
J. Parallel Distrib. Comput. 63 (2003) 597–610

Entropia: architecture and performance of an enterprise
desktop grid system

Andrew Chien,�,1 Brad Calder,1 Stephen Elbert, and Karan Bhatia

Entropia, Inc., 10145 Pacific Heights, Suite 800, San Diego, CA 92121, USA

Received 8 April 2001; revised 9 November 2001

Abstract

The exploitation of idle cycles on pervasive desktop PC systems offers the opportunity to increase the available computing power

by orders of magnitude (10�–1000�). However, for desktop PC distributed computing to be widely accepted within the enterprise,

the systems must achieve high levels of efficiency, robustness, security, scalability, manageability, unobtrusiveness, and openness/

ease of application integration.

We describe the Entropia distributed computing system as a case study, detailing its internal architecture and philosophy in

attacking these key problems. Key aspects of the Entropia system include the use of: (1) binary sandboxing technology for security

and unobtrusiveness, (2) a layered architecture for efficiency, robustness, scalability and manageability, and (3) an open integration

model to allow applications from many sources to be incorporated.

Typical applications for the Entropia System includes molecular docking, sequence analysis, chemical structure modeling, ;and

risk management. The applications come from a diverse set of domains including virtual screening for drug discovery, genomics for

drug targeting, material property prediction, and portfolio management. In all cases, these applications scale to many thousands of

nodes and have no dependences between tasks. We present representative performance results from several applications that

illustrate the high performance, linear scaling, and overall capability presented by the Entropia system.

r 2003 Elsevier Science (USA). All rights reserved.

Keywords: Grid computing; Distributed computing; High-throughput computing; Scientific computing

1. Introduction

For over 4 years, the largest computing systems in the
world have been based on ‘‘distributed computing’’ the
assembly of large numbers of PCs over the Internet.
These ‘‘grid’’ systems sustain multiple teraflops con-
tinuously by aggregating hundreds of thousands to
millions of machines and demonstrate the utility of such
resources for solving a surprisingly wide range of large-
scale computational problems in data mining, molecular
interaction, financial modeling, etc. These systems have
come to be called ‘‘distributed computing’’ systems and

leverage the unused capacity of high-performance desk-
top PCs (up to 2:2 GHz machines with multi-gigaop
capabilities [31]), high-speed local-area networks
(100 Mbps to 1 Gbps switched), large main memories
(256 MB to 1 GB configurations), and large disks (60–
100 GB disks). Such distributed computing systems
leverage the installed hardware capability (and work
well even with much lower performance PCs) and thus
can achieve a cost per unit computing (or Return-On-
Investment) superior to the cheapest hardware alter-
natives by as much as a factor of 5 or 10. As a result,
distributed computing systems are now gaining in-
creased attention and adoption within enterprises to
solve their largest computing problems and attack new
problems of unprecedented scale. In this paper, we focus
on enterprise distributed computing. We use the terms
distributed computing, high throughput computing, and
desktop grids synonymously to refer to systems that tap
vast pools of desktop resources to solve large computing
problems.

ARTICLE IN PRESS

�Corresponding author. 9500 Gilman Drive, Dept 0114, La Jolla,

CA 92093, USA.

E-mail addresses: achien@entropia.com (A. Chien), bcalder@

entropia.com (B. Calder), selbert@entropia.com (S. Elbert),

kbhatia@entropia.com (K. Bhatia).
1Also affiliated with the Department of Computer Science and

Engineering at the University of California, San Diego (UCSD).

0743-7315/03/$ - see front matter r 2003 Elsevier Science (USA). All rights reserved.

doi:10.1016/S0743-7315(03)00006-6

For a number of years, a significant element of the
research and now commercial computing community
has been working on technologies for ‘‘grid computing’’
[3,18,19,24,44]. These systems typically involve servers
and desktops, and their fundamental defining feature is
to share resources in new ways. In our view, the
Entropia system is a desktop grid which can provide
massive quantities of resources and will naturally be
integrated with server resources into an enterprise grid
[14,20].

While the tremendous computing resources available
through distributed computing present new opportu-
nities, harnessing them in the enterprise is quite
challenging. The system must operate in environments
of extreme heterogeneity in machine hardware and
software configuration, network structure, and indivi-
dual/network management practice. And because the
primary function of the resources is desktop use (e.g.
desktop word processing, web information access,
spreadsheets, etc.), the resources must be exploited
without effecting the desktop user’s productivity.

To achieve a high degree of utility, distributed
computing systems must capture a large number of
valuable applications. Therefore the effort required to
deploy an application on the system, in a way that
secures the application and its data as it executes, must
be minimal. Of course, the systems must also support
large numbers of resources, thousands to millions of
computers, to achieve the promise of tremendous power
and do so without requiring armies of IT adminis-
trators.

The Entropia system provides solutions to the above
desktop distributed computing challenges. The key
advantages of the Entropia system are the ease of
application integration and a new model for providing
security and unobtrusiveness for the application and
client machine. To provide rapid application integra-
tion, Entropia uses binary modification technology that
obviates access to the applications source code while
providing strong security guarantees and ensuring
unobtrusive application execution. Other systems re-
quire developers to modify their source code to use
custom APIs or simply rely on the application to be
‘‘well behaved’’ and provide weaker security and
protection [6,36,48]. It is not always possible to get
access to the application source code (especially for
commercially available applications) and, regardless,
maintaining multiple versions of the source code can
require a significant ongoing development effort.
As to relying on the good intentions of the application
programmers, we have found that even comm-
only used applications in use for quite some time
can at times exhibit anomalous behavior. Entropia’s
approach ensures both a large base of potential
applications and a high level of control over
the application’s execution.

The remainder of the paper includes the history of
distributed computing which has led to large-scale
distributed computing systems in Section 2; the key
technical requirements for a distributed computing
platform in Section 3; the Entropia system architecture
and implementation, including its key elements and how
it addresses the technical requirements in Section 4; and
a description of typical applications and their perfor-
mance on the Entropia system in Section 5. We conclude
and briefly present a perspective on the future potential
of distributed computing in Section 6.

2. Background

The idea of distributed computing has been described
and pursued as long as there have been computers
connected by networks. Early justifications of the
ARPANET [25] described the sharing of computational
resources over the national network as a motivation for
building the system. In the mid-1970s, the Ethernet was
invented at Xerox PARC, providing high bandwidth
local-area networking. This invention combined with
the Alto Workstation presented another opportunity for
distributed computing and the PARC Worm [38] was
the result. In the 1980s and early 1990s several academic
projects developed distributed computing systems that
supported one or several Unix systems [6,29,30,41,50].
Of these, the Condor Project is perhaps the best known
and most widely used. These early distributed comput-
ing systems focused on developing efficient algorithms
for scheduling, load balancing and fairness. However,
these systems provided no special support for security
and unobtrusiveness, particularly in the case of mis-
behaving applications. Furthermore, they did not
manage dynamic desktop environments, limited what
was allowed in application execution, and incurred a
significant management effort for each machine.

At approximately the same time, the scientific
computing community began to move from large
expensive supercomputers to relatively inexpensive Unix
workstations [45] and, in the late 1990s, to low-cost PC
hardware [7,42]. During this time, clusters of inexpen-
sive PCs connected with high-speed interconnects were
demonstrated to rival supercomputers for some applica-
tions. These systems provided clear evidence that PCs
could deliver serious computing power.

The growth of the World Wide Web (WWW) [23] and
the exploding popularity of the Internet created a new
much larger scale opportunity for distributed comput-
ing. For the first time, millions of desktop PCs were
connected to wide-area networks both in the enterprise
and in the home. The number of machines potentially
accessible to an Internet-based distributed computing
system grew into the tens of millions of systems for the
first time. The scale of the resources (millions), the types

ARTICLE IN PRESS
A. Chien et al. / J. Parallel Distrib. Comput. 63 (2003) 597–610598

of systems (windows PCs, laptops), and the typical
ownership (individuals, enterprises) and management
(intermittent connection, operation) gave rise to a new
explosion of interest in and a new set of technical
challenges for distributed computing.

In 1996, Scott Kurowski partnered with George
Woltman to begin a search for large prime numbers, a
task considered synonymous with the largest super-
computers. This effort, the ‘‘Great Internet Mersenne
Prime Search’’ or GIMPS [13,51], has been running
continuously for over 5 years with over 200 000
machines participating and has discovered the 35th,
36th, 37th, 38th, and 39th Mersenne primes—the
largest known prime numbers. The most recent was
discovered in November 2001 and is over 4 million digits
in length.

The GIMPS project was the first project taken on by
Entropia, Inc., a startup commercializing distributed
computing. Another group, distributed.net [10], pursued
a number of cryptography related distributed computing
projects in this period as well. In 1997, the best-known
Internet distributed computing project, SETI@home
[43], began and rapidly grew to several million machines
(typically about 0.5 million active at any one time).
These early Internet distributed computing systems
showed that aggregating very-large-scale resources was
possible and that the resulting system dwarfed the
resources of any single supercomputer, at least for a
certain class of applications. But these projects were
single-application systems, difficult to program and
deploy, and very sensitive to the communication-to-
computation characteristic of the application. A simple
programming error could cause network links to be
saturated and servers to be overloaded.

The current generation of distributed computing
systems, a number of which are commercial ventures,
provide the capability to run multiple applications on a
collection of desktop and server computing resources
[8,15,36,48]. These systems are evolving towards a
general-use compute platform. As such, providing tools
for application integration and robust execution are the
focus of these systems.

Grid technologies developed in the research commu-
nity [19,24] have focused on issues of security, inter-
operation, scheduling, communication, and storage.
In all cases, these efforts have been focused on Unix
servers. For example, the vast majority, if not all, of
the Globus and Legion activity has been done on
Unix servers. Such systems differ significantly from
the Entropia system as they do not address issues that
arise in a desktop environment including dynamic
naming, intermittent connection, untrusted users,
etc. Further, they do not address a range of challenges
unique to the Windows environment, whose five
major variants are the predominant desktop operating
system.

3. Requirements for distributed computing

Distributed computing systems begin with a collection
of computing resources, heterogeneous hardware and
software configurations distributed throughout a corpo-
rate network, and aggregate them into a single easily
managed resource. Distributed computing systems must
do this in a fashion that ensures there is little or no
detectable impact on the use of the computing resources
for other purposes; it must respect the various manage-
ment and use regimens of the resources; and it must
present the resources as one single robust resource. The
specific requirements of a distributed computing system
include the following:

Efficiency—The system must harvest unused cycles
efficiently, collecting virtually all of the resources
available. The Entropia system gathers over 95% of
the desktop cycles unused by desktop user applications.

Robustness—The system must complete computa-
tional jobs with minimal failures, masking underlying
resource and network failures. In addition, the system
must provide predictable performance to end-users
despite the unpredictable nature of the underlying
resources.

Security—The system must protect the integrity of the
distributed computation. Tampering with or disclosure
of the application data and program must be prevented.
The Distributed Computing system must also protect
the integrity of the computing resources that it is
aggregating. Distributed computing applications must
be prevented from accessing or modifying data on the
computing resources.

Scalability—The system must scale to the use of large
numbers of computing resources. Because large num-
bers of PCs are deployed in many enterprises, scaling to
1000s, 10,000s, and even 100,000s are relevant capabil-
ities. However, systems must scale both upward and
downward performing well with reasonable effort at a
variety of system scales.

Manageability—Any system involving thousands to
hundreds of thousands of entities must provide manage-
ment and administration tools. Typical rules of thumb,
such as requiring even one administrator for every 200
systems, would be unacceptable. We believe distributed
computing systems must achieve manageability that
requires no incremental human effort as clients are
added to the system. A crucial part of manageability is
client cleanliness: it is crucial that the computing
resources state is identical after running an application
as it was before running the application.

Unobtrusiveness—The system typically shares re-
sources (both computing, storage, and network re-
sources) with other systems in the corporate IT
environment. As a result, the use of these resources
should be unobtrusive, and where there is competition,
non-aggressive. The distributed computing system must

ARTICLE IN PRESS
A. Chien et al. / J. Parallel Distrib. Comput. 63 (2003) 597–610 599

manage its use of resources so as not to interfere with
the primary use of the desktops and networks for other
activities. This includes both the use due to system
activities as well as use driven by the distributed
computing application.

Openness/ease of application integration—Fundamen-
tally, the distributed computing system is a platform on
which to run applications. The number, variety, and
utility of the applications supported by the system
directly affects its utility. Distributed computing systems
must support applications developed with all kinds of
models, with many distinct needs and with minimal
effort.

Together, we believe these seven criteria represent the
key requirements for distributed computing systems.

4. Entropia system architecture

The Entropia system addresses the seven key require-
ments described above by aggregating the raw desktop
resources into a single logical resource. This logical
resource is reliable, secure and predictable despite the
fact that the underlying raw resources are unreliable
(machines may be turned off or rebooted), insecure
(untrusted users may have electronic and physical access
to machines) and unpredictable (machines may be
heavily used by the desktop user at any time). This
logical resource provides high performance for applica-
tions through parallelism while always respecting the
desktop user and his or her use of the desktop machine.
Furthermore, this logical resource can be managed from
a single administrative console. Addition or removal of
desktop machines from the Entropia system is easily
achieved, providing a simple mechanism to scale the
system as the organization grows or as the need for
computational cycles grows.

To support the execution of a large number of
applications, and to support the execution in a secure
manner, Entropia employs proprietary binary sandbox-
ing techniques that enable any Win32 application to be
deployed in the Entropia system with no modifications
and no special system support. End-users of the
Entropia system can use their existing Win32 applica-
tions and deploy them on the Entropia system in a
matter of minutes. This is significantly different than the
early large-scale distributed computing systems like
SETI@home and other competing systems that require
rewriting and recompiling of the application source code
to ensure safety and robustness.

4.1. Enabling applications

The openness/ease of application integration require-
ment (detailed in Section 3) in some ways naturally
conflicts with the security and unobtrusiveness require-

ments. The former requirement aims to broaden the set
of applications that can run on the distributed comput-
ing system and allow those applications to be integrated
with little burden. This may include applications that
were not originally designed to run in a distributed
computing setting or applications that may be fragile or
in development. Running these applications as-is on
thousands or tens of thousands of desktop clients may
violate the latter requirements regarding security and
unobtrusiveness. These latter requirements necessarily
restrict the actions of the application or impose
constraints on how they operate, thereby reducing the
set of applications that are suitable for distributed
computing.

Entropia’s approach to application integration, a
process known as ‘‘sandboxing’’, is to automatically
wrap an application in our virtual machine technology.
When an application program is submitted to the
Entropia system for execution, it is automatically
sandboxed by the virtual machine. An application on
the Entropia system executes within this sandbox and is
not allowed to access or modify resources outside of the
sandbox. However, the application is completely una-
ware of the fact that it is restricted within the sandbox
since its interaction with the operating system is
automatically mediated by the Entropia virtual ma-
chine. This mediation layer intercepts the system calls
made by the application and ensures complete control
over the application’s interaction with the operating
system and the desktop resources. The standard set of
resources that are mediated include file system access,
network communication, registry access, process control
and memory access.

As an example of the power of this technique,
consider file system access by the application: an
application uses standard Windows APIs for opening
closing, reading and writing to a file. The Entropia
mediation layer enables the distributed computing
system to automatically (and invisibly to the applica-
tion) encrypt the contents of all data files and provide
data integrity checks, ensuring that the data is not
tampered with by the desktop user. In addition, to
protect the desktop user from the application, the
sandbox automatically maps the file and directory
structure for the application to ensure that all files read
or written remain within known bounds. Therefore, an
application may believe that it is reading or writing to
the directory C: \Program Files\ when in fact it is
writing to a directory deep within the Entropia software
installation.

This technique allows the Entropia system to support
arbitrary applications written in any programming
language that can be compiled down to Windows
executables (C, C++, C#, Java, FORTRAN, etc.)
and even third-party shrinkwrapped software and
common scripting languages. Since no source code is

ARTICLE IN PRESS
A. Chien et al. / J. Parallel Distrib. Comput. 63 (2003) 597–610600

required, the use of binary sandboxing supports the
broadest range of applications possible with little effort.
At the same time, because the sandbox mediates the
application execution at the system call level, it provides
fine-grain control of the system and desktop resources
used by the applications.

4.2. Layered architecture

The Entropia system architecture is composed of
three separate layers (see Fig. 1). At the bottom is the
Physical Node Management layer that provides basic
communication and naming, security, resource manage-
ment, and application control. On top of this layer is the
Resource Scheduling layer that provides resource
matching, scheduling, and fault tolerance. Users can
interact directly with the Resource Scheduling layer
through the available APIs or alternatively, users can
access the system through the Job Management layer
that provides management facilities for handling large
numbers of computations and files. Entropia provides
an implementation of the Job Management layer, but
other implementations can be developed as needed on
top of the Resource Scheduling layer.

We briefly describe these three layers, and then
describe the advantages of this approach in achieving
a robust, scalable distributed computing resource.

Physical Node Management: The distributed comput-
ing environment presents numerous unique challenges
to providing a reliable computing capability. Individual
client machines are under the control of the desktop user
or IT manager. They can be shutdown, rebooted, or
have their IP address changed. A machine may be a
laptop computer that is disconnected for long periods of
time, and when connected must pass its traffic through
network firewalls. The Physical Node Management
layer of the Entropia system manages these and other
low-level reliability issues.

In addition to communication and naming, the
Physical Node Management layer provides resource
management, application control, and security. The
resource management services capture a wealth of static
and dynamic information about each physical node (e.g.
physical memory, CPU speed, disk size, available space,
client version, data cached, etc.), reporting it to the
centralized node manager and system console. The
application control services provide basic facilities for
process management including file staging, application
initiation and termination, and error reporting. It also
ensures that nodes can be recovered from runaway
applications, detects and terminates misbehaving appli-
cations, and detects and reports any damage to the
software client installation. The security services employ
a range of encryption and binary sandboxing technol-
ogies to protect both distributed computing applications
and the underlying physical node. Application commu-
nications and data are protected with high-quality
cryptographic techniques. A binary sandbox controls
the operations and resources that are visible to
distributed applications on the physical nodes in order
to protect the software and hardware of the underlying
machine. This same sandbox also controls the usage of
resources (memory, disk, network) by the distributed
computing application.

Resource Scheduling: The distributed computing
system consists of resources with a wide variety of
configurations and capabilities. The Resource Schedul-
ing layer accepts units of computation from the user or
job management system, matches them to appropriate
client resources, and schedules them for execution.
Despite the resource conditioning provided by the
Physical Node Management layer, the resources may
still be unreliable (indeed the application may be
unreliable in its execution). Therefore the Resource
Scheduling layer must adapt to changes in resource
status and availability and to failure rates that are
considerably higher than in traditional cluster environ-
ments. To meet these challenging requirements the
Entropia system can support multiple instances of
heterogeneous schedulers.

This layer also provides simple abstractions for IT
administrators, which automate the majority of admin-
istration tasks with reasonable defaults, but allow
detailed control as desired.

Job Management: A distributed computing applica-
tion often involves large amounts of computation
(thousands to millions of CPU hours) submitted as a
single large job. This job is then broken down into a
large number of individual subjobs each of which is
submitted into the Entropia system for execution. The
Job Management layer of the Entropia system is
responsible for decomposing the single job into the
many subjobs, managing the overall progress of the job,
providing access to the status of each of the generated

ARTICLE IN PRESS

Entropia Server
Desktop Clients

Physical Node Management

Resource Scheduling

Job Management
Other Job

Management

End-user

Fig. 1. Architecture of the Entropia Distributed Computing System.

The Physical Node Management layer and Resource Scheduling layer

span the servers and client machines. The Job Management layer runs

only on the servers. Other (non-Entropia) Job Management systems

can be used with the system.

A. Chien et al. / J. Parallel Distrib. Comput. 63 (2003) 597–610 601

subjobs, and aggregating the results of the subjobs. This
layer allows users to submit a single logical job (for
example, a Monte Carlo simulation, a parameter sweep
application, or a database search algorithm) and receive
as output a single logical output. The details of the
decomposition, execution and aggregation are handled
automatically.

This three-layer approach provides a wealth of
benefits in system capability, ease of use by end-users
and IT administrators, and internal implementation.
The Physical Node Management layer manages many of
the complexities of the communication, security, and
naming, allowing the layers above to operate with
simpler abstractions. The Resource Scheduling layer
deals with unique challenges of the breadth and diversity
of resources but need not deal with a wide range of
lower level issues. Above the Resource Scheduling layer,
the Job Management provides job decomposition and
aggregation and basic data management facilities in a
convenient and scalable web interface.

4.3. Implementation

In this section we provide implementation details for
the Entropia system’s three architecture layers, using an
end-to-end scenario to illuminate the function of each
part. Fig. 2 shows a high-level view of the Entropia
system, annotated with the interactions of the compo-

nents. We now describe each of these components and
their interaction.

In step 1, the user interacts with the Entropia system
by submitting a job. A job represents an application, a
collection of inputs to be run for that application, and
the data to be used. We call each independent set of
inputs a subjob, which is the unit of work assigned to
client machines. When using the Job Manager, each
application is registered in advance and consists of an
application binary, a pre-processor, and a post-proces-
sor. Datasets may also be registered in advance. There is
no registration requirement when sending subjobs
directly to the Resource Scheduling Layer.

Job Manager: The Job Manager is responsible for pre-
and post-processing of a job, submitting the subjobs
created to the subjob scheduler, and making sure that all
of the subjobs corresponding to the job complete in a
timely fashion. At the job submission interface, users
specify the application and data files, the priority, and
attributes of the clients needed to run the job.

The application the user submits to the Entropia
system in step 1 consists of Win32 binaries and dll’s, and
Visual Basic scripts. The binaries submitted for an
application are automatically sandboxed to provide a
secure and safe environment for the execution of the
subjob on the client.

An application-dependent pre-processor is used in
step 2 to break the job up into subjobs. Pre-processing

ARTICLE IN PRESS

Job
Management

Resource
Scheduling

Physical Node
Management

Job Manager

Subjob Scheduler

Node Manager

End-user

1

2

3

4
5

7

8

6
b

Entropia
 Clients

a

computation

resource

resource description

Fig. 2. Application execution on the Entropia system. An end-user submits a computation to the Job Manager (1). The Job Manager breaks up the

computation into many independent ‘‘subjobs’’ (2) and submits the subjobs to the Subjob Scheduler. In the mean time, the available resources of a

client are periodically reported to the Node Manager (a) that informs the Subjob Scheduler (b) using the resource descriptions. The Subjob Scheduler

matches the computation needs with the available resources (3) and schedules the computation to be executed by clients ð4; 5; 6Þ: Results of the

subjobs are sent to the Job Manager (7), aggregated together, and handed back to the end-user (8).

A. Chien et al. / J. Parallel Distrib. Comput. 63 (2003) 597–610602

may be as simple as enumerating through a list of
parameters for the application creating a subjob for
each set of parameters or as complex as a running a
program to split up a database into a number of slices—
one for each subjob. Each subjob is submitted to the
Subjob Scheduler.

Subjob Scheduler: The Subjob Scheduler is responsible
for scheduling subjobs to clients and their robust
execution. The subjob scheduler maintains a list of
clients on which it is allowed to run subjobs. This list is
decorated with attributes such as a client’s connectivity
(whether they are currently connected or not), a client’s
status and availability to run a subjob, and static client
attributes (e.g., amount of memory on client, OS type,
etc.). All of this information is used to schedule subjobs
effectively. In Fig. 2, the boxes with a hole in the center,
inside the subjob scheduler, represent client machines
and their attributes assigned to that subjob scheduler.
Step 3 illustrates the scheduler assigning subjobs to
clients, ensuring that client’s attributes satisfy the subjob
requirements. For example, if the user specifies that a
job needs a minimum of 128 megabytes of memory, then
that job’s subjobs will only be assigned to clients with at
least that amount of memory.

The subjob scheduler maintains several priority
queues of subjobs to be run on the Entropia Grid. As
subjobs are submitted to the scheduler, they are placed
into the queue of appropriate priority (determined by
the priority associated with the job). A subjob scheduler
can schedule subjobs for thousands of clients. To
provide scalability to larger number of clients and to
provide subjob scheduler fault tolerance, additional
schedulers can be added to the configuration to serve a
job manager.

The subjob scheduler is also responsible for providing
fault tolerance, insuring progress towards completion,
and identifying faulty subjobs. This is provided by the
following set of policies. The priority for a subjob is
increased if it is not assigned to a client in a reasonable
amount of time. A subjob is rescheduled to run on a
different client if the client becomes disconnected
for ;too long or fails to return a result within the
expected amount of time. If the subjob fails to
complete after a given number of tries the subjob is
marked as faulty and returned to the job manager. The
job manager can then choose to re-submit the subjob or
notify the user.

After a subjob has been assigned to a client, the next
step is to send the subjob description and security
information for the subjob to the client (step 4). When
running the subjob (step 5), the files are transferred to
the client from a file server or accessed via the network.
It is advantageous to cache executable or data files for
an application if the same job is run many times on the
Entropia system. Caching of files provides scalability
and manageability by reducing network traffic.

The next step of subjob execution is to invoke a user-
provided script that can be used to orchestrate the
starting of the subjob’s executables. As the subjob runs,
its access to the machine’s resources is controlled and
monitored by Entropia’s binary sandbox to ensure that
the subjob is unobtrusive, well behaved, and stays
within the resources the client machine has available. In
most other systems [49], resource scheduling assumes
dedicated resources. This is not the case in a desktop
distributed computing environment.

When the subjob completes execution, the client
notifies the subjob scheduler (step 6). If there is a
problem, the subjob may be resubmitted or deemed to
be a failed subjob. Regardless, the subjob scheduler
notifies the job manager (step 7) of the success or failure
for running the subjob. The job manager provides an
interface to monitor the progress of a job and all of its
subjobs. When all or a specified fraction of the subjobs
are complete, the results are post-processed. For
example, a post-processing phase might filter through
the results to find the top result. Finally, in step 8 the
user retrieves the results of the overall job, or if desired
each subjob.

Deployment and Management: The Entropia Grid of
clients is managed via the Node Manager as shown in
Fig. 2. When the Entropia client is installed on a
machine it registers itself with a specified node manager
(step a). This registration includes providing a list of all
of the client’s attributes. These attributes are passed to
the subjob scheduler when the node manager assigns to
the subjob manager its list of available clients (step b).

The node manager provides a centralized interface to
manage all of the clients on the Entropia grid, which is
accessible from anywhere on the enterprise network.
The interface allows an administrator to easily monitor,
add, remove, stop, and restart the clients. The node
manager tracks the status of all of the machines. This
includes the connectivity of the client, how much work
has been performed by the client, and if there are any
issues or problems for a specific client. The interface is
designed to provide scalable management to vast
numbers of clients, requiring minimal effort per client
added to the grid.

Desktop Client: The goal of the Desktop Client is to
harvest unused computing resources by running subjobs
unobtrusively on the machine. First, subjobs are run at a
low process and thread priority. The sandbox enforces
this low priority on all processes and threads created.
Second, the Desktop Client monitors desktop usage of
the machine and resources used by the Entropia system.
If desktop usage is high, the client will pause the
subjob’s execution, avoiding possible resource conten-
tion. The resources monitored by the client include
memory and disk usage, and process and thread
allocation for the subjob. If pausing the subjob does
not remedy the situation, termination of the subjob may

ARTICLE IN PRESS
A. Chien et al. / J. Parallel Distrib. Comput. 63 (2003) 597–610 603

be necessary. Third, the Desktop Client provides
security for the client machine by mediating subjob
access to the file system, registry, and graphical user
interface. This prevents the subjob’s processes from
doing harm to the machine, and ensures that after
subjob execution, the machine’s state is the same as it
was before running the subjob.

4.4. Sandboxed desktop execution

To provide this sandboxed environment, we use
binary modification to intercept all important Windows
API calls. This allows us to have complete control over
the application and its interaction with the desktop
machine.

Application resource usage and control: In a desktop
environment, it is important to make sure that the
amount of resources an application consumes does not
interfere with the usage of the desktop machine. For
example, if an application uses more memory than what
is available on a machine or spawns a significant number
of threads, the machine can become unresponsive to
user interaction and possibly even crash. To prevent this
behavior, the Entropia system automatically monitors
and limits application usage of a variety of key resources
including CPU, memory, disk, threads, processes, etc. If
an application attempts to use too many resources, the
Entropia sandbox will pause or terminate all of the
application’s processes. The Entropia sandbox guaran-
tees that you have strict control over all processes
created when running an application.

Protecting the desktop machine: Along with control-
ling and monitoring an application’s resource usage, an
application’s interaction with the desktop machine must
be strictly controlled to prevent it from adversely
affecting the desktop user, machine configuration, or
network. This control will prevent any application
misbehavior (due to software bugs, inappropriate input
parameters, misconfiguration, virus, etc.). The Entropia
sandbox isolates the grid application and ensures that it
cannot invoke inappropriate system calls, nor inappro-
priately modify the desktop disk, registry, and other
system resources.

We sandbox the application’s access (Fig. 3) and
usage of system resources, such as the registry and file

system. This ensures that any modification of these
resources is redirected to the Entropia sandbox. The
sandbox prevents applications from maliciously or
accidentally causing harm to the desktop resources,
since they cannot modify the desktop’s registry or file
system. Without this protection, an application can
modify system and user files, or even erase or reformat
the desktop machine’s hard drive.

An application running on a desktop PC grid
computing system only needs access to a subset of the
Windows operating system calls. The Windows operat-
ing system provides a rich set of API functionality,
much of which is focused around an application’s
interaction with a user or with external devices. For
example, there are Windows API calls for displaying
graphics and playing music, and even for logging
off a user or shutting down the machine. If these
functions are invoked by an application, they would
definitely disturb the desktop user. The Entropia
sandbox prevents the grid application from accessing
the parts of the Windows API that can cause these
inappropriate interactions with the desktop machine
and user.

A top requirement of IT departments is that the state
of the desktop machine remains unchanged after
executing an application. Without this requirement,
most IT departments will not allow the deployment of a
desktop PC grid computing system inside their enter-
prise. Entropia’s control of an application via our
sandbox guarantees that this requirement is met.

Application protection: Protection of the application
and its data is another important aspect of security for
grid computing. It is important to make sure that users
cannot examine the contents of an application’s data
files, or tamper with the contents of the files when an
application is run on a desktop machine. This applica-
tion protection is needed to ensure the integrity of the
results returned from running an application, and to
protect the intellectual property of the data being
processed and produced.

The Entropia sandbox keeps all data files encrypted
on disk, so that their contents are not accessible by non-
Entropia applications.

The sandbox automatically monitors and checks data
integrity of grid applications and their data and result
files. This ensures that accidental or intentional tamper-
ing with or removal of grid application files by desktop
users will be detected, resulting in the rescheduling of the
subjob on another client.

5. Application performance

In this section we describe the applications and the
performance of these applications running on the
Entropia system.

ARTICLE IN PRESS

Fig. 3. Minimal steps for submitting an application to the Entropia

system.

A. Chien et al. / J. Parallel Distrib. Comput. 63 (2003) 597–610604

5.1. Application characteristics

Early adoption of distributed computing technology
is focused on applications that are easily adapted and
whose high demands cannot be met by traditional
approaches whether for cost or technology reasons. For
these applications, sometimes called ‘‘high throughput’’
applications, very large capacity provides a new kind of
capability.

The applications exhibit large degrees of parallelism
(thousands to even hundreds of millions) with little or
no coupling, in stark contrast to traditional parallel
applications, which are more tightly coupled. These high
throughput computing applications are the only ones
capable of not being limited by Amdahl’s law.

We believe the widespread availability of distributed
computing will encourage reevaluation of many existing
algorithms to find novel uncoupled approaches, ulti-
mately increasing the number of applications suitable
for distributed computing. For example, Monte Carlo
or other stochastic methods that are too inefficient using
conventional computing approaches may prove attrac-
tive when considering time to solution.

We describe four application types successfully using
distributed computing: virtual screening; sequence
analysis; molecular properties and structure; and finan-
cial risk analysis. We discuss the basic algorithmic
structure, from a computational and concurrency
perspective, the typical use and run sizes and the
computation/communication ratio. A common charac-
teristic of all these applications is the independent
evaluation of, at most, a few megabytes of data
requiring several minutes or more of CPU time.

5.1.1. Virtual screening

One of the most successful early applications is virtual
screening, the testing of hundreds of thousands (to
millions) of candidate drug molecules to see if they alter
the activity of a target protein that results in unhealthy
affects. At present, all commercial drugs address only
122 targets, with the top 100 selling drugs addressing
only 45 [46]. Current estimates place the number of
‘‘druggable’’ genes at 5–10,000, with each gene encoding
for around 10 proteins, with 2–3% considered high
value targets. Testing typically involves assessing the
binding affinity of the test molecule to a specific place on
a protein in a procedure commonly called docking.
Docking codes [5,9,12,16,17,26–28,33,34] are well-
matched for distributed computing as each candidate
molecule can be evaluated independently. The amount
of data required for each molecular evaluation is
small—basically the atomic coordinates of the mole-
cules—and the essential results are even smaller, a
binding score. The computation per molecule ranges
from seconds to tens of minutes or more on an average
PC. The coordination overhead can be further reduced

by bundling sets of molecules or increasing the rigor of
the evaluation. Low thresholds can be set for an initial
scan to quickly eliminate clearly unsuitable candidates
and the remaining molecules can be evaluated more
rigorously. Entropia now has experience with numerous
docking codes and can generally deploy new codes in
less than an hour with the Job Manager if a Win32
executable is available.

5.1.2. Sequence analysis

Another application area well-suited to distributed
computing involves DNA or protein sequence analysis
applications, including the BLAST programs
[1,2,22,32,52], HMMER [11], CLUSTAL W [47],
FASTA [35], Wise2 [4] and Smith–Waterman [40]. In
these cases one sequence or set of sequences is compared
to another sequence or set of sequences and evaluated
for similarity. The sequence sizes vary, but each
comparison is independent. Sets of millions of sequences
(gigabytes) can be partitioned into thousands of slices,
yielding massive parallelism. Each compute client
receives a set of sequences to compare and the size of
the database, enabling it to calculate expectation values
properly for the final composite result. This simple
model allows the distributed computing version to
return results equivalent to serial job execution.
Distributing the data in this manner not only achieves
massive input/output concurrency, but actually reduces
the memory requirements for each run, since many of
sequence analysis programs hold all the data in memory.
Entropia has experience with a number of the most
commonly used sequence analysis applications, includ-
ing BLAST, HMMER, and versions of Smith–Water-
man. Each of these uses a different comparison
algorithm with BLAST usually the quickest and
Smith–Waterman the slowest. BLAST, which was
developed to solve genomic related problems is now
also used in solving problems in proteomics, an area
with exponentially growing processing requirements.

5.1.3. Molecular properties and structure

The demand for structure and property information
for combinatorial chemistry libraries means a heavy
demand for molecular modeling programs such as
Gaussian 98 [21], GAMESS [37], and Jaguar [39]. These
programs are often deployed in a data parallel mode
similar to docking, where, again, the data-parallelism
arises from independent molecule evaluations. In this
case, the evaluation time per molecule may be hours or
even days. The algorithms are based on first principles
by solving physical laws such as the Schrödinger
Equation. The memory (often 256 MB or more) and
disk (gigabytes or more) requirements of these programs
require their deployment on machines with sufficient
resources. Fortunately, many desktops now meet these
requirements. Entropia has successfully demonstrated

ARTICLE IN PRESS
A. Chien et al. / J. Parallel Distrib. Comput. 63 (2003) 597–610 605

the ability to use these codes to evaluate large libraries
of molecules. The results can be fed back into large
corporate databases, which may contain millions of
compounds.

5.1.4. Financial risk management

Risk management is an essential element of every
financial institution. Monte Carlo methods are used to
evaluate a wide range of possible outcomes but the
number of samples evaluated has a direct impact on the
reliability of results that can be achieved. Several widely
used commercial packages typically evaluate 300–1000
samples, falling well short of the number needed to
achieve seed independence (10,000), i.e., a result that is
independent of the starting point. Further increases in
the number of samples as well as increased model
complexity can increase the accuracy of results. In this
application, each sample simulation is independent, and
can be executed on a distinct processor to achieve
massive parallelism. Entropia distributed computing is
employed with a range of risk analysis applications to
significantly increase the accuracy of their Monte Carlo
modeling results, while still completing analysis results
in a timely fashion.

5.1.5. Demand and scalability

One of the most interesting aspects of distributed
computing with these applications is the scalability. The
computational demands of these applications scales with
rapidly increasing data sets and algorithm complexity
and is unlikely to be met anytime soon. As a result, the
scalability offered by distributed computing is the only
viable solution. For the applications we have discussed
there are problems that scale well to hundreds of
thousands of processors, with typical cases scaling well
for thousands of processors.

Table 1 shows the latent demand of these applica-
tions. Each of these problems can easily require several
hundred thousand processors, where 24-h turnaround is
required. For example, many pharmaceutical libraries
have a million potential drug molecules that can be

tested against sets of thousands of proteins. Large-scale
sequence analysis problems often involve all against all
comparisons, in this case 700,000 sequences (2� 108

amino acids). The molecular structure and property
problem is a more thorough evaluation of a combina-
torial library of 106 molecules (there are many such
sets). The risk management problem is a rigorous daily
analysis of a million credit card accounts. The data
required in each case is less than a few megabytes.

Interestingly, executing these large, decoupled appli-
cations avoid many of the common bottlenecks of
traditional parallel computing. For example, load
balancing is a problem only for small problems, not
large ones. With large problems the longest work unit is
still only a small fraction of the time the total job
requires, which leads to efficient tiling regardless of the
heterogeneity in the system.

We should note that distributed computing is power-
ful even with as few as 100 processors. Even systems
with a few hundred processors can solve many problems
a 100 times faster than a single machine. Such speedups
can transform a weeklong runtime into less than 1 h:
For many compute intensive problems, we believe that
the benefits for distributed computing are so dramatic
that they will transform how modeling, design, and
many other computations are used to drive business and
research.

5.2. Experimental results

Managing a heterogeneous volatile grid is a difficult
challenge. Fig. 4 is a Gantt chart that illustrates typical
behavior encountered in production enterprise environ-
ments. The figure illustrates a number of the challenges
addressed by the physical node management layer. The
Gantt chart depicts activity of nodes in an Entropia
distributed computing system where each horizontal line
corresponds to a client machine and is marked black
when the node is executing a subjob and white when it is
not.

The chart depicts the execution of a docking program
that is evaluating 50,000 molecules partitioned into
10,000 slices of five molecules each. Each subjob works
on one slice and processes five molecules. The start of a
subjob is indicated by a dot. Most of the nodes start
another subjob as soon as one is completed and it looks
like a continuous line with dots. Where blanks occur no
subjobs are being run. This may be because the node is
no longer available for a variety of reasons (turned off,
offline, network problems, etc.).

At the 900-min mark the system administrator added
more nodes to the grid. The effect, however, would be
similar if another job had finished and its nodes became
available to this job.

Triangles indicate when a node was deliberately
stopped. The two vertical bands of node stoppages are

ARTICLE IN PRESS

Table 1

Application requirements

Area Problem Subjobs Minutes/

subjob

Nodes/

24 h

Virtual 106 mol. vs. 108 10 200,000

screening 104 proteins

Sequence 2� 108 AA vs. 107 60 400,000

analysis 2� 108

Properties and Evaluate 106

mol.

106 600 500,000

structure

Risk 104 sim. for 107 60 400,000

management 106 credit

cards

A. Chien et al. / J. Parallel Distrib. Comput. 63 (2003) 597–610606

the result of centrally administered system upgrades that
required a reboot. Note that most of the application
progress is preserved in each case. Other gaps scattered
throughout the plot are due to network outages,
machines turned off without proper shutdown, and
machines suspected of misbehaving (requesting work
without returning results). The latter can be caused by a
wide variety of conditions ranging from hardware to
software (OS) failure. Each subjob that failed was rerun
on another node to successfully complete the overall job.

Ideally this job would have required only 10,000
subjobs, to complete, but in this case, 10,434 were
required.

While most of the additional subjobs were caused by
the reboots, some were the result of variation in subjobs
execution time. In order to ensure that jobs are
completed in timely fashion, the system will initiate
redundant subjobs when a subjob has failed to return
within the anticipated period (determined by the user).
This technique trades plentiful resources for improve-
ment in average job completion time. For this job the
average subjob ran for 20 min but the range varied
widely, from 8 s to 118 min: Of the 10,000 subjobs, 204
of them ran more than the anticipated limit of 60 min:

The distribution of actual subjob execution times
(reflecting application work variability, node speed
heterogeneity, and available cycles variability) is shown
in Fig. 5 as the mixed grid data points. The average
subjob execution time for the mixed grid was 20 min
with a standard deviation of 13:4 min and a variance
181. Also shown is the distribution for each subjob when
running on an 866-MHz Pentium III processor. The

average subjob completion time for the 866 MHz
environment was 15:3 min with a standard deviation
of 7:8 min and a variance of only 60.6.

The distribution is typical of many applications, that
is most subjobs complete near the average time but there
are significant numbers of subjobs that complete either
quickly or slowly. The smoothness is an artifact of
10,000 values sorted by size (one second resolution)
and displayed on this scale. The slow subjobs present
a challenge to scheduling algorithms to discern
between subjobs that are simply slow and those that
have failed.

The processors used in this example were Pentium II
and III machines with clock speeds ranging from
266 MHz to 1 GHz and running two different versions
(service packs) of Windows NT 4.0 and three versions of
Windows 2000. The application code was a mixture of C
(mostly) and FORTRAN developed for an SGI IRIX
environment and required no changes except those
related to porting to a Win32 environment. Some
additional code was written to do pre- and post-
processing of the data.

5.3. Application performance

To assess delivered application performance for a
range of system sizes, a variety of calculations docking
50,000 molecules were made in the environment
described above using up to 600 processors. The graph
in Fig. 6 shows the resulting application throughput
(molecules dockings completed per minute) over time
for the case of 393 and 600 processors.

ARTICLE IN PRESS

Fig. 4. Gantt chart depicting activity of nodes in enterprise environment.

A. Chien et al. / J. Parallel Distrib. Comput. 63 (2003) 597–610 607

It takes approximately 20 min (the length of the
average subjob) before a steady state of producing
results is reached and then it is quite variable due to
the variations in the size of individual subjobs. The
600-node job started out at 450 nodes and only
reached 580 nodes after 130 min and 600 at the very
end. The average throughput for the 393-node case
was 87 molecules per minute and 122 molecules
per minute for the 600-node case. The startup and
finishing phases are discounted in calculating through-

put. Plotting the throughput for nine runs of 50,000
molecules, varying the number of nodes from 145 to
600 produced the graph shown in Fig. 7. The
figure demonstrates clearly the linear scaling we
have observed for all of the applications discussed
in the paper. Points representing the throughput for a
20-processor SGI system and a 66-processor Linux
cluster are included for calibration, and demonstrate
that high levels of absolute performance are being
achieved.

ARTICLE IN PRESS

0

100

200

300

400

500

600

0 10 20 30 40 50 60 70 80 90 100

Completion Time (minutes)

S
ub

jo
bs

866 MHz Only
average = 15.3
std. dev. = 7.8
variance = 61

mode = 15

Mixed Grid
average = 19.8
std. Dev. = 13.4
variance = 181

mode = 16

 Mixed Grid
Constituency

 266- 500 MHz 24%
 550- 850 MHz 30%
 866 MHz 41%

Subjob Completion Time
(10,000 subjobs)

Fig. 5. Distribution of subjob completion times for docking code.

0

20

40

60

80

100

120

140

160

0 60 120 180 240 300 360 420 480 540 600 660

Elapsed Time (minutes)

M
ol

ec
ul

es
 C

om
pl

et
ed

 p
er

 M
in

ut
e

600 nodes 393 nodes

Docking Throughput (50,000 molecules)

Fig. 6. Molecule dockings completed vs. time, runs on grid of size 393 and 600 nodes.

A. Chien et al. / J. Parallel Distrib. Comput. 63 (2003) 597–610608

6. Summary and futures

Distributed computing has the potential to revolutio-
nize how much of large-scale computing is achieved. If
easy-to-use distributed computing can be seamlessly
available and accessed, applications will have access to
dramatically more computational power to fuel in-
creased functionality and capability. The key challenges
to acceptance of distributed computing include robust-
ness, security, scalability, manageability, unobtrusive-
ness, and openness/ease of application integration.

Entropia’s system architecture consists of three layers:
a physical node management layer, resource scheduling,
and job scheduling. This architecture provides a
modularity that allows each layer to focus on a smaller
number of concerns, enhancing overall system capability
and usability. This system architecture provides a solid
foundation to meet the technical challenges as the use of
distributed computing matures—supporting the broad-
ening the problems supportable by increasing the
breadth of computational structure, resource usage,
and ease of application integration.

We have described the implementation of the
Entropia system, and its use in a number of applica-
tions. The implementation includes innovative solutions
in many areas, but particularly in the areas of security,
unobtrusiveness, and application integration. The sys-
tem is applicable to a large number of applications, and
we have discussed virtual screening, sequence analysis,
molecular modeling, and risk analysis in this paper. For
all of these application domains, excellent linear scaling
has been demonstrated for large distributed computing

systems. We expect to extend these results to a number
of other domains in the near future.

Despite the significant progress documented here, we
believe we are only beginning to see the mass use of
distributed computing. With robust commercial systems
such as Entropia only recently available, widespread
industry adoption of the technology is only beginning.
At this writing, we are confident that within a few years,
distributed computing will be deployed and in use in
production within a majority of large corporations and
research sites.

Acknowledgments

We gratefully acknowledge the contributions of the
talented engineers and architects at Entropia to the
design and implementation of the Entropia system. We
specifically acknowledge the contributions of Kenjiro
Taura, Scott Kurowski, Shawn Marlin, Wayne Schroe-
der, Jon Anderson, and Ed Anady to the definition and
development of the system architecture. We also
acknowledge Dean Goddette, Wilson Fong, and Mike
May for their contributions to applications benchmark-
ing and understanding performance data.

References

[1] S. Altschul, W. Gish, W. Miller, E. Myers, D. Lipman, Basic local

alignment search tool, J. Mol. Biol. 215 (1990) 403–410.

[2] S. Altschul, T. Madden, A. Schffer, J. Zhang, Z. Zhang, W.

Miller, D. Lipman, Gapped BLAST and PSI-BLAST: a new

ARTICLE IN PRESS

y = 0.19x + 5.1

R2 = 0.96

0

20

40

60

80

100

120

140

0 100 200 300 400 500 600 700

Number of Nodes

C
om

po
un

ds
 p

er
 M

in
ut

e

Job

Job

Job

Job 121

Job

Job

Job 110

Job 127

20-processor 250 MHz R10K SGI O2K

66-processor 750 MHz Linux cluster

Job

50K Compound Throughput Scalability

Fig. 7. Scaling of the Entropia system throughput on a virtual screening application.

A. Chien et al. / J. Parallel Distrib. Comput. 63 (2003) 597–610 609

generation of protein database search programs, Nucleic Acids

Res. 25 (1997) 3389–3402.

[3] D. Barkai, Peer-To-Peer Computing: Technologies For Sharing

and Collaborating on the Net, Intel Press, Santa-Clara, CA, 2001.

[4] E. Birney, Wise2: intelligent algorithms for DNA searches,

http://www.sanger.ac.uk/Software/Wise2/ (2001).

[5] H. Bohm, Towards the automatic design of synthetically

accessible protein ligands: Peptides, amides and peptidomimetics,

J. Computer-Aided Mol. Design 10 (1996) 265–272.

[6] A. Bricker, M. Litzkow, M. Livny, Condor technical summary,

Technical Report 1069, Department of Computer Science,

University of Wisconsin, Madison, WI, January 1992.

[7] A. Chien, M. Lauria, R. Pennington, M. Showerman, G.

Iannello, M. Buchanan, K. Connelly, L. Giannini, G. Koenig,

S. Krishnamurthy, Q. Liu, S. Pakin, G. Sampemane, Design and

evaluation of HPVM-based windows supercomputer, Internat. J.

High Performance Comput. Appl. 13 (3) (1999) 201–219.

[8] DataSynapse Inc., http://www.datasynapse.com.

[9] K. Davies, THINK, Department of Chemistry, Oxford

University, Oxford, 2001.

[10] Distributed.net, The fastest computer on earth, http://www.

distributed.net.

[11] S. Eddy, HMMER: profile hidden markov models for biological

sequence analysis, http://hmmer.wustl.edu/, 2001.

[12] M. Eldridge, C. Murray, T. Auton, G. Paolini, R. Mee, Empirical

scoring functions: I. The development of a fast empirical scoring

function to estimate the binding affinity of ligands in receptor

complexes, J. Computer-Aided Mol. Design 11 (1997) 425–445.

[13] Entropia, Researchers discover largest multi-million-digit prime

using entropia distributed computing grid, Press release,

Entropia, Inc., December 2001.

[14] Entropia, Entropia announces support for open grid services

architecture, Press release, Entropia, Inc., February 2002.

[15] Entropia, Inc., http://www.entropia.com.

[16] T. Ewing, I. Kuntz, Critical evaluation of search algorithms for

automated molecular docking and database screening, J. Comput.

Chem. 9 (18) (1997) 1175–1189.

[17] L.F.T. Eyck, J. Mandell, V.A. Roberts, M.E. Pique, Surveying

molecular interactions with DOT, in: Proceedings of the ACM

Conference on Supercomputing, San Diego, 1995.

[18] I. Foster, The Grid: Blueprint For a New Computing

Infrastructure, Morgan Kaufmann, Los Altos, CA, 1998.

[19] I. Foster, C. Kesselman, The globus project: a status report, in:

IPPS/SPDP ’98 Heterogeneous Computing Workshop, Orlando,

FL, 1998.

[20] I. Foster, C. Kesselman, S. Tuecke, The anatomy of the grid:

Enabling scalable virtual organizations, Internat. J. Supercomput.

Appl. 15 (3) (2001) 200–222.

[21] M.J. Frisch, G.W. Trucks, H.B. Schlegel, et al., Gaussian 98,

Gaussian, Inc., Carnegie, PA, 2001.

[22] W. Gish, D. States, Identification of protein coding regions by

database similarity search, Nat. Genet. 3 (1993) 266–272.

[23] M. Gray, Internet Growth Summary, MIT Press, Cambridge,

MA, 1996.

[24] A. Grimshaw, W. Wulf, The legion vision of a worldwide virtual

computer, Comm. ACM 40 (1) (1997) 39–45.

[25] F. Heart, A. McKenzie, J. McQuillian, D. Walden, ARPANET

completion report, Technical Report 4799, BBN, January 1978.

[26] G. Jones, P. Willett, R.C. Glen, Molecular recognition of receptor

sites using a genetic algorithm with a description of desolvation, J.

Mol. Biol. 245 (1995) 43–53.

[27] E. Katchalski-Katzir, I. Shariv, M. Eisenstein, A. Friesem, C.

Aflalo, I. Vakser, Molecular surface recognition: determination of

geometric fit between proteins and their ligands by correlation

techniques, Proc. Natl. Acad. Sci. USA 89 (1992) 2195–2199.

[28] B. Kramer, M. Rarey, T. Lengauer, Evaluation of the flexX

incremental construction algorithm for protein-ligand docking,

Proteins Struct. Funct. Genet. 37 (1999) 228–241.

[29] M.J. Litzkow, Remote Unix turning idle workstations into cycle

servers, in: Proceedings of the Summer 1987 USENIX Con-

ference, USENIX Assoc., Phoenix, AZ, USA, 1987, pp. 381–384.

[30] M.J. Litzkow, M. Livny, M.W. Mutka, Condor—a hunter of idle

workstations, in: eighth International Conference on Distributed

Computing Systems, San Jose, CA, USA, 1988, pp. 104–111.

[31] J. Lyman, Intel debuts 2.2ghz pentium 4 chip, The News Factor,

January 7 2002.

[32] T. Madden, R. Tatusov, J. Zhang, Applications of network

BLAST server, Methods Enzymol. 266 (1996) 131–141.

[33] M. McGann, FRED: Fast rigid exhaustive docking, openEye,

2001.

[34] G.M. Morris, D.S. Goodsell, R. Halliday, R. Huey, W.E. Hart,

R.K. Belew, A.J. Olson, Automated docking using a lamarckian

genetic algorithm and empirical binding free energy function, J.

Comput. Chem. 19 (1998) 1639–1662.

[35] W.R. Pearson, D.J. Lipman, Improved tools for biological

sequence comparison, Proc. Nat. Acad. Sci. USA 85 (1988)

2444–2448.

[36] Platform Computing, The load sharing facility, http://www.plat-

form.com.

[37] M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert,

M.S. Gordon, J.H. Jensen, S. Koseki, N. Matsunaga,

K.A. Nguyen, S. Su, T.L. Windus, M. Dupuis, J.A. Montgomery,

General atomic and molecular electronic structure system, J.

Comput. Chem. 14 (1993) 1347–1363.

[38] J.F. Schoch, J.A. Hupp, The ‘worm’ programs–early experience

with a distributed computation, Comm. ACM 25 (3) (1982)

172–180.

[39] Schrodinger, Jaguar, http://www.schrodinger.com/Products/

jaguar.html, 2001.

[40] T. Smith, M. Waterman, Comparison of biosequences, Adv.

Appl. Math. 2 (1981) 482–489.

[41] Z. Songnian, Z. Xiaohu, W. Jingwen, P. Delisle, Utopia: a load

sharing facility for large, heterogeneous distributed computer

systems, Software Practice Experience 23 (12) (1993) 1305–1336.

[42] T. Sterling, Beowulf Cluster Computing with Linux, The MIT

Press, Cambridge, MA, 2001.

[43] W. Sullivan, A new major SETI project based on project serendip

data and 100,000 personal computers, Astronomical and Bio-

chemical Origins and the Search for Life in the Universe.

[44] Sun Microsystems, Jxta, http://www.jxta.org.

[45] V. Sunderam, PVM: a framework for parallel distributed

computing, Concurrency, Practice Experience 2 (4) (1990)

315–339.

[46] A. Thayer, Genomics moves on, Chemical and Engineering News,

October 14, 2002.

[47] J.D. Thompson, D. Higgins, T. Gibson, CLUSTAL W: improv-

ing the sensitivity of progressive multiple sequence alignment

through sequence weighting, positions-specific gap penalties and

weight matrix choice, Nucleic Acids Res. 22 (1994) 4673–4680.

[48] United Devices, the MetaProcessor platform, http://www.ud.com.

[49] Veridian Systems, Portable Batch System, http://www.openpbs.

org.

[50] C.A. Waldsburger, T. Hogg, B.A. Huberman, J.O. Kephart, W.S.

Stornetta, Spawn: a distributed computational economy, IEEE

Trans. Software Eng. 18 (2) (1992) 103–117.

[51] G. Woltman, The great internet mersenne prime search,

http://www.mersenne.org.prime.htm.

[52] J. Zhang, T. Madden, PowerBLAST: a new network BLAST

application for interactive or automated sequence analysis and

annotation, Genome Res. 7 (1997) 649–656.

ARTICLE IN PRESS
A. Chien et al. / J. Parallel Distrib. Comput. 63 (2003) 597–610610

*http://www.sanger.ac.uk/Software/Wise2/a4
*http://www.datasynapse.com.
*http://www.distributed.net
*http://www.distributed.net
*http://hmmer.wustl.edu/a4
*http://www.entropia.com.
*http://www.platform.com.
*http://www.platform.com.
*http://www.schrodinger.com/Products/jaguar.html
*http://www.schrodinger.com/Products/jaguar.html
*http://www.jxta.org.
*http://www.ud.com.
*http://www.openpbs.org.
*http://www.openpbs.org.
*http://www.mersenne.org.prime.htm

	Entropia: architecture and performance of an enterprise desktop grid system
	Introduction
	Background
	Requirements for distributed computing
	Entropia system architecture
	Enabling applications
	Layered architecture
	Implementation
	Sandboxed desktop execution

	Application performance
	Application characteristics
	Virtual screening
	Sequence analysis
	Molecular properties and structure
	Financial risk management
	Demand and scalability

	Experimental results
	Application performance

	Summary and futures
	Acknowledgements
	References

