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Abstract— In a grid-computing environment, resource selection and computing the “distance” between these clusters. This
and scheduling depend on the network topology connecting & information is normally sufficient for a scheduler to deteren
computation nodes. This paper presents a method to hieraréh which groups of nodes can be efficiently employed to solve

cally group compute nodes distributed across the internetrito I bl d which binati f clust
logical clusters, and determine the relative location of te clusters. Smaller problems, and which combinalions or clusters are

At inter-domain level, distance from landmarks (a small graup likely to be effective for larger problems. Figure 1 illustes
of distributed reference nodes) is the basis for convertinghe the problem we solve in this work.

location of nodes inside a complex network structure onto a
simple geometric space. The position of compute nodes in thi
geometric space is the basis for partitioning nodes into chters.
For compute nodes within an administrative domain, minimum
RTT is used as the metric to partition nodes into clusters. Tis
approach leads to an efficient, scalable and portable methodf
clustering grid nodes and building a distance map among clusrs.
We demonstrate the system for automatic clustering by apping
it to computation nodes distributed across five universitis in
Texas.
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|I. INTRODUCTION

A Grid can be defined as a large-scale distributed network
computing system that is a result of transparent, systemati
a_md eff_ect?ve utilization of_ geographically and_ administ_r Cluster B Cluster C
tively distributed computation resources. A grid-compgti
system must include a scheduler to select appropriate&s®U rig 1. Mapping network nodes onto a geometric space to easbgical
(hosts, network links, etc) for applications. Informatg@rvice clusters and a distance map between the clusters.
systems such as the Network Weather Service (NWS) [15]
are commonly employed by Grid middleware systems like The specific problem we address is as follows: Given a set
Globus [6] to capture the current state of the grid platfornof compute nodes represented by their IP addresses/hastnam
However, a knowledge of the state of network links (avadabthe goal is to partition them into clusters and place thetelss
bandwidth and latency) and the available CPU and memory imEuclidean space to capture their relative locations atet-
compute nodes is not sufficient to solve the resource sefectcluster distance. The procedure consists of distinct steps
problem. The relative location of the nodes and the netwoplartitioning nodes distributed across the internet intgda
topology interconnecting the nodes are also importanbfact clusters typically consisting of nodes belonging to a damai
for the scheduler to decide how to aggregate the availalsled partitioning of nodes within a domain.
computational resources for a specific application. But the For partitioning of nodes distributed across the internet,
heterogeneous, dynamic, and distributed nature of a gathploy the concept of landmarks from GNP (Global Network
system makes it very difficult to capture the physical nelwoPositioning) [11] for a scalable and efficient solution. Han
topology graph. It is often impossible to query the necgssamnarks are a small group of carefully selected distributestdio
information from routers, switches and other network desicthat work as a distributed frame of reference for positignin
configured and managed by different administrative domaitie2 compute nodes in a grid computing system. The coordinate
because of technology, security and administrative reason set of each node is the latency vector measured from the

However, for solving the basic resource selection problefandmarks to the compute node. Hence, N landmarks will map
a complete knowledge of the physical network topology the compute nodes into an N-dimensional geometric space,
not required. Normally, a coarse and logical description @fhere the nodes belonging to the same domain will be close
the network connecting the computing nodes is sufficient. to each other and the nodes belonging to different domains
this paper we focus on grouping “nearby” nodes into clustevéll have longer distances between them. The clustering is
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then accomplished based on Euclidean distance and a heuriBtacer node. Global Network Positioning (GNP) [11] rep-
distance threshold. resents the complex structure of the Internet by a simple
The above approach is not always effective for partitionirgeometric space based on a set of reference hosts called
within a single domain, such as a university, because thrandmarks. Each host has its own geometric coordinates based
distance vectors for nodes inside a domain are often to@ cle distance from the landmarks, and the network distance
to each other for meaningful and accurate clustering. Thetween the hosts is modeled by Euclidean distance. Theil-
reason is that the difference in latency from a distant laatkm mann and Rothermel [13] propose dynamic distance maps of
to various nodes within a domain can be smaller than tilee Internet. They create a global view of the Internet from
error tolerance of this approach. Selecting landmarksimwiththeir mServers, which hierarchically decompose the network
the domain does not always resolve the problem becauserdé regions, and estimate the network distance betweets.hos
the relatively low latencies inside a domain, typically end Iso-bar [4] is a scalable overlay distance monitoring syste
a millisecond. In this case we perform clustering based avhich clusters hosts based on the similarity of their peexbi
direct latency measurements between nodes. This intredusetwork distance from designatéandmarks. Basically, the
additional measurement complexity, but it is not a problam bbjective of using alraccer/Landmark/mServer is to allow
practice since the number of nodes within a domain is smalkgalability of large-scale network measurements and aisaly
and pairwise measurements can be made efficiently. as it eliminates the need to measure the distance between
The rest of this paper proceeds as follows. After a discassiévery pair of nodes. We have borrowed this idea for clusgerin
of related work in Section I, we present the algorithms ar@hd use the term “landmark” in the rest of this paper. Our
implementation of inter-domain and intra-domain compuontribution is to employ these techniques to automaticall
node clustering, in Section Il and Section 1V, respectivel partition grid nodes into clusters and build a knowledgeebas
Experimental results are presented in Section V followed fyat can be used by grid resource managers.

discussion in Section VI. We conclude in Section VII. Since compute nodes in a cluster are likely to have similar
IP addresses, it is natural to explore that as a basis for
II. RELATED WORK clustering. In [8], [9], the similarity between the IP adske

prefixes is used to divide the hosts/clients into clustersyH
A grid can span a collection of heterogeneous networksyer, subnets with the same IP prefix can be geographically
which makes network topology discovery an inherently chand logically separated from each other. Clustering in that
lenging task. Lowekamp et. al. [10] and Bejearno et.al. f#hb case requires access to data from BGP (Border Gateway
develop novel and practical algorithms to discover the k&/e protocol) tables, which may not be available on a grid. Our
topology by utilizing information from the address forwar@ method is solely based on coordinated end-to-end latency
tables. But their work is limited to a LAN or a singlemeasurements between sets of nodes, and hence does not make

administrative domain, where the SNMP MIB informatiomny assumptions about IP prefixes and does not require access
can be accessed. Instead of the physical LAN topology, o BGP tables.

method aims to discover the logical topology, and applies to
grid-computing system with nodes distributed across iplelti I1l. CoMPUTE NODESCLUSTERING
administrative domains. S ] o
The term network tomographywas first introduced by The mtumon pehmd o_urapproach t.o cIusten_ng_ is that com-
Vardi [14] in 1996 due to the similarity between network infe pute n.odes within a logical cluster W!|| show similar netWor
ence and medical tomography. The network topology infaenQ?ha‘”or’ such as latency and bandwidth, when measured from
problem is to discover the internal logical topology by enél- dlstant_ nodes. Conversely,_nodes that are not close to _each
end measurements without internal network cooperation. 8§€r in network sense will show very different behavior.
analyzing packet pairs (two small size packets sent out frd.rﬁ\tgncy is the metr|c used in our hierarchical cluster!n.gul\A/
the same host with a very small time difference) leaving frofh€ inter-domain latency could range from several milksets
the sources and arriving at the destinations, Nowak et ak wd® Several hundred milliseconds, the intra-domain lateiscy
able to identify the logical topology with multiple sourceéJSlJ""ll_y W'th'n 1 m|II|se(_:ond. He_nce: our approach to inter-
and multiple destinations without a knowledge of the phaisicd®main and intra-domain clustering is different.
topology [5], [12]. However, this approach has not been prov
to be practical for large-scale network systems, where the INter-
overhead of the probes and sensitivity to the behavior of The inter-domain clustering procedure can be divided into
routers and other interconnecting devices are importaitfa. two phases: i) Using the latency as the metric, we map the
Network distance, the metric used in our approach twdes in the given computation grid onto an N-dimensional
clustering, is also the basis for several other network ipredgeometric coordinate space. Each compute node is repeglsent
tion and monitoring systems. IDMaps [7] is a measuremeas an N-dimensional vector formed by measured latency from
infrastructure to support a large-scale distance infolonat a set of N landmarks. ii) Based on the Euclidean distance
query/reply service. It predicts the distance between shoftetween node pairs and a heuristic distance threshold, ilge bu
based on the triangulation inequality from each host’s estaran undirected graph with edges representing distancete€us
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Fig. 2. Network Structure to Geometric Space

are created by repeatedly solving the maximal clique prableadministrative domain. The new graph is again represented
over this graph. We explain these steps in more detalil. as G(V, E), where V is the set of compute nodes, and E is
1) Grid Nodes to Geometric Spac@®ased on the model the set of edges whose weight is less than the threshold. The
proposed in the Global Network Position [11], the Grid nodeslgorithm for building clusters from this graph is presente
are mapped to an N-dimensional geometric space as illadtrain Table I. This algorithm essentially finds the largest wéq
in Figure 2. The N-dimensional space is based on a small sétnodes in the graph, builds a cluster from them, and then
of N distributed nodes known as Landmarks. Each computmoves those nodes from the graph. The procedure is repeate
node is characterized by its geometric coordinates, whieh auntil all nodes are assigned to clusters.
derived from the Round Trip Times (RTTs) between the node
and each landmark. TABLE |
If there are N landmarkd,; to L, and M compute nodes ALGORITHMTO CLUSTER GRID COMPUTE NODES
H, to Hy,, atotal of N x M measurements are needed to capr-
ture the distance between every landmark and every comput
node. The advantage of using landmarks is that the number|0bUTPUT: Sets of nodes belonging to different clustéls(i=1 to K).
measurements is reducedddx M, from a possiblelM x M
in a naive approach. Note that M increases with the size 0falize i=1.
the grid platform while N is a preselected constant denoting
the number of landmarks. The difference is critical for &arg (13 Usﬁg‘e enumerative algorithm [3] to find a maximal cliqdie o
networks and makes this approach scalable. Another adyanta rapn -
of this landmark based approach over pairwise measurements. Assign the clique nodes to Cluste¥; .
is due to the asymmetry of the Internet; the path and latengy .
from node A to node B is not always the same as those fro Tl?ﬁolzgn:]g\éz: Iflrgr?thehsem C“;]sgri and all edges connected to
graph G.
node B to node A. With the landmark approach, since all
distances are measured from landmarks, the asymmetry is Td‘t— If G is NULL, Terminate. Else increment i = i+1 and Goto Step
a problem. Finally, since all measurements are made from‘a
few landmarks only, the approach is logistically much easie
to manage.
2) Network Distance and Maximum Clique/Cluster Disco\B. Intra-domain clustering

ery: After mapping the grid nodes to a geometric space, The inter-domain clustering algorithm discussed abové wil
clustering decision is based on the Euclidean distance. typically group all nodes in a domain in a single clusterides
. . N n 2 an administrative domain, there can be multiple computs-clu
EuclideanDistance(l — ) = \/Zizl (4i = Bi) ters belonging to different departments and research graop
First, a complete undirected graph G(V, E) is built, whereur experience, the landmark based approach to inter-domai
V is the set of nodes, and E represents the distance betwekistering is not very effective within a domain. We employ
the corresponding pairs of nodes. If the Euclidean distand&ectly measured RTT between pairs of nodes as the basis to
between two compute nodes is greater than a threshold, th&cover the logical topology and partition the networkoint
edge between that pair of nodes is removed. The Eucliddanal clusters.
Distance Threshold is/n x T, where n is the total number First, the latency between each pair of nodes inside the
of landmarks, and T is determined heuristically based @uministrative domain is measured. This will requicex M
maximum expected latency between two hosts inside a typitalency measurements, wheké is the number of nodes in

IeNPUT: An undirected graph G(V, E)




the domain. However, the latency is small (within 1ms) anaf SYN+ACK or RST is received as a response to a SYN
the number of nodes is a fraction of the nodes in a fulequest. The time between SYN and SYN+ACK/RST at the
computational grid. Hence we believe this is practical. sender can be recorded to determine the RTT.

We again build an undirected graph G(V,E), where V is In our experiments, we use HTPing [16], which stands for
the set of nodes within the domain and E represents edgerricane TCP Pinglt directs probe packets to a single target
distances. For edge (a, b), the distance is the averagewith fine inter-probe intervals (on the order of millisecehd
RTT(a—b) and RTT(b~a). The basic idea of intra-domain
clustering is as follows. For nodes within the same clustd?; Latency Threshold
the distance of the edges between them should be wittlin ~ The Euclidean Distance Threshold for deciding if a pair of
of the least expensive edge to each of them and wiflfin nodes belong to the same clustet/igs x T', where n is the total
of the least expensive edge within the cluster. The algorithhnumber of landmarks, and T is determined heuristically thase
is outlined in Table Il. We heuristically choogeto be 20 in  on maximum expected latency difference between two hosts
our experiments. inside a typical administrative domain. In our implemeiatat
we choose T to be 1ms.

We argue that if the latency difference between a pair of
nodes and each landmark is less than 1 ms, then the nodes
are likely to be in the same physical domain. The latency
between any two nodes is composed of queuing delay, trans-
OUTPUT: Sets of nodes belonging to different clustéts(i=1 to K). mission delay and propagation delay. Hence, the difference
in latency includes the difference in these three companent
C;.min_edge always represents the weight of the least cost edge of total delay. Since the packet size for latency measurémen
in C; (or 0 if there are no edges within the cluster) is small, the transmission delay is negligible. Queuingagel
difference is expected to be small because the routes betwee
landmarks and nodes within the same administrative domain
2. For each edge E(a,b) in G in non-decreasing order will be the same except for a few hops close to the nodes
under consideration. So, the propagation delay differevitte
dominate the total latency difference. The physical ranfye o

TABLE Il
ALGORITHM TO CLUSTER COMPUTE NODES INSIDE A DOMAIN

INPUT: A undirected graph G(V, E)

1. Each node in G initialized as a 1 node cluster.

If (a and b are in different clusters Cluster(a) and Clublej(then

If E(a,b) < [(1+8%)* Cluster(a). minedge] AND packet travel within a millisecond is roughly in the range of
E(@.b) < [(1+5%)" Cluster(b). minedge] 2000 meters, which is fairly long inside a physical domain.
Merge Cluster(a) and Cluster(b) Hence, 1 ms is a reasonable estimate for an upper bound on

latency difference between a landmark and the nodes in the
same subnet.

IV. | MPLEMENTATION V. EXPERIMENTS AND RESULTS

A clustering framework has been developed based on thelhe clustering framework developed in this paper was
algorithms discussed. The system was applied to 36 nod@plied to groups of nodes for validation. We discuss therint
within Texas. Nodes at University of Texas, Austin, Careegdomain and intra-domain experiments separately.

Mellon University, Pittburgh and Rice University, Houston

. : . A. Inter-domain experiment
were used as landmarks. The intra-domain clustering was

applied to 4 real clusters inside University of Houston. We For this experiment we selected 36 nodes at locations across
discuss some of the interesting issues in the implementatifeXas. These nodes are distributed in different admirixgtra

— latency measurement and latency threshold. domains — Rice University in Houston, Texas A&M at
College Station, Texas A&M at Galveston, and University of
A. Latency Measurement Texas at Dallas. The 3 landmarks are nodes located at UT,

Ping, developed in December of 1983 [1], is a popular todlustin, CMU, Pittsburgh, and Rice, Houston. The resultant
to measure the RTT. It exploits the IP protocol by sendingapping of the nodes to geometric space is illustrated in
out an Echo-Request ICMP packet to the target host, whiEfgure 3, Figure 4 and Figure 5. In Figure 3, nodes at UT,
forces the target to return an Echo-Response ICMP messag®lU and Rice are used as landmarks, in Figure 4 nodes at
Unfortunately, due to the malicious use of ICMP service§T and CMU are used as landmarks, and in in Figure 5, nodes
increasing number of routers and firewalls will not forward cat UT and Rice are used as landmarks. In all these figures, the
respond to ICMP packets. Also, operating systems may linsymbols used to represent nodes for mapping and partiionin
the rate of ICMP response. All these mechanism reduce them each university are as follows: + UT Dallas,TAMU
efficiency and effectiveness of Ping. Galveston, * TAMU College Station, and Rice.

TCP Ping stands for ping-like tools that exploit TCP’s It is clear from Figure 3 that nodes are cleanly partitioned
3-way handshake in connection establishment. Unless th® their natural clusters when the three landmarks are em-
incoming TCP packet is blocked at target host, a resporgleyed for mapping to a 3-D geometric space. Figure 4 and



101

oL
10~
9 s ++
8 -
7k
R ® @
6| 61
2 (%]
B3 X
< 5 sk < o
3 3
& S "’*ﬁg&"
4 ©
s
34
2 3l
14 : e o
0 . .
0=l el ’ 45
6 . 44
7 43 1+
8 9 42
41
0 11 40 0 @& L L L L L L L L |
CMU Axis 6 6.5 7 75 8 85 9 95 10 105 11

UT Axis UT Axis

- ; ; fpri ; : Fig. 5. Nodes from different domains distributed in 2-D spadth UT and
Fig. 3. Nodes from different domains distributed in 3-D spaudith UT, ;
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Station, ando Rice) ando Rice.)
pre B. Intra-domain experiment
er 4D In this experiment we use compute nodes of 4 clusters at

University of Houston, that we refer to &GH201, Stokes,
Opteron and Itanium PGH201 and Stokes are clusters be-
longing to 2 different research groups. Opteron and Itanium
are clusters owned by the Texas Learning and Computation
Center. NPACI Rocks cluster distribution is installed oh4al
clusters.

The RTTs between nodes within the same cluster and
between nodes in different clusters are listed in Table Ill.
We have represented the results also in 3D in Figure 6
to be analogous with inter-domain results, even though the
i 9 methodology is different. Our clustering framework reciags

W@ PGH201 and Stokes as separate clusters, but puts Opteron and
N 75 s a5 s 95 10 ws u Itanium (2 physically different clusters) in the same lagic
uT Axis cluster. This can be observed from Figure 6. After talking
Fig. 4. Nodes from different domains distributed in 2-D spadth UT and with the system administrator, we discovered that Optermh a
CMU as axes. (+ UT Dallas; TAMU Galveston, * TAMU College Station, Itanium are actually within the same subnet. This means that
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ando Rice) our clustering is logically correct.
TABLE Il

RTTS INSIDE AND BETWEEN4 CLUSTERS AT UNIVERSITY OF HOUSTON
Figure 5 show mappings to a 2-D geometric space employing (IN MILLISECONDS)
only 2 landmarks. One thing to note is that, in Figure 4, the
nodes at UT Dallas and TAMU Galveston are too close to each Clusters | PGH 201 | Opteron | ltanium | Stokes
other to be divided into different clusters. The implicasas
that, in this situation, landmarks at CMU and UT Austin are PGH201| 0.09 0.32 0.32 | 0.30

not sufficient to map the network topology. Employing a Rice

node as a landmark instead of CMU leads to the mapping Opteron 025 009 009 | 0%0
in Figure 5, while employing a Rice node as an additional Itanium 0.30 0.10 0.10 0.35
landmark leads to the mapping in Figure 3. In both these

cases, the nodes are cleanly divided into 4 different alsiste Stokes 0.40 0.50 0.60 | 010

The point is that the selection and the number of landmarks
are important parameters for good partitioning in this rodth



but checking for cliques makes the procedure more consisten
and robust.
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Fig. 7. Border nodes between 2 administrative domains
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o C. Clustering based on domain suffixes

The simplest inter-domain clustering algorithm is to put
nodes with different domain name suffixes in different cuost
e.g., putting all nodes with suffisice.eduin a different cluster
from all nodes with suffixuh.edu However this approach is
not always effective. Sometimes two different domains may
share the same backbone network infrastructure and their
nodes should belong to the same logical cluster. Conversely
nodes belonging to the same domain name suffix can be part

One interesting question in this research is how malfﬂt different backbone networks. Our approach is not affiécte

landmarks are sufficient to correctly cluster compute nadeldy these factors as it determines the logical location ofesod
In experiments conducted with the Iso-bar overlay distanP8S€d on direct measurements from landmarks.
monitoring system [4], 6, 15, 60 and 106 Ian(_jmarl_<s Wers  Scalability

selected. The results show that there was very little difiee

in distance prediction accuracy. Although the goals of thjs
research are different from the Iso-bar, we use a simil
Euclidean network distance as the basis for clusteringcklen
it is reasonable to assume that a small number of well selec
landmarks can be sufficient.

0.5

0.5

Opetron Axis PGH201 Axis

Fig. 6. Clusters inside UH domain distributed in 3-D space

VI. DISCUSSION
A. Landmark selection

While the inter-domain clustering presented in this paper
highly scalable, clustering within a domain does require
atency measurements between each pair of nodes and hence
%alability is of concern. However, we believe that this may
not be a serious problem in practice for the following reason

e The number of nodes within a domain in a grid is

B. Maximal clique and distance threshold

In inter-domain clustering, since the nodes belonging & th
same logical cluster must be close to each other in Euclidearr
space, it can be argued that simply using a distance thigéshol
to decide whether a pair of nodes is in the same cluster is
sufficient. The issue is whether it is necessary to compute ma
imal cliqgues that we employ for clustering. Indeed clustgri
can be done effectively in most cases by simply aggregating
nodes based on a distance threshold. However, the cliqee bas
procedure is necessary to generate unique disjoint ctuster
all cases.

typically within a range of 100s of nodes, an order of
magnitude less than a multi-domain grid.

Latency between nodes is small, typically under a mil-
lisecond. Hence, the overhead of latency measurement
by a node with a large number of other nodes also takes
a very short time. Further, we have not observed any
significant reduction in accuracy when measurements are
done by multiple nodes in parallel, possibly because of
the small size of probe packets.

Clustering is expected to be a relatively infrequent event.

However, a packet storm when starting measurement pro-

Consider the set of nodes in in Figure 7. The two cliquesss on a large network may be a cause for concern. There are

shown represent the intuitively “correct” clustering. Hower,

ways in which the measurement overhead can be reduced, e.g.,

since one pair of nodes across these clusters are closehio dachierarchically selecting representatives for groupsarfes,
other in the “border” region between the clusters, a simplend limiting some measurements to these representatives.
partitioning could have decomposed it into 3 clusters - withhese issues are not addressed in this work.

one cluster consisting of the 2 border nodes. Further, the
actual cluster formation would depend on which nodes were
examined first. However, the maximal clique algorithm will A procedure to aggregate computation nodes into logical
always partition the nodes into unique clusters independetusters, and measure the distances between these clusters
of ordering - into the 2 clusters shown in Figure 7 for thiss of value to grid schedulers for selecting appropriate re-
example. In practice, we have not come across such sceparsasirces in a large-scale grid-computing system. In thisepap

VIl. CONCLUSION



we present a method to hierarchically group compute nodes
distributed across the internet into logical clusters, bnitt a
distance map among these clusters. Organization of gridsnogll]
into hierarchical clusters also helps resource monitoand
management on a grid.

In comparison with existing clustering techniques, od%z]
method is efficient, robust, scalable, and portable. One of
the key features of our approach is the use of landmarké!
to improve the efficiency of measuring distances between,
grid nodes. While the concept of landmarks is not new, our
contribution is applying this idea to help solve grid resmur 1
selection and resource management problem. Experime[nﬂ
across a set of clusters distributed across Texas valitiate t
effectiveness of this approach to automatic clusteringrif g [16]
nodes.
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