the information overloaded
 - Identify unique features and properties
- There have been many proposed surface segmentation strategies to encode the structure of a function on a surface.
 - Surface networks ideally segment terrain-type data into the cells of the two-dimensional Morse-Smale complex, i.e., into regions of uniform gradient flow behavior. Such a segmentation of a surface would identify the features of a terrain such as peaks, saddles, dips, and the lines connecting them.
 - Image processing: watershed / distance field transform

Applications

Molecular surface segmentation

Applications

Applications

Additional Reading of M-S Complexes

- H. Edelsbrunner, J. Harer, and A. Zomorodian. "Hierarchical morse complexes for piecewise linear 2-manifolds". Proceedings of the seventeenth annual symposium on Computational geometry (SCG '01) Pages 70 79, 2001.
- H. Edelsbrunner, J. Harer, V. Natarajan, and V. Pascucci. "Morse-Smale complexes for piecewise linear 3-manifolds". *Proc. ACM Symposium on Computational Geometry*, 2003, 361-370.
- P. T. Bremer, H. Edelsbrunner, B. Hamann and V. Pascucci. A Multi-resolution Data Structure for Twodimensional Morse Functions. *IEEE Visualization*, 2003.
- H. Edelsbrunner, J. Harer and A. Zomorodian. Hierarchical Morse-Smale complexes for piecewise linear 2manifolds. *Discrete and Computational Geometry*, 2003.
- A. Gyulassy, V. Natarajan, V.Pascucci, P.-Ti. Bremer and B. Hamann. "A topological approach to simplification of three-dimensional scalar fields". Invited paper in *IEEE Transactions on Visualization and Computer Graphics*, 12(4), 2006, 474-484.
- A. Gyulassy, V. Natarajan, V. Pascucci, and B. Hamann. "Efficient computation of Morse-Smale complexes for three-dimensional scalar functions". *IEEE Transactions on Visualization and Computer Graphics* (IEEE Visualization 2007), 13(6), 2007, 1440--1447.
- A. Gyulassy, P.-Ti. Bremer, B. Hamann, and V.Pascucci. "A Practical Approach to Morse-Smale Complex Computation: Scalability and Generality". *IEEE Transactions on Visualization and Computer Graphics*, 14(6), 2008, 474-484.
- S. Dong, P.-T. Bremer, M. Garland, V. Pascucci, and J. Hart, "Spectral surface quadrangulation", ACM Transactions on Graphics, Volume 25, Issue 3, pp.1057-1066qs (July 2006). Proceedings of *SIGGRAPH 2006*.

Acknowledgment

Thanks for materials by

- Dr. Attila Gyulassy, SCI, University of Utah
- Prof. Valerio Pascucci, SCI, University of Utah
- Prof. Vijay Natarajan, Indian Institute of Science