
Automatic Clustering of Grid Nodes
Qiang Xu

Department of Electrical and
Computer Engineering
University of Houston
Houston, Texas 77204

Email: Qiang.Xu@mail.uh.edu

Jaspal Subhlok
Department of Computer Science

University of Houston
Houston, Texas 77204
Email: jaspal@uh.edu

Abstract— In a grid-computing environment, resource selection
and scheduling depend on the network topology connecting the
computation nodes. This paper presents a method to hierarchi-
cally group compute nodes distributed across the internet into
logical clusters, and determine the relative location of the clusters.
At inter-domain level, distance from landmarks (a small group
of distributed reference nodes) is the basis for convertingthe
location of nodes inside a complex network structure onto a
simple geometric space. The position of compute nodes in this
geometric space is the basis for partitioning nodes into clusters.
For compute nodes within an administrative domain, minimum
RTT is used as the metric to partition nodes into clusters. This
approach leads to an efficient, scalable and portable methodof
clustering grid nodes and building a distance map among clusters.
We demonstrate the system for automatic clustering by applying
it to computation nodes distributed across five universities in
Texas.

I. I NTRODUCTION

A Grid can be defined as a large-scale distributed network
computing system that is a result of transparent, systematic
and effective utilization of geographically and administra-
tively distributed computation resources. A grid-computing
system must include a scheduler to select appropriate resources
(hosts, network links, etc) for applications. Informationservice
systems such as the Network Weather Service (NWS) [15]
are commonly employed by Grid middleware systems like
Globus [6] to capture the current state of the grid platform.
However, a knowledge of the state of network links (available
bandwidth and latency) and the available CPU and memory on
compute nodes is not sufficient to solve the resource selection
problem. The relative location of the nodes and the network
topology interconnecting the nodes are also important factors
for the scheduler to decide how to aggregate the available
computational resources for a specific application. But the
heterogeneous, dynamic, and distributed nature of a grid
system makes it very difficult to capture the physical network
topology graph. It is often impossible to query the necessary
information from routers, switches and other network devices
configured and managed by different administrative domains
because of technology, security and administrative reasons.

However, for solving the basic resource selection problem,
a complete knowledge of the physical network topology is
not required. Normally, a coarse and logical description of
the network connecting the computing nodes is sufficient. In
this paper we focus on grouping “nearby” nodes into clusters

and computing the “distance” between these clusters. This
information is normally sufficient for a scheduler to determine
which groups of nodes can be efficiently employed to solve
smaller problems, and which combinations of clusters are
likely to be effective for larger problems. Figure 1 illustrates
the problem we solve in this work.
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Fig. 1. Mapping network nodes onto a geometric space to construct logical
clusters and a distance map between the clusters.

The specific problem we address is as follows: Given a set
of compute nodes represented by their IP addresses/hostnames,
the goal is to partition them into clusters and place the clusters
in Euclidean space to capture their relative locations and inter-
cluster distance. The procedure consists of distinct stepsfor
partitioning nodes distributed across the internet into large
clusters typically consisting of nodes belonging to a domain,
and partitioning of nodes within a domain.

For partitioning of nodes distributed across the internet,we
employ the concept of landmarks from GNP (Global Network
Positioning) [11] for a scalable and efficient solution. Land-
marks are a small group of carefully selected distributed hosts
that work as a distributed frame of reference for positioning
the compute nodes in a grid computing system. The coordinate
set of each node is the latency vector measured from the
landmarks to the compute node. Hence, N landmarks will map
the compute nodes into an N-dimensional geometric space,
where the nodes belonging to the same domain will be close
to each other and the nodes belonging to different domains
will have longer distances between them. The clustering is



then accomplished based on Euclidean distance and a heuristic
distance threshold.

The above approach is not always effective for partitioning
within a single domain, such as a university, because the
distance vectors for nodes inside a domain are often too close
to each other for meaningful and accurate clustering. The
reason is that the difference in latency from a distant landmark
to various nodes within a domain can be smaller than the
error tolerance of this approach. Selecting landmarks within
the domain does not always resolve the problem because of
the relatively low latencies inside a domain, typically under
a millisecond. In this case we perform clustering based on
direct latency measurements between nodes. This introduces
additional measurement complexity, but it is not a problem in
practice since the number of nodes within a domain is smaller
and pairwise measurements can be made efficiently.

The rest of this paper proceeds as follows. After a discussion
of related work in Section II, we present the algorithms and
implementation of inter-domain and intra-domain compute
node clustering, in Section III and Section IV, respectively.
Experimental results are presented in Section V followed by
discussion in Section VI. We conclude in Section VII.

II. RELATED WORK

A grid can span a collection of heterogeneous networks,
which makes network topology discovery an inherently chal-
lenging task. Lowekamp et. al. [10] and Bejearno et.al. [2] both
develop novel and practical algorithms to discover the Layer-2
topology by utilizing information from the address forwarding
tables. But their work is limited to a LAN or a single
administrative domain, where the SNMP MIB information
can be accessed. Instead of the physical LAN topology, our
method aims to discover the logical topology, and applies toa
grid-computing system with nodes distributed across multiple
administrative domains.

The term network tomographywas first introduced by
Vardi [14] in 1996 due to the similarity between network infer-
ence and medical tomography. The network topology inference
problem is to discover the internal logical topology by end-to-
end measurements without internal network cooperation. By
analyzing packet pairs (two small size packets sent out from
the same host with a very small time difference) leaving from
the sources and arriving at the destinations, Nowak et al. were
able to identify the logical topology with multiple sources
and multiple destinations without a knowledge of the physical
topology [5], [12]. However, this approach has not been proven
to be practical for large-scale network systems, where the
overhead of the probes and sensitivity to the behavior of
routers and other interconnecting devices are important factors.

Network distance, the metric used in our approach to
clustering, is also the basis for several other network predic-
tion and monitoring systems. IDMaps [7] is a measurement
infrastructure to support a large-scale distance information
query/reply service. It predicts the distance between hosts
based on the triangulation inequality from each host’s nearest

Tracer node. Global Network Positioning (GNP) [11] rep-
resents the complex structure of the Internet by a simple
geometric space based on a set of reference hosts called
landmarks. Each host has its own geometric coordinates based
on distance from the landmarks, and the network distance
between the hosts is modeled by Euclidean distance. Theil-
mann and Rothermel [13] propose dynamic distance maps of
the Internet. They create a global view of the Internet from
their mServers, which hierarchically decompose the network
into regions, and estimate the network distance between hosts.
Iso-bar [4] is a scalable overlay distance monitoring system,
which clusters hosts based on the similarity of their perceived
network distance from designatedlandmarks. Basically, the
objective of using aTraccer/Landmark/mServer is to allow
scalability of large-scale network measurements and analysis
as it eliminates the need to measure the distance between
every pair of nodes. We have borrowed this idea for clustering
and use the term “landmark” in the rest of this paper. Our
contribution is to employ these techniques to automatically
partition grid nodes into clusters and build a knowledge base
that can be used by grid resource managers.

Since compute nodes in a cluster are likely to have similar
IP addresses, it is natural to explore that as a basis for
clustering. In [8], [9], the similarity between the IP address
prefixes is used to divide the hosts/clients into clusters. How-
ever, subnets with the same IP prefix can be geographically
and logically separated from each other. Clustering in that
case requires access to data from BGP (Border Gateway
Protocol) tables, which may not be available on a grid. Our
method is solely based on coordinated end-to-end latency
measurements between sets of nodes, and hence does not make
any assumptions about IP prefixes and does not require access
to BGP tables.

III. C OMPUTE NODESCLUSTERING

The intuition behind our approach to clustering is that com-
pute nodes within a logical cluster will show similar network
behavior, such as latency and bandwidth, when measured from
distant nodes. Conversely, nodes that are not close to each
other in network sense will show very different behavior.
Latency is the metric used in our hierarchical clustering. While
the inter-domain latency could range from several milliseconds
to several hundred milliseconds, the intra-domain latencyis
usually within 1 millisecond. Hence, our approach to inter-
domain and intra-domain clustering is different.

A. Inter-domain clustering

The inter-domain clustering procedure can be divided into
two phases: i) Using the latency as the metric, we map the
nodes in the given computation grid onto an N-dimensional
geometric coordinate space. Each compute node is represented
as an N-dimensional vector formed by measured latency from
a set of N landmarks. ii) Based on the Euclidean distance
between node pairs and a heuristic distance threshold, we build
an undirected graph with edges representing distance. Clusters
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Fig. 2. Network Structure to Geometric Space

are created by repeatedly solving the maximal clique problem
over this graph. We explain these steps in more detail.

1) Grid Nodes to Geometric Space:Based on the model
proposed in the Global Network Position [11], the Grid nodes
are mapped to an N-dimensional geometric space as illustrated
in Figure 2. The N-dimensional space is based on a small set
of N distributed nodes known as Landmarks. Each compute
node is characterized by its geometric coordinates, which are
derived from the Round Trip Times (RTTs) between the node
and each landmark.

If there are N landmarks,L1 to LN , and M compute nodes
H1 to HM , a total ofN×M measurements are needed to cap-
ture the distance between every landmark and every compute
node. The advantage of using landmarks is that the number of
measurements is reduced toN ×M , from a possibleM ×M

in a naive approach. Note that M increases with the size of
the grid platform while N is a preselected constant denoting
the number of landmarks. The difference is critical for large
networks and makes this approach scalable. Another advantage
of this landmark based approach over pairwise measurements
is due to the asymmetry of the Internet; the path and latency
from node A to node B is not always the same as those from
node B to node A. With the landmark approach, since all
distances are measured from landmarks, the asymmetry is not
a problem. Finally, since all measurements are made from a
few landmarks only, the approach is logistically much easier
to manage.

2) Network Distance and Maximum Clique/Cluster Discov-
ery: After mapping the grid nodes to a geometric space,
clustering decision is based on the Euclidean distance.

EuclideanDistance(~A − ~B) =
√

∑

n

i=1
(Ai − Bi)

2

First, a complete undirected graph G(V, E) is built, where
V is the set of nodes, and E represents the distance between
the corresponding pairs of nodes. If the Euclidean distance
between two compute nodes is greater than a threshold, the
edge between that pair of nodes is removed. The Euclidean
Distance Threshold is

√
n × T , where n is the total number

of landmarks, and T is determined heuristically based on
maximum expected latency between two hosts inside a typical

administrative domain. The new graph is again represented
as G(V, E), where V is the set of compute nodes, and E is
the set of edges whose weight is less than the threshold. The
algorithm for building clusters from this graph is presented
in Table I. This algorithm essentially finds the largest clique
of nodes in the graph, builds a cluster from them, and then
removes those nodes from the graph. The procedure is repeated
until all nodes are assigned to clusters.

TABLE I

ALGORITHM TO CLUSTER GRID COMPUTE NODES

INPUT: An undirected graph G(V, E)

OUTPUT: Sets of nodes belonging to different clustersCi (i=1 to K).

Initialize i=1.

1. Use the enumerative algorithm [3] to find a maximal clique of
Graph G.

2. Assign the clique nodes to ClusterCi .

3. Remove all nodes in ClusterCi and all edges connected to
those nodes from the graph G.

4. If G is NULL, Terminate. Else increment i = i+1 and Goto Step1.

B. Intra-domain clustering

The inter-domain clustering algorithm discussed above will
typically group all nodes in a domain in a single cluster. Inside
an administrative domain, there can be multiple compute clus-
ters belonging to different departments and research groups. In
our experience, the landmark based approach to inter-domain
clustering is not very effective within a domain. We employ
directly measured RTT between pairs of nodes as the basis to
discover the logical topology and partition the network into
local clusters.

First, the latency between each pair of nodes inside the
administrative domain is measured. This will requireM ×M

latency measurements, whereM is the number of nodes in



the domain. However, the latency is small (within 1ms) and
the number of nodes is a fraction of the nodes in a full
computational grid. Hence we believe this is practical.

We again build an undirected graph G(V,E), where V is
the set of nodes within the domain and E represents edge
distances. For edge (a, b), the distance is the average of
RTT(a→b) and RTT(b→a). The basic idea of intra-domain
clustering is as follows. For nodes within the same cluster,
the distance of the edges between them should be withinβ%
of the least expensive edge to each of them and withinβ%
of the least expensive edge within the cluster. The algorithm
is outlined in Table II. We heuristically chooseβ to be 20 in
our experiments.

TABLE II

ALGORITHM TO CLUSTER COMPUTE NODES INSIDE A DOMAIN

INPUT: A undirected graph G(V, E)

OUTPUT: Sets of nodes belonging to different clustersCi (i=1 to K).

Ci.min edge always represents the weight of the least cost edge
in Ci (or 0 if there are no edges within the cluster)

1. Each node in G initialized as a 1 node cluster.

2. For each edge E(a,b) in G in non-decreasing order

If ( a and b are in different clusters Cluster(a) and Cluster(b) ) then

If E(a,b) < [(1+β%)* Cluster(a). minedge] AND
E(a,b)< [(1+β%)* Cluster(b). minedge]

Merge Cluster(a) and Cluster(b)

IV. I MPLEMENTATION

A clustering framework has been developed based on the
algorithms discussed. The system was applied to 36 nodes
within Texas. Nodes at University of Texas, Austin, Carnegie
Mellon University, Pittburgh and Rice University, Houston
were used as landmarks. The intra-domain clustering was
applied to 4 real clusters inside University of Houston. We
discuss some of the interesting issues in the implementation
— latency measurement and latency threshold.

A. Latency Measurement

Ping, developed in December of 1983 [1], is a popular tool
to measure the RTT. It exploits the IP protocol by sending
out an Echo-Request ICMP packet to the target host, which
forces the target to return an Echo-Response ICMP message.
Unfortunately, due to the malicious use of ICMP services,
increasing number of routers and firewalls will not forward or
respond to ICMP packets. Also, operating systems may limit
the rate of ICMP response. All these mechanism reduce the
efficiency and effectiveness of Ping.

TCP Ping stands for ping-like tools that exploit TCP’s
3-way handshake in connection establishment. Unless the
incoming TCP packet is blocked at target host, a response

of SYN+ACK or RST is received as a response to a SYN
request. The time between SYN and SYN+ACK/RST at the
sender can be recorded to determine the RTT.

In our experiments, we use HTPing [16], which stands for
Hurricane TCP Ping. It directs probe packets to a single target
with fine inter-probe intervals (on the order of milliseconds).

B. Latency Threshold

The Euclidean Distance Threshold for deciding if a pair of
nodes belong to the same cluster is

√
n×T , where n is the total

number of landmarks, and T is determined heuristically based
on maximum expected latency difference between two hosts
inside a typical administrative domain. In our implementation,
we choose T to be 1ms.

We argue that if the latency difference between a pair of
nodes and each landmark is less than 1 ms, then the nodes
are likely to be in the same physical domain. The latency
between any two nodes is composed of queuing delay, trans-
mission delay and propagation delay. Hence, the difference
in latency includes the difference in these three components
of total delay. Since the packet size for latency measurement
is small, the transmission delay is negligible. Queuing delay
difference is expected to be small because the routes between
landmarks and nodes within the same administrative domain
will be the same except for a few hops close to the nodes
under consideration. So, the propagation delay differencewill
dominate the total latency difference. The physical range of
packet travel within a millisecond is roughly in the range of
2000 meters, which is fairly long inside a physical domain.
Hence, 1 ms is a reasonable estimate for an upper bound on
latency difference between a landmark and the nodes in the
same subnet.

V. EXPERIMENTS AND RESULTS

The clustering framework developed in this paper was
applied to groups of nodes for validation. We discuss the inter-
domain and intra-domain experiments separately.

A. Inter-domain experiment

For this experiment we selected 36 nodes at locations across
Texas. These nodes are distributed in different administrative
domains — Rice University in Houston, Texas A&M at
College Station, Texas A&M at Galveston, and University of
Texas at Dallas. The 3 landmarks are nodes located at UT,
Austin, CMU, Pittsburgh, and Rice, Houston. The resultant
mapping of the nodes to geometric space is illustrated in
Figure 3, Figure 4 and Figure 5. In Figure 3, nodes at UT,
CMU and Rice are used as landmarks, in Figure 4 nodes at
UT and CMU are used as landmarks, and in in Figure 5, nodes
at UT and Rice are used as landmarks. In all these figures, the
symbols used to represent nodes for mapping and partitioning
from each university are as follows: + UT Dallas,◦ TAMU
Galveston, * TAMU College Station, and⋄ Rice.

It is clear from Figure 3 that nodes are cleanly partitioned
into their natural clusters when the three landmarks are em-
ployed for mapping to a 3-D geometric space. Figure 4 and
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Fig. 3. Nodes from different domains distributed in 3-D space with UT,
CMU and Rice as axes. (+ UT Dallas,◦ TAMU Galveston, * TAMU College
Station, and⋄ Rice)
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Fig. 4. Nodes from different domains distributed in 2-D space with UT and
CMU as axes. (+ UT Dallas,◦ TAMU Galveston, * TAMU College Station,
and⋄ Rice)

Figure 5 show mappings to a 2-D geometric space employing
only 2 landmarks. One thing to note is that, in Figure 4, the
nodes at UT Dallas and TAMU Galveston are too close to each
other to be divided into different clusters. The implications is
that, in this situation, landmarks at CMU and UT Austin are
not sufficient to map the network topology. Employing a Rice
node as a landmark instead of CMU leads to the mapping
in Figure 5, while employing a Rice node as an additional
landmark leads to the mapping in Figure 3. In both these
cases, the nodes are cleanly divided into 4 different clusters.
The point is that the selection and the number of landmarks
are important parameters for good partitioning in this method.
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Fig. 5. Nodes from different domains distributed in 2-D space with UT and
CMU as axes. (+ UT Dallas,◦ TAMU Galveston, * TAMU College Station,
and⋄ Rice.)

B. Intra-domain experiment

In this experiment we use compute nodes of 4 clusters at
University of Houston, that we refer to asPGH201, Stokes,
Opteron and Itanium. PGH201 and Stokes are clusters be-
longing to 2 different research groups. Opteron and Itanium
are clusters owned by the Texas Learning and Computation
Center. NPACI Rocks cluster distribution is installed on all 4
clusters.

The RTTs between nodes within the same cluster and
between nodes in different clusters are listed in Table III.
We have represented the results also in 3D in Figure 6
to be analogous with inter-domain results, even though the
methodology is different. Our clustering framework recognizes
PGH201 and Stokes as separate clusters, but puts Opteron and
Itanium (2 physically different clusters) in the same logical
cluster. This can be observed from Figure 6. After talking
with the system administrator, we discovered that Opteron and
Itanium are actually within the same subnet. This means that
our clustering is logically correct.

TABLE III

RTTS INSIDE AND BETWEEN4 CLUSTERS AT UNIVERSITY OF HOUSTON

(IN MILLISECONDS)

Clusters PGH 201 Opteron Itanium Stokes

PGH 201 0.09 0.32 0.32 0.30

Opteron 0.25 0.09 0.09 0.50

Itanium 0.30 0.10 0.10 0.35

Stokes 0.40 0.50 0.60 0.10
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VI. D ISCUSSION

A. Landmark selection

One interesting question in this research is how many
landmarks are sufficient to correctly cluster compute nodes?
In experiments conducted with the Iso-bar overlay distance
monitoring system [4], 6, 15, 60 and 106 landmarks were
selected. The results show that there was very little difference
in distance prediction accuracy. Although the goals of this
research are different from the Iso-bar, we use a similar
Euclidean network distance as the basis for clustering. Hence,
it is reasonable to assume that a small number of well selected
landmarks can be sufficient.

B. Maximal clique and distance threshold

In inter-domain clustering, since the nodes belonging to the
same logical cluster must be close to each other in Euclidean
space, it can be argued that simply using a distance threshold
to decide whether a pair of nodes is in the same cluster is
sufficient. The issue is whether it is necessary to compute max-
imal cliques that we employ for clustering. Indeed clustering
can be done effectively in most cases by simply aggregating
nodes based on a distance threshold. However, the clique based
procedure is necessary to generate unique disjoint clusters in
all cases.

Consider the set of nodes in in Figure 7. The two cliques
shown represent the intuitively “correct” clustering. However,
since one pair of nodes across these clusters are close to each
other in the “border” region between the clusters, a simpler
partitioning could have decomposed it into 3 clusters - with
one cluster consisting of the 2 border nodes. Further, the
actual cluster formation would depend on which nodes were
examined first. However, the maximal clique algorithm will
always partition the nodes into unique clusters independent
of ordering - into the 2 clusters shown in Figure 7 for this
example. In practice, we have not come across such scenarios,

but checking for cliques makes the procedure more consistent
and robust.

Fig. 7. Border nodes between 2 administrative domains

C. Clustering based on domain suffixes

The simplest inter-domain clustering algorithm is to put
nodes with different domain name suffixes in different clusters,
e.g., putting all nodes with suffixrice.eduin a different cluster
from all nodes with suffixuh.edu. However this approach is
not always effective. Sometimes two different domains may
share the same backbone network infrastructure and their
nodes should belong to the same logical cluster. Conversely,
nodes belonging to the same domain name suffix can be part
of different backbone networks. Our approach is not affected
by these factors as it determines the logical location of nodes
based on direct measurements from landmarks.

D. Scalability

While the inter-domain clustering presented in this paper
is highly scalable, clustering within a domain does require
latency measurements between each pair of nodes and hence
scalability is of concern. However, we believe that this may
not be a serious problem in practice for the following reasons:

• The number of nodes within a domain in a grid is
typically within a range of 100s of nodes, an order of
magnitude less than a multi-domain grid.

• Latency between nodes is small, typically under a mil-
lisecond. Hence, the overhead of latency measurement
by a node with a large number of other nodes also takes
a very short time. Further, we have not observed any
significant reduction in accuracy when measurements are
done by multiple nodes in parallel, possibly because of
the small size of probe packets.

• Clustering is expected to be a relatively infrequent event.

However, a packet storm when starting measurement pro-
cess on a large network may be a cause for concern. There are
ways in which the measurement overhead can be reduced, e.g.,
by hierarchically selecting representatives for groups ofnodes,
and limiting some measurements to these representatives.
These issues are not addressed in this work.

VII. C ONCLUSION

A procedure to aggregate computation nodes into logical
clusters, and measure the distances between these clusters,
is of value to grid schedulers for selecting appropriate re-
sources in a large-scale grid-computing system. In this paper



we present a method to hierarchically group compute nodes
distributed across the internet into logical clusters, andbuild a
distance map among these clusters. Organization of grid nodes
into hierarchical clusters also helps resource monitoringand
management on a grid.

In comparison with existing clustering techniques, our
method is efficient, robust, scalable, and portable. One of
the key features of our approach is the use of landmarks
to improve the efficiency of measuring distances between
grid nodes. While the concept of landmarks is not new, our
contribution is applying this idea to help solve grid resource
selection and resource management problem. Experiments
across a set of clusters distributed across Texas validate the
effectiveness of this approach to automatic clustering of grid
nodes.
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