
Exploiting Fine-Grained Idle Periods in
Networks of Workstations

Kyung Dong Ryu and Jeffrey K. Hollingsworth, Member, IEEE

AbstractÐStudies have shown that for a significant fraction of the time, workstations are idle. In this paper, we present a new

scheduling policy called Linger-Longer that exploits the fine-grained availability of workstations to run sequential and parallel jobs. We

present a two-level workload characterization study and use it to simulate a cluster of workstations running our new policy. We

compare two variations of our policy to two previous policies: Immediate-Eviction and Pause-and-Migrate. Our study shows that the

Linger-Longer policy can improve the throughput of foreign jobs on a cluster by 60 percent with only a 0.5 percent slowdown of local

jobs. For parallel computing, we show that the Linger-Longer policy outperforms reconfiguration strategies when the processor

utilization by the local process is 20 percent or less in both synthetic bulk synchronous and real data-parallel applications.

Index TermsÐMeta-computing, cluster computing, process migration, networks of workstations, parallel computing.

æ

1 INTRODUCTION

STUDIES have shown that up to three-quarters of the time
workstations are idle [21]. Systems such as Condor [19],

LSF [32], and NOW [3] have been created to use these
available resources. Such systems define a ªsocial contractº
that permits foreign jobs to run only when a workstation's
owner is not using the machine. To enforce this contract,
foreign jobs are stopped and migrated as soon as the owner
resumes use of their computer. We propose a policy, called
Linger-Longer, that refines the social contract to permit fine-
grained cycle stealing. By permitting foreign jobs to linger
on a machine at low priority even when local tasks are
active, we can improve the throughput of foreign jobs in
shared clusters by 60 percent while holding the slowdown
of local jobs to only 0.5 percent.

The motivation for the Linger-Longer approach is

simple: Even when users are ªactivelyº using workstations,

the processor is idle for a substantial fraction of the time. In

addition, a significant amount of memory is usually

available. To minimize the effect on the owner's workload,

current techniques do not use these fine-grained idle

cycles.1 Linger-Longer exploits these fine-grained idle

periods to run foreign jobs with very low priority (so low

that local jobs are allowed to starve the foreign task). Our

approach enables the system to utilize most idle cycles

while limiting the slowdown of the owner's workload to an

acceptable level. To improve job response time, Linger-
Longer will not let the foreign jobs linger forever on a busy

machine. We employ a cost model to predict when the

benefit of running on a free node outweighs the overhead of
a migration.

The primary beneficiaries of the Linger-Longer schedul-
ing policy are large compute-bound sequential jobs. Since
most of these jobs are batch (no user interaction during
execution), and consist of a family of related jobs that are
submitted as a unit and must all be completed prior to the
results being used (e.g., a collection of simulation runs with
different parameters), job throughput rather than response
time is the primary performance metric. We will concen-
trate on throughput as the metric we try to optimize.

A key question about Linger-Longer is whether a
scheduling policy that can delay users' local jobs will be
accepted. For several reasons, we think this problem can be
overcome. First, as shown in Section 5.1, the delay that users
will experience with our approach is very low. Second,
existing systems that exploit free workstations also have an
indirect impact on users due to the time required to reload
virtual memory pages and caches after a foreign job has
been evicted.

In the rest of this paper, we present an overview of the
Linger-Longer policy and evaluate its performance via
simulation. First, related work is surveyed in Section 2.
Section 3 describes the Linger-Longer policy and explains
its prediction model for migration. Section 4 characterizes
the utilization of workstations, evaluates the potential for
lingering, and presents a study of the available CPU time
and physical memory on user workstations. Section 5
evaluates the Linger-Longer policy at a fine-grained level
on a single node, and, then Section 6 measures cluster level
performance by simulating a medium scale cluster of 64
nodes with sequential jobs. Running parallel jobs using
Linger-Longer is also investigated in Section 7. Finally, we
will conclude with a summary in Section 8.

2 RELATED WORK

Previous work on exploiting available idle time on work-
station clusters used a conservative model that would only

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 11, NO. 7, JULY 2000 683

. The authors are with the Computer Science Department, University of
Maryland, College Park, MD 20742.
E-mail: {kdryu, hollings}@cs.umd.edu.

Manuscript received 8 Sept. 1998; accepted 1 Feb. 2000.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number 107366.

1. Part of the motivation for this policy is to promote user acceptance of
foreign jobs running on their system. However, after 10 years of experience
with environments such as Condor, user acceptance seems to have been
reached.

1045-9219/00/$10.00 ß 2000 IEEE

run jobs when the local user was away from his/her
workstation and no local processes were runnable. Condor
[19], LSF [32], and NOW [4] use variations on a ªsocial
contractº to strictly limit interference with local users.
However, even with these policies, there is some disruption
of the local user when he/she returns since the foreign job
must be evicted and the local state restored. Our Linger-
Longer approach permits slightly more disruption of the
user, but tries to limit the delay to an acceptable level. In
opposition to these transparency-based approaches, Legion
[13] adopted negotiation-based resource harvesting. Ma-
chine owners are allowed to specify how much CPU and
memory can be used by foreign processes. Generous
machine owners receive more credits in return for the
future use of Legion resources. The Butler system [9] also
gives users access to idle workstations. The basic concept of
this system is to provide transparent remote execution on
idle nodes. Lack of support for job migration in Butler can
lead to loss of work by remote jobs when the machine
owner returns. One system that used nonidle workstations
was the Stealth distributed scheduler [16]. It implemented a
priority-based approach to running foreign jobs. However,
none of the trade-offs in how long to run foreign jobs, or the
potential of running parallel jobs were investigated.

Prior studies that investigated running parallel jobs on
shared workstation clusters also employed fairly conserva-
tive eviction policies. Dusseau et al. [10] used a policy based
on immediate eviction. They were able to use a cluster of
60 machines to achieve the performance of a dedicated
parallel computer with 32 processors. Acharya et al. [1]
adopted a different approach that reconfigured the parallel
job to use fewer nodes when one became unavailable. This
approach permitted running more jobs on a given cluster,
although the performance of any single job would be
somewhat reduced. Bhatt et al. [6] studied the trade-off
between cycle stealing granularity and checkpoint fre-
quency. Leutenegger and Sun [18] considered running
parallel jobs on a cluster, but did not use actual workloads
to drive their simulations.

PVM [12] and MPI [11] are widely used packages to run
parallel programs on clusters, but do not include a
scheduling policy. Pruyne and Livny [23] developed
CARMI to use idle machines for parallel programs written
in PVM. The MIST [7] project also extended PVM to support
checkpointing and migration. The distinction between the
two systems is that CARMI requires a master-workers style
programming and the inclusion and exclusion of machines
is handled by creation and deletion of new worker
processes, whereas MIST migrates running PVM processes.
Hector [24] and Cocheck [26] support checkpointing and
migration for parallel programs written with MPI.

Process migration and load balancing have been studied
extensively. MOSIX [5] provides load-balancing and
preemptive migration for traditional UNIX processes.
Harchol-Balter and Downey [14] studied the lifetimes of
processes, and developed a predictive model about what
processes are worth migrating. Our prediction of the
lifetime of nonidle episodes uses predictions similar to
theirs. Chowdhury et al. [8] characterized when to
reconfigure sequential workloads. DEMOS/MP [22], Accent

[31], Locus [28], and V [27] all provided manual or
semiautomated migration of processes.

3 FINE-GRAINED CYCLE STEALING

We use the term ªcycleº stealing to mean running jobs that
don't belong to the workstation's owner (foreign jobs). The
idle cycles of machines can be defined at different levels.
Traditionally, studies have investigated using machines
only when they are not in use by the owner. Thus, the
machine state can be divided into two states: idle and
nonidle. In addition to processor utilization, user interaction
such as keyboard and mouse activity has been used to
detect if the owner is actively using their machine. Acharya
et al. [1] showed that for their definition of idleness,
machines are in a nonidle state for 50 percent of the time.
However, even while the machine is in use by the owner,
substantial resources are available to run other jobs.

We introduce a new technique to make more idle time
available. In terms of CPU utilization there are long idle
intervals when the processor is waiting for user input, I/O,
or the network. These intervals between run bursts by
owners' jobs can be made available to others' jobs. We use
the term lingering to mean running foreign jobs, while the
user processes are active. Since the owner has priority over
foreign jobs using their personal machine, use of these idle
intervals should not affect the performance of the owner's
jobs (local jobs).

Delay of local jobs should be avoided. If not, users will
not permit their workstations to participate in the pool.
Priority scheduling is a simple way to enforce this policy.
Current operating systems schedule processes based on
their priority, and use a complex dynamic priority alloca-
tion algorithm for efficiency and fairness. To implement
lingering, we need a somewhat stronger definition of
priority for local and foreign job classes. Local processes
have the highest priority and can starve foreign processes.
In addition, when a foreign process is running, an interrupt
that results in a local process becoming runnable causes the
local process to be scheduled onto the processor even if the
foreign job's scheduling quanta has not expired.

3.1 Linger-Longer Migration

Two strategies have been used in the past to migrate foreign
jobs: Immediate-Eviction and Pause-and-Migrate. In Im-
mediate-Eviction, the foreign job is migrated as soon as the
machine becomes nonidle. Because this can cause unneces-
sary and expensive migrations for short nonidle intervals,
an alternative policy, called Pause-and-Migrate, that sus-
pends the foreign processes for a fixed time prior to
migration is often used. The fixed suspend time should not
be long because the foreign job makes no progress in the
suspend state. With Linger-Longer scheduling, foreign jobs
can run even while the machine is in use by the owner;
therefore, migration becomes an optional move to a
machine with lower utilization rather than a necessity to
avoid interference with the owner's jobs. Although migra-
tion can increase the foreign job's available resources, there
is a cost to move the process' state. Also, the advantage of
running on the idle machine depends on the difference in
available processor time between the idle machines and a

684 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 11, NO. 7, JULY 2000

current nonidle one. To maximize processor time available
to a foreign job, we need a policy that determines the linger
duration.

When to migrate in a Linger-Longer scheduler depends
on the local CPU utilization on the source and destination
nodes, the duration of nonidle state, and the migration cost.
The question is when will the foreign job benefit from
migration? Given the local CPU utilization and migration
cost, the minimum duration of nonidle interval (called an
episode) before migration is advantageous can be com-
puted. Any idle period shorter than the minimum duration
will not provoke a migration. We can compute the
minimum duration by comparing the two timing diagrams
in Fig.1.

In the nonidle state, utilization by the workstation owner
starts at t1 and ends at t4.The average utilization of the
nonidle node is h, and the average utilization on an idle
node is l. We assume the execution time of the foreign job
exceeds the duration of the nonidle state, so the foreign job
completion time tf1 comes after t4. Migration happens at t2,
and the cost is Tmigr.The following equations compute the
total job CPU time TC;M and TC;S with and without
migration, respectively.

TC;S � �1ÿ l� � �t1 ÿ t0� � �1ÿ h�
� �t4 ÿ t1� � �1ÿ l� � �tf1 ÿ t4�

TC;M � �1ÿ l� � �t1 ÿ t0� � �1ÿ h�
� �t2 ÿ t1� � �1ÿ l� � �tf2 ÿ t3�:

�1�

Since the same amount of work should be done for both
cases, TC;S � TC;M . We can solve the relationship between
parameters.

tf2 ÿ tf1 � �t4 ÿ t2� � 1ÿ h
1ÿ l ÿ �t4 ÿ t3�: �2�

And, to get benefit from the migration, tf2 <� tf1. We
can then express it with interval variables as:

Tnidle � Tlingr � 1ÿ l
hÿ l
� �

� Tmigr; �3�

where Tnidle � t4 ÿ t1is the nonidle state duration, Tlingr �
t2 ÿ t1 is the lingering duration and the migration cost is

denoted as Tmigr � t3 ÿ t2. If we knew the nonidle state
would last long enough to make migration advantageous,
an immediate migration would be the best choice. But
because we don't know when the nonidle state will end, we
have to predict it. We use the observations of Harchol-Balter
and Downey [14], and Leland and Ott [17], which states that
the median remaining life of a process is equal to its current
age. So if a process has run for T units of time, we predict its
total running time will be 2T . Our use of this predictor is
somewhat different since we use it to infer the duration of a
nonidle episode rather than predict process lifetime. With
this prediction, we can then compute the Linger duration by
letting Tnidle be 2Tlingr. If it is expected that the migration
will benefit, it's better to migrate early. The lingering
duration Tlingr will be:

Tlingr � �1ÿ l
hÿ l� � Tmigr: �4�

So, the foreign job should linger Tlingr before migrating.
For a nonidle interval shorter than Tlingr migration will be
avoided. Compared to the Pause-and-Migrate (PM) policy,
the ªpauseº period is determined dynamically depending
on several factors including the migration cost. Further-
more, the foreign job can continue to run (with lower
priority) unlike PM, which suspends the job. The migration
cost is the time from when the process stops at the source
node to when it resumes running at the destination node.
The cost consists of a fixed part and variable part. The fixed
part is for handling the process-related suspension and
resumption at the source and destination nodes, respec-
tively. The process transfer time depends on the network
bandwidth and the process size. The following equation is
used for our experiments:

Tmigr � Suspend Time�source�
� Process size=Network Bandwidth
�Resume Time�destination�:

�5�

This equation can be easily extended for different
environments.

We denote the policy of lingering on a node for Tlingr, LL.
An alternative strategy of never leaving a node (called

RYU AND HOLLINGSWORTH: EXPLOITING FINE-GRAINED IDLE PERIODS IN NETWORKS OF WORKSTATIONS 685

Fig. 1. The timeline for migration using Linger-Longer scheduling. The top case shows a foreign job that remains on a node throughout an episode of

processor activity due to local jobs. The lower case shows migration after an initial linger interval (t1 to t2) where the foreign job remained on the

nonidle node.

Linger-Forever) is denoted LF. This policy attempts to
maximize the overall throughput of a cluster at the expense
of the response time of those unfortunate foreign jobs that
land (and are stuck) on nodes with high local utilization.

4 WORKLOAD ANALYSIS AND CHARACTERIZATION

To evaluate our Linger-Longer approach, we need to
characterize the workload of workstations to be used in
such a system. The performance of the various scheduling
disciplines for shared clusters depends on the character-
istics of the workstation cluster. Workstation utilization
depends on many factors including the time of day, day of
week, and schedule of the primary users. Developing an
analytical model for such a complex pattern would be
difficult, if not impossible. Instead, we choose to evaluate
traces of the utilization patterns of existing workstations.
Dusseau [10] and Acharya [1] have also used this approach.
To evaluate scheduling policies that transfer work off a
workstation as soon as the user returns (Immediate-Eviction
and Pause-and-Migrate), it is sufficient to consider coarse-
grained metrics of utilization (on the time scale of seconds).
However, because of the fine-grained interaction between
local and foreign processes when using the Linger-Longer
policy, we need data about individual requests for
processors at the granularity of scheduler dispatch records,
to evaluate it.

It is not practical to record fine-grained requests for the
long time periods required to capture the time of day and
day of week changes in free workstations. As a result, we
adopt a two-level strategy to characterize the workload.
First, we measure the fine-grained run-idle bursts at various
levels of processor utilization from 0 percent (idle) to 100
percent (full) utilization. We model a fine-grained workload
as a random variable that is parameterized by the average
utilization over a two-second window. This permits using a
coarse-grained trace of workstation utilization to generate
fine-grained requests for the processor. We explain how to
combine two workloads of different time-scales in greater
detail in Section 5.

We are also interested in evaluating the amount of free
memory that is available on the workstations. To do this, we
considered a coarse-grained trace of available memory, and
looked at the size of the free memory both when the
owner's processes were running and when the workstation
was idle.

4.1 Fine-Grained Workload Analysis

To analyze the fine-grained utilization of the CPU, we
model processor activity as a sequence of run and idle
periods that represent the intervals of time when the
workstation owner's processes are either running or
blocked. Since we give priority to any request by one of
the local processes, a single run burst may represent the
dispatching and execution of several local processes. Also,
there is no upper bound on the length of a processor request
since we aggregate multiple consecutive dispatches due to
time quanta into a single request.

To gather the fine-grained workload data, we used the
tracing facility available on IBM's AIX operating system to
record scheduler dispatch events. We gathered this data for

several twenty-minute intervals on a collection of work-
stations in the University of Maryland, Computer Science
Department. We then processed the data to extract different
levels of utilization, and characterized the run-idle intervals
for each level of utilization. Because we treated the CPU as
an on/off source and didn't consider scheduling of
individual processes, OS specific factors, such as scheduling
policy and time quanta, would not impact the character-
istics of trace data.

We divided utilization into 21 buckets ranging from 0
percent to 100 percent processor utilization. For each of the
21 utilization levels, we created a histogram of the duration
of run and idle intervals for all two-second intervals whose
average utilization was closest to that bucket. A selection of
these histograms is shown in Fig. 2. The solid line in the
figure shows three sample distributions for low (10
percent), medium (50 percent), and high (90 percent) CPU
utilization for run and idle bursts, respectively. Based on
the analysis of the data, we model the fine-grained
processor utilization by two random variables: run burst
duration and idle duration. For each of these variables, we
generate a two-stage hyper-exponential distribution from
the mean and variance using a method-of-moment estimate
[29, p. 479].

The dashed line in Fig. 2 shows the CDF of the random
variable selected to model the run and idle intervals at the
three levels of utilization. The curves almost exactly match
in idle burst distributions, but the model and observations
diverge for run burst distributions with medium to high
CPU utilization. However, since our scheduling policy uses
average utilization to make migration decisions, and the
overhead associated with foreign jobs is a function of the
number of context switch operations, the most important
parameters for our simulation are the average CPU
utilization and the number of run bursts generated per unit
of time. Fortunately, the model we have selected accurately
tracks both of these metrics. Fig. 3 shows a comparison
between the number of run bursts generated by our two-
stage hyper-exponential distributions and those measured
from traces. The data show that at all levels of processor
utilization, the number of context switches generated by our
model tracks those seen in actual machine execution.2

To generate fine-grained workloads, we use linear
interpolation between the two closest of the 21 levels of
utilization. The values we derived from our analysis of the
dispatch records are shown in Fig. 4. The top-left curve
shows the mean value of the run burst duration as a
function of processor utilization. The upper-right graph
shows the variance in the run burst duration as a function of
processor utilization. The bottom two graphs in Fig. 4 show
the idle duration mean and variance, respectively.

4.2 Coarse-Grained Workload Analysis

To generate the long-term variations in processor utiliza-
tion, we use the traces collected by Arpaci et al. [10]. These
traces cover data from 132 machines of the CAD group at
the UC Berkeley and measured over 40 days, and contain
samples every two seconds of: CPU usage, memory usage,

686 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 11, NO. 7, JULY 2000

2. The dips at 15 percent and 60 percent in Fig. 3 came from the
empirically observed workload distribution in Fig. 4c and 4d.

keyboard activity, and a Boolean indicating idle/nonidle

state. An idle interval is a period of time with the CPU less

than 10 percent used and no keyboard action for 1 minute
(called the recruitment threshold).

To assess the potential for Linger-Longer, we measured

the overall CPU utilization and compared it to the CPU

utilization during idle and nonidle intervals. The graph in

Fig. 5a shows the Cumulative Distribution Function (CDF)

for processor utilization. The solid line shows the overall

utilization from the traces, and the two dashed lines show

the utilization for idle and nonidle time. Even nonidle

intervals have very low usage, although it is somewhat

higher than idle time. While 46 percent of the time a

machine is in a nonidle state, 76 percent of the time in

nonidle intervals, the processor utilization is less than

10 percent. The reason that these intervals of time are

considered nonidle is due to keyboard activity and the

requirement that a workstation have low utilization at least

for one minute to be considered idle. This data hints at the

potential leverage for a Linger-Longer approach to use

short idle periods.

Several other interesting trends exist in the coarse-
grained cluster data. On the whole, 82 percent of the time,
processor utilization is less than 10 percent. In addition,
moderate processor utilization is rare. Only 13 percent of

RYU AND HOLLINGSWORTH: EXPLOITING FINE-GRAINED IDLE PERIODS IN NETWORKS OF WORKSTATIONS 687

Fig. 2. Run and Idle burst histograms. The CDF (Cumulative Distribution Function) for the run and idle duration of local jobs on workstations: (a) and

(b) are for 10 percent utilization, (c) and (d) 50 percent, and (e) and (f) 90 percent.

Fig. 3. Number of run bursts. The solid line shows the number of run

bursts (context switches) in our measured processor load. The dashed

curve shows the same data generated by our model.

the time is the utilization between 10 percent and 80
percent. However, high utilization is somewhat more
common (utilization of 80 percent or more occurs 7 percent
of the time). The basic conclusion of this data is that except
for rare instances of heavy use, processors on these
workstations had significant capacity available over
90 percent of the time.

We now consider the time of day variation in processor

utilization. Conventional wisdom holds that there should

be a significant increase in utilization during working

hours. However, analysis of the cluster data shows that

there is little variation in processor utilization by time of

day. The sharp cliff in the graph shows that most of the time

the processor utilization is low. The Fig. 5b shows the

utilization CDF plotted versus the time of day. The peaks

and valleys along the plateau show the time of day

variation in utilization. It clearly shows little correlation

with time of day, and that most of the time the processor is

between zero and fifteen percent utilized.
To meet our goal of allowing foreign jobs to linger on a

workstation and at the same time not to interfere with local

jobs, we need to ensure that enough real memory is

available to accommodate the foreign job. Like processor

time, we propose to use priority as a mechanism to ensure

that foreign jobs do not consume memory needed by local

jobs.3 The idea is to divide memory into two pools: one for

local jobs and the other for foreign jobs. Whenever a page is

placed on the free-list by a local job, the foreign job is able to

use the page. Likewise, when the local job runs out of pages,

it reclaims them from the foreign job prior to paging out any

of its pages. A similar technique was employed in the

Stealth scheduler [16].

To fully evaluate the availability of pages for foreign
jobs, a complete simulation of the priority-based page
replacement scheme is required. However, as an approx-
imation of the available local memory, we analyzed the
same workstation trace data used to evaluate processor
availability to estimate available free memory. Each work-
station has 64MB main memory. The CDF of available
memory is shown in Fig. 6. This graph shows that 90 percent
of time, more than 14 Mbytes of memory is available for
foreign jobs, and that 75 percent of the time at least 30 MB of
memory is available. Interestingly, there is no significant
difference in the available memory between idle and
nonidle states.4 We feel that the amount of free memory
generally available is sufficient to accommodate one
compute-bound foreign job of moderate size.

To see if the above workload characteristics were typical,
we looked into other traces collected by Acharya et al. [1, 2].
They comprise one big trace and three small scale traces.
The big trace was collected from a Condor pool having
310 machines at the University of Wisconsin. The small
scale traces cover only between 20 and 30 workstations,
respectively, from two academic institutions and one
software company. All traces were generated for two weeks
in September 1997.

First, we look at the machine busy time based only on
keyboard and mouse activity (keyboard-busy). In the
University of California at Berkeley trace, 21.3 percent of
the time the machines were keyboard-busy on the average.
The Condor trace showed similar results: 24.8 percent of the
time the workstations were keyboard-busy. We also looked
at the difference in CPU load when users are active and not.
Unfortunately, the Condor trace has no CPU usage data.
Rather, it tracks CPU load average, which is the average run

688 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 11, NO. 7, JULY 2000

Fig. 4. Workload parameters as a function of processor utilization. The mean and variance of the run and idle bursts seen in the fine-grained

workload traces as a function of the processor utilization. (a) Run burst mean, (b) run burst variance, (c) idle burst mean, and (d) idle burst variance.

3. To implement this, we have added priority to the Linux paging
mechanism [25].

4. One possible explanation for this is that current versions of the UNIX
operating system employ an aggressive policy to maintain a large free list.

queue length. The CPU load during keyboard-busy time
intervals was not significantly higher than that during the
idle intervals: 0.25 for keyboard-busy time and 0.20 for
keyboard-idle time. These results are similar to the CPU
usage distribution of the UC Berkeley trace in Fig. 5. In
addition to keyboard/mouse activity, we use the CPU load
information to define idleness of machines. Using a load
average threshold 0.3 as busy, for the Condor traces, 36.8
percent of the time a machine was idle on the average.
Although the data gathered was somewhat different, the
resulting idle and nonidle time was similar. Also, from the
small traces from other institutions, we found that machines
are idle for more time and the resources are less utilized
than the UC Berkeley or Condor data sets.

For memory availability, the result of the UC Berkeley
trace is backed up by a recent study by Acharya et al. [2].
With the recent traces from various institutions, they
showed that most of the time more than a half of main
memory is unused and a larger portion of memory is
available on the machines with larger main memory. We
believe these observations indicate that the Berkeley data is
a representative trace.

5 Node-Level Simulation Results

Before evaluating the ability of Linger-Longer to improve
aggregate cluster performance, we first present a series of

simulation studies to demonstrate that using a linger
approach will not cause significant slowdown to the local
jobs. In this section, we also evaluate the performance of
migration using a Linger-Longer scheduling policy.

5.1 Linger-Longer Scheduling

To understand the behavior of a Linger-Longer scheduling
discipline, we need to evaluate the impact of the priority-
based linger mechanism on the node's local jobs. Using a
priority-based scheduler will cause a local job that moves
from the blocked to the runnable state to be scheduled
immediately. However, this potentially requires an addi-
tional context switch to save the state of the foreign job and
load the state of the local job. In this section, we present a
simulation study of the delay induced in a local process by a
lingering foreign job.

A key question to evaluating the overhead of priority-
based preemption is the time required to switch from the
foreign job to the local one. There are three significant
sources of delay in saving and restoring the context of a
process. The first component is due to the time required to
save the state of the registers used by one process and load
the registers in use by the other process. The second
component is the time spent (handling caches misses) to
reload the process' cache state. On current microprocessors,
the time to restore cache state dominates the register restore
time. We term the combination of these two components the

RYU AND HOLLINGSWORTH: EXPLOITING FINE-GRAINED IDLE PERIODS IN NETWORKS OF WORKSTATIONS 689

Fig. 6. Distribution of available memory. The solid line shows the overall free memory and the two dashed lines show the free memory during idle and
nonidle intervals. The y-axis shows the fraction of time that at least x KB of memory are available. Each workstation has 64 Mbyte main memory.

Fig. 5. Distribution of processor utilization. (a) shows the processor utilization for all time. The solid line is for all states, and the two-dashed lines
show the utilization of idle and nonidle nodes. (b) shows the processor utilization as a function of the time of day. The sheer face of the surface
indicates that most of the time nodes are lightly loaded.

effective context switch time. The third component is to
restore virtual memory pages into physical memory. This
overhead can be several orders of magnitude larger than the
other two. We assume a memory replacement policy in
which foreign jobs can use only free memory and, therefore,
will not page out the memory pages of local processes. So,
virtual memory paging cost is not included in the effective
context switch time. The mechanisms for this prioritized
use of memory have been investigated and developed
in [25].

To estimate the effective context switch time, we use the
results obtained by Mogul and Borg [20] concerning the
effects of context switches on cache performance. They
simulated the impact of context switches in inducing
additional cache misses for various UNIX-style workloads.
One processor they evaluated had a split 8KB L1 cache and
a unified 2MB L2 cache (with cache miss penalties of 13 and
200 cycles, respectively). This configuration is similar to
current microprocessors. For this configuration, the largest
average cache delay due to a context switch was 26,300
cycles. For a current processor with a 300 Mhz clock, this
delay corresponds to 87 microseconds. Based on this
information, we believe that a reasonable, somewhat
conservative, effective context-switch time is 100 microse-
conds. It is worth noting that the only time a foreign job
would be executed is after all local jobs had voluntarily
yielded the processor (i.e., blocked for events). Mogul and
Borg found that the ªliveº cache state after such voluntary
context switches was significantly less than at preemption
and, so, our estimate should be conservative. However,
despite this study, it is possible that some foreign jobs will
introduce significant additional cache misses. To evaluate
the impact of this possibility, we also simulated effective
context switch times of 300 and 500 microseconds.

To evaluate the behavior of Linger-Longer, we simulated
a single node with a single compute bound (always
runnable) process and various levels of processor utilization
by local jobs. For each simulation, we computed two
metrics: the local job delay ratio (LDR) and the fine-grained
cycle stealing ratio (FCSR). The LDR metric records the
average slowdown experienced by local jobs due to the
extra context switch delay introduced by foreign jobs. The
FCSR metric records the fraction of the available idle
processor cycles that are used by the foreign job.

Fig. 7 shows the LDR and FCSR metrics for three
different effective context switch times at various level of
processor utilization by local jobs. For the chosen effective
context switch time of 100 microseconds, the delay seen by
the application process is about 1 percent. For context
switch times up to 300 microseconds, the delay remains
under 5 percent. However, when the effective context
switch time is 500 microseconds, the overhead is 8 percent.
In all of these cases, Lingering was able to make productive
use of over 90 percent of the available processor idle cycles.

5.2 Linger-Longer Migration

We next consider the impact of making choices about when
to migrate a task to a less loaded node. If there is a free node
available, it is best to try to migrate a foreign job onto that
node. As described in Section 3.1, we dynamically decide
when to move a process based on four parameters:
migration cost, local CPU utilization, predicted duration
of the local activity, and predicted duration of the foreign
job. Migration cost is primarily a function of the memory
size of the foreign job. For our simulations, we assume that
all foreign jobs are 8 Megabytes, migration takes place over
a 10 Mbps Ethernet at an effective rate of 3 Mbps (to limit
the load placed on the network by process migration), and
that the foreign job is suspended for the entire duration of
the migration. In addition, we assume that the processor on
both the source and destination nodes must be used to
migrate the process.

Fig. 8 shows a comparison of the completion time of a
hypothetical 50-second foreign job that experiences local
processor utilization of 20 percent when the workstation's
owner returns. The x-axis is the duration of episode of the
local user's return to their workstation. The diamond
marked line reports the completion time of the Linger-
Longer policy and the box marked line the completion time
of the immediate eviction policy.

The results show that if the workstation is nonidle for a
period of time less than 30 seconds5, the Linger-Longer
policy will finish the job before the Immediate-Eviction
policy because Linger-Longer avoids migration and uses
fine-grained idle cycles. However, if the workstation is

690 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 11, NO. 7, JULY 2000

Fig. 7. Local job delay ratio (LDR) and fine-grained cycle stealing ratio (FCSR). Each curve shows the impact of three different effective context
switch times (100, 300, and 500 microseconds). (a) shows the delay experienced by local jobs at various level of utilization. (b) shows the percent of
the available idle processor time made available to a compute bound foreign job at different levels of local job processor utilization.

5. This linger time was derived using equations (4) and (5).

nonidle for more than 30 seconds, the immediate eviction
policy will finish the job sooner since it will migrate the job
to a free node immediately. These results describe the
response time of a single sequential node when a single
local user returns. They are intended to explain the local
behavior of lingering. Linger-Longer not only provides fine-
grained idle cycles, but also reduces migration. An overall
simulation of a full cluster is presented in the following
section.

6 SEQUENTIAL JOBS IN A CLUSTER

We now turn our attention to the cluster-level behavior of
our scheduling policy. We first evaluate the behavior of a
cluster running a collection of sequential jobs. We evaluated
the Linger-Longer, Linger-Forever, Immediate-Eviction,
and Pause-and-Migrate policies on a simulated cluster of
workstations. We used a two-level workload generator to
produce a local user workload for a 64-node cluster. Fig. 9
shows the process that we use to generate fine-grained
processor requests from long-term trace data. We randomly
select a trace of a single node and map it to a logical node in
our simulation. To draw a representative sample of jobs
from different times of the day, each node in the simulation
was started at a randomly selected offset into a different
machine trace. The fine-grained resource usage is generated

by looking up appropriate parameters, mean and variance,
based on the current coarse-grained resource data from the
trace files.

We then ran two different types of sequential foreign
jobs on the cluster. Workload-1 contains 128 foreign jobs
each requiring 600 processor seconds. This workload was
designed to represent a cluster with a significant demand
being placed on the foreign job scheduler, since on average
each node had two foreign jobs to execute. Workload-2
contains 16 jobs each requiring 1,800 CPU seconds each.
This workload was designed to simulate a somewhat lighter
workload on the cluster since only 1

4 of the nodes are
required to run the foreign jobs. All foreign jobs are
8 Megabytes and migration takes places over a 10 Mbps
Ethernet at an effective rate of 3 Mbps. We also assume that
the foreign job is suspended for the entire duration of the
migration. For each configuration, we computed four
metrics:

Average completion time. The average time to completion
of a foreign job. This includes waiting time before
initially being executed, paused time, and migration
time.

Variation. The standard deviation of job execution time
(time from first starting execution to completion).

Family Time. The completion time of the last job in the
family of processes submitted as a group.

Throughput. The average amount of processor time used
by foreign jobs per second when the number of jobs in
the system was held constant.
The results of the simulation are summarized in the

Table 1. For the first workload, the average job completion
time and throughput are much better for the Linger-Longer
and Linger-Forever policies. Average job completion time is
47 percent faster with Linger-Longer than Immediate-
Eviction or Pause-and-Migrate, and Linger-Forever's job
completion time is 49 percent faster than either of the
nonlingering policies. There is virtually no difference
between the IE and PM in terms of average completion
time. For the second workload, the average job completion
time of all four policies is almost identical. Notice that the

RYU AND HOLLINGSWORTH: EXPLOITING FINE-GRAINED IDLE PERIODS IN NETWORKS OF WORKSTATIONS 691

Fig. 8. Migration timing. Completion time of a 50 second foreign job

using Linger-Longer (LL) and Immediate-Eviction (IE) as a function of

the episode of a workstation owner returning.

Fig. 9. Local workload generation. The process of generating long-term processor utilization requests. By combining coarse-grained traces of

workstation use with a short-term stochastic model of processor requests, long duration run-idle intervals can be generated.

average job completion time ranges from 1,859 to
1,860 seconds; this implies that on average they were
running 97 percent of the time. Since there is sufficient idle
capacity in the cluster to run these jobs, all four policies
perform about the same.

In terms of the variation in response time for workload-1,
the LL policy is much better than either IE or PM. This
improvement results from LL's ability to run jobs on any
semiavailable node and, thus, expedite their departure from
the system; so the benefit of lingering on a nonidle node
exceeds the advantage of waiting for a fully free node. The
LF policy has a somewhat higher variation due to the fact
that some jobs may end up on nodes that had temporarily
low utilization when the job was placed there, but which
subsequently had higher load. For workload-2, the avail-
ability of resources means that each policy has relatively
little variation in its job completion time.

The third metric is ªFamily Timeº. This metric is
designed to show the completion time of a family of
sequential jobs that are submitted at once. This is a metric
designed to characterize the responsiveness of a cluster to a
collection of jobs that represent a family of jobs. For
workload-1, the LL and LF metrics provide 36 percent
improvement over the PM policy and 42 percent improve-
ment over the IE policy. For workload-2, the LL and LF
policies provide slight (1 to 3 percent) improvement over
the IE and PM policies.

The fourth metric we computed for the cluster-level
simulations was throughput. The throughput metric is
designed to measure the ability of each scheduling policy to
make processing time available to foreign jobs. This metric
is computed using a slightly different simulation config-
uration. In this case, we hold the number of jobs in the
system (running or queued to run) constant for a simulated
one-hour execution of the cluster. The number of jobs in the
system is 128 for workload-1 and 16 for workload-2. The
throughput metric is designed to show the steady-state
behavior of each policy at delivering cycles to foreign jobs.
Using the throughput metric, the LL policy provides a
50 percent improvement over the PM policy. Likewise, the
LF policy permits a 60 percent improvement over the PM
policy. For workload-2, the throughput was very similar for
all policies. Again, this is to be expected since the cluster is
lightly loaded. For both workloads, the delay measured as
the average increase in completion time of a CPU request
for local processes was less than 0.5 percent. This average is
somewhat less than the one percent delay reported in the

previous section since not all nonidle nodes have foreign
processes lingering.

To better understand the ability of Linger-Longer to
improve average job completion time, we profiled the
amount of time jobs spent in each possible state: queued,
running, lingering (running on a nonidle node), paused,
suspended, and migrating. The results in Fig.10a show the
behavior of workload-1. The major difference between the
linger and nonlinger policies is due to the reduced queue
time. The time spent running (run time plus linger time) is
somewhat larger for the linger policies, but the reduction in
queuing delays more than offsets this increase. Fig.10b
shows the breakdown for workload-2. With the exception
that LL and LF spent a small fraction of the time lingering,
there is no noticeable difference between any of these cases.

The overall trends in the cluster level simulation show
that Linger-Longer and Linger-Forever provide significant
increased performance to a cluster when there are more jobs
than available nodes, and that there is no difference in
performance at low levels of cluster utilization.

7 PARALLEL JOBS

The trade-offs in using Linger-Longer scheduling for
parallel programs are more complex. When a single process
of a job is slowed down due to a local job running on the
node, this can result in all of the nodes being slowed down
due to synchronization between processes. On the other
hand, when a migration is taking place any attempt to
communicate with the migrating process will be delayed
until the migration has been completed. However, we feel
the strongest argument for using Linger-Longer is the
potential gain in the throughput of a cluster due to the
ability to run more parallel jobs at once. Improved
throughput likely will come at the expense of response
time, but we feel that throughput is the most important
performance metric for shared clusters. To evaluate these
different options, we simulated various configurations to
determine the impact of lingering on parallel jobs.

7.1 Synthetic Parallel Jobs

To evaluate the impact of lingering on a single parallel job,
we first simulated a bulk-synchronous style of communica-
tion where each process computes serially for some period
of time, and then an opening barrier is performed to start a
communication phase. During the communication phase,
each process can exchange messages with other processes.

692 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 11, NO. 7, JULY 2000

TABLE 1
Performance of Cluster Scheduling Policies

The communication phase ends with an optional barrier.
This synthetic parallel job model has been successfully used
in [10] to explore various performance factors. We
simulated an eight-process application with a 100 milli-
seconds between each synchronization phase, and a NEWS6

style of message passing within a communication phase.
The graph in Fig. 11a shows the slowdown (compared to

running on eight idle nodes) experienced in the applica-
tion's execution time when one node is nonidle and the
CPU utilization by the local processes are varied from
0 percent to 90 percent. At utilization above 50 percent, the
slowdown is so large that lingering slows down the jobs
dramatically.

A useful comparison of this slowdown is to consider
alternatives to running on the nonidle node. The NOW [10]
project has proposed migrating to an idle node when the
user returns; however, if there is a substantial load on the
cluster, we would have to keep idle nodes in reserve (i.e.,
not running other parallel jobs) to have one available.
Alternatively, Acharya et al. [1] proposed reconfiguring
the application to use fewer nodes. However, many
applications are restricted to running on a power of two
number of nodes (or a square number of nodes). Thus, the

unavailability of a single node could preclude using many
otherwise available nodes. Within this context, our slow-
down of only 1:1 to 1:5 when the load is less than 40 percent
is an attractive alternative.

We also investigated how the slowdown of a parallel
program was affected by having more than one nonidle
node. To evaluate this case, we again used the same eight-
process bulk-synchronous application that we used in the
previous simulation and varied the number of nonidle
nodes. The results of this simulation are presented in
Fig. 11b and show that at low levels of local processor
utilization, the parallel application slowdown is relatively
insensitive to the number of nonidle nodes. For example, at
local utilization of up 20 percent, the largest slowdown was
a factor of two even when all eight processes are lingering
on nonidle nodes. However, when local utilization was
above 30 percent, and the number of nonidle nodes is more
than one or two, the slowdown to the parallel application is
significant.

One of the key parameters in understanding the
performance of parallel jobs using Linger-Longer is the
frequency of synchronization. Fig. 12 shows the relationship
between the granularity of communication and the slow-
down experienced by an eight process bulk synchronous
program. The x-axis is the computation time between

RYU AND HOLLINGSWORTH: EXPLOITING FINE-GRAINED IDLE PERIODS IN NETWORKS OF WORKSTATIONS 693

Fig. 11. Parallel job slowdown. (a) shows the slowdown of an eight-node parallel job vs. processor utilization by the local processes. (b) shows the

same eight-process parallel application at four levels of processor utilization by local jobs when the number of nonidle nodes is varied from one to

eight.

Fig. 10. Average completion time. The chart (a) shows the breakdown of the average time spent in each state (queued, running, lingering, or

migrating) for workload-1 (many foreign jobs). The chart (b) shows the same information for workload-2 (few foreign jobs).

6. A process exchanges messages only with its four neighbors.

communications in milliseconds. Each of the four curves
shows the slowdown when one, two, four, and eight nodes
have 20 percent (a) and 40 percent (b) processor utilization
by local jobs. The results show that larger synchronization
granularity produces less slowdown with the exception of
the 10 ms case. With 10 ms of synchronization granularity,
the portion of computation is much smaller than commu-
nication time. Although synchronization occurs more
frequently, the parallel job slowdown is less due to the
low CPU demand. Also, for 20 percent local processor
utilization, lingering provides an attractive alternative to
reconfiguration since, even when four nodes are nonidle,
the slowdown remains under a factor 1:5: (Note that
reconfiguration with four nodes unavailable would have a
slowdown of at least 2.)

We wanted to provide a head-to-head comparison of the
Linger-Longer policy with the reconfiguration strategy. To
do this, we simulated a 32 node parallel cluster. For each
scheduling policy, we considered the effect if the average
processor utilization by the local jobs on a nonidle work-
stations was 20 percent or 40 percent. We defined the
average synchronization granularity to be 500 msec. In this
simulation, we didn't consider the time required to
reconfigure the application to use fewer nodes, and
assumed that the application was constrained to run on a

power of two number of nodes. The results of running this
simulation are shown in Fig. 13. In each graph, the curves
show the Linger-Longer policy using 8, 16, and 32 nodes,
and the reconfiguration policy using the maximum idle
nodes available. The Linger-Longer with k nodes means if k
or more idle nodes are available in the cluster, the parallel
job runs k processes on k idle nodes, otherwise it runs on all
idle nodes available and some nonidle nodes by lingering.

The left graph shows the results for 20 percent utilization
and the right for 40 percent utilization. For the case of 20
percent utilization, the Linger-Longer policy outperforms
the reconfiguration when either 8 or 16 nodes are used. For
40 percent utilization, the reconfiguration strategy generally
provides faster completion of the application. However,
using 32 nodes and a Linger-Longer policy outperforms
reconfiguration when five or fewer nonidle nodes are used
for 20 percent processor utilization case.

7.2 Real Parallel Jobs

To validate the results from the synthetic bulk synchronous
application case, we ran several real parallel applications
with Linger-Longer. To do so, we combined two different
types of simulators: Our Linger-Longer simulator generat-
ing local workloads and a CVM [15] simulator which can
run shared memory parallel applications. We chose three

694 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 11, NO. 7, JULY 2000

Fig. 12. Synchronization granularity vs. slowdown. (a) shows the slowdown of running a parallel program with one, two, four, or eight nonidle nodes

compared with running on all eight idle nodes as a function of the synchronization granularity when the nonidle nodes have 20 percent utilization by

local jobs. (b) shows the same data when the nonidle utilization is 40 percent.

Fig. 13. Linger-Longer vs. reconfiguration. (a) shows the completion time of a parallel job running on a cluster using several different scheduling
policies. The x-axis shows the number of idle nodes. The first three curves show the Linger-Longer policy running using 8, 16, or 32 nodes. The
fourth curve shows the reconfigure policy. For all curves, the local utilization of nonidle nodes is 20 percent. (b) shows the same data when the local
utilization is 40 percent.

common shared-memory parallel applications: sor (Jacobi
relaxation), water (a molecular dynamics; from SPLASH-2
benchmark suite [30]), and fft (fast Fourier transforma-
tion) which have different computation and communication
patterns. Throughout all the experiments, the network
bandwidth was set to 155 Mbps. The input for sor was a
2; 048� 1; 024 array. For water, 512 molecules were simu-
lated. A three-dimensional input array of 26 � 26 � 24 was
used for fft.

First of all, we looked at how Linger-Longer slows down
the parallel jobs on nonidle nodes. An eight-node cluster is
used to run each application. The number of nonidle nodes
and its local utilization were controlled. The results are
summarized in Fig. 14. For all three cases, when only one
nonidle node is involved even with 40 percent local
utilization the slowdown (compared to running on eight
idle nodes) reaches only 1:7. When more than half the nodes
are nonidle, 0 to 20 percent local utilization looks endurable.
Linger-Longer with four nonidle nodes and 20 percent local
utilization causes only 1:5 to 1:6 slowdown. Even when all
eight nodes are nonidle, the job is slowed down by just
above a factor of two for all three applications. While a
factor of two may seem like a large slowdown, it is
substantially better than not using any of the nonidle nodes,
which previous policies required.

The Linger-Longer effect on the performance also
depends on the applications. With the same data used
above, we compared three applications for various local
utilizations and varied the number of nonidle nodes. The
results are shown in Fig. 15. The difference in the slowdown
between three applications becomes more noticeable as
local utilization increases. In general, sor is the most
sensitive to local utilization, water is less sensitive to local
activity, and fft is the least.

To see the cause of this difference, we divided the
completion time into computation time, barrier waiting
time, diff delay, and lock waiting time. The computation
time includes any CPU time the process uses. Barrier
waiting time is the time that a process spends waiting until
all the processes reach a barrier. Diff delay is the time to
access a shared page which can involve communication to
obtain coherent data. Diffs are required to reintegrate
disjoint updates of a shared page by multiple processes as
part of the DSM coherency protocol (Diffs and the lazy
release consistency protocol in CVM are explained in [15]).
Lock waiting time is the time to obtain the lock on the
shared object. In our applications, only water uses locks.

The graphs in Fig. 16 and Fig. 17 summarize the results.
Fig. 16 shows the case when only one node is nonidle out of
eight nodes. Each graph contains five bars for different local

RYU AND HOLLINGSWORTH: EXPLOITING FINE-GRAINED IDLE PERIODS IN NETWORKS OF WORKSTATIONS 695

Fig. 14. Slowdown by nonidle nodes and their local CPU usage The graphs show the slowdown of parallel jobs: (a) sor, (b) water, and (c) fft as

the number of nonidle nodes varies from 0 to all 8 with Linger-Longer. The cluster size is eight. The curves in each graph represent the different local

utilization of nonidle nodes.

Fig. 15. Performance sensitivity to local CPU usage. The graphs compare three parallel jobs (sor, water, and fft) in how sensitive to local

utilization of nonidle nodes. The left-most graph (a) is for the case only one of total eight nodes is nonidle, (b) and (c) is for four and eight nonidle

nodes, respectively.

CPU utilizations of the nonidle node. The first row of
graphs shows the profiles for the nonidle node for three
applications and the second row shows the behavior of an
idle node. Since node 0 is the only nonidle node, barrier
delay is limited and does not increase due to the local CPU
utilization. Not surprisingly, the second row demonstrates
that the barrier waiting time on idle nodes increases as local
CPU utilization on nonidle grows. There is no noticeable
change in diff delay and lock waiting time for this case.

Fig. 17 illustrates the case when all eight nodes are
nonidle. Since the interference due to CPU contention
occurs on every node, synchronization overhead increases.
The key parameter to understanding Linger-Longer delay is
synchronization frequency. The barrier synchronization

granularity is 10.1 million cycles for sor, 50.7 million
cycles for water, and 38.4 million cycles for fft for the
given input size. In other words, barrier synchronization in
sor is five times as frequent as in water. Fig.17a shows
that barrier delay is a dominant factor for the slowdown of
sor. For water, lock waiting time affects the slowdown the
most. fft has the least slowdown and it is mostly due to an
increase in the diff delay. These results are consistent with
the synchronization granularity impact seen for the syn-
thetic parallel application in Section 7.1.

To summarize, frequent synchronization makes parallel

jobs more sensitive to local CPU activity and the effect of

global synchronization, such as barriers, is more than local

synchronization, such as locks. However, for a practical

696 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 11, NO. 7, JULY 2000

Fig. 16. Application sensitivity to local activityÐone nonIdle case. The graphs show the time spent in different activities for three parallel jobs running
on a cluster of eight nodes. Only one node (node 0) is nonidle. (a), (b), and (c) show the results for nonidle node, node 0. (d), (e), and (f) show the
graphs for an idle node, node 2. For each graph, the x-axis shows local CPU utilization on a nonidle node. Each bar comprises computation time,
barrier waiting time, diff delay, and lock waiting time (from bottom to top).

Fig. 17. Application sensitivity to local activityÐeight nonIdle cases. (a), (b), and (c) show the time spent in different stages for three parallel jobs

running on a cluster of eight nodes. All eight nodes are nonidle. For each application, the x-axis shows local CPU utilization on a nonidle node. Each

bar comprises computation time, barrier waiting time, diff delay, and lock waiting time (from bottom to top).

lingering local utilization, 0 to 20 percent, the slowdown is

almost the same for all three applications. In general, when

local utilization exceeds 20 percent, we would prefer to

migrate the job to free nodes (if one exists) or to reconfigure

the application to run on fewer nodes.
Also, we compared the Linger-Longer and reconfigura-

tion policies using three real parallel applications. The same

assumptions as in the synthetic application case were

maintained except that only a 16 node cluster was

simulated. The results of running this simulation are shown

in Fig. 18. In each graph, the curves show the Linger-Longer

policy using 16 and eight nodes, and the reconfiguration

policy using the maximum power of two number of idle

nodes available. The graphs show the results for sor,

water and fft when the local utilization for nonidle nodes

is 20 percent. For all cases, the Linger-Longer policy using

16 nodes outperforms the reconfiguration when the number

of idle nodes is at least 12. Considering the cost to

reconfigure the parallel job compared to its run time, the

gain would be even bigger. However, when less than eight

idle nodes are left, lingering with eight nodes looks much

better than both lingering using 16 nodes and the

reconfiguration policy. This indicates that a hybrid strategy

of lingering and reconfiguration may be the best approach.
In this section, we investigated running parallel applica-

tions with Linger-Longer and varied not only local CPU

utilization but also the number of nonidle nodes. In general,

larger synchronization granularity produces less slow-

down. These facts were verified through both synthetic

bulk synchronous and real shared-memory parallel pro-

grams. To make effective use of Linger-Longer, frequent

global synchronization should be avoided or replaced with

local synchronization if possible. For both types of parallel

applications, Linger-Longer can be useful, since it can use

lightly loaded nonidle nodes rather than suspending the

whole program until the node returns to idle or reconfigur-

ing to run on fewer nodes.

8 CONCLUSIONS

In this paper, we provided a workload characterization

study that described the fine-grained requests for processor

time at various levels of utilization and evaluated traces of

workstation load at the two-second level for long time

durations. We then presented a technique to compose the

workload and to generate fine-grained workloads for long

intervals of time.

We have devised a new approach, called Linger-Longer

to using available workstations to perform sequential and

parallel computation. We presented a cost model that

determines how long a process should linger on a nonidle

node. The results for our proposed approach are encoura-

ging, we showed that for typical clusters lingering can

increase throughput by 60 percent, and on average cause

only a 0.5 percent slowdown of local user processes.
For parallel computing, we showed that the Linger-

Longer policy outperforms reconfiguration strategies when

the processor utilization by the local process is 20 percent or

less in both bulk synchronous and real data-parallel

applications. However, reconfiguration outperforms Lin-

gering for higher levels of local process utilization. The

throughput improvement that would be possible by making

more nodes available to run parallel jobs would likely offset

some of this slowdown. An end-to-end evaluation of cluster

throughput for parallel jobs is being investigated.
Currently, we are implementing the prototype based on

the Linux operating system running on Pentium PCs. The

strict priority-based scheduler and page allocation module

have been developed and are being evaluated.

ACKNOWLEDGMENTS

The authors would like to thank Pete Keleher and

Dejan Perkovic for helping us combine their CVM simulator

with the Linger-Longer simulator. Anurag Acharya and

RYU AND HOLLINGSWORTH: EXPLOITING FINE-GRAINED IDLE PERIODS IN NETWORKS OF WORKSTATIONS 697

Fig. 18. Linger-Longer vs. reconfiguration for shared-memory parallel applications. The graphs show the slowdown of three parallel jobs running on a
cluster of 16 nodes using several different scheduling policies. The x-axis shows the number of idle nodes. (a) sor the first (box marked) curve
shows the reconfigure policy (b) water, and (c) fft show Linger-Longer policy running using 16 or 8 nodes. For all curves, the local utilization of
nonidle nodes is 20 percent.

Remzi H. Arpaci have been very kind to provide the

workload trace data. We also appreciate the useful

comments of Bryan Buck. This work was supported in part

by the U.S. National Science Foundation awards ASC-

9703212 and ASC-9711364, and DOE Grant-DE-FG02-

93ER25176.

REFERENCES

[1] A. Acharya, G. Edjlali, and J. Saltz, ªThe Utility of Exploiting Idle
Workstations for Parallel Computation,º Proc. SIGMETRICS '97,
pp. 225±236, May 1997.

[2] A. Acharya and S. Setia, ªAvailability and Utility of Idle Memory
in Workstation Clusters,º Proc. ACM SIGMETRICS, vol. 27,
pp. 35±46, June 1999.

[3] T.E. Anderson, D.E. Culler, and D.A. Patterson, ªA Case for NOW
(Networks of Workstations),º IEEE Micro, vol. 15, no. 1, pp. 54±64,
1995.

[4] R.H. Arpaci, A.C. Dusseau, A.M. Vahdat, L.T. Liu, T.E. Anderson,
and D.A. Patterson, ªThe Interaction of Parallel and Sequential
Workloads on a Network of Workstations,º Proc. SIGMETRICS,
pp. 267±278, May 1995.

[5] A. Barak, O. Laden, and Y. Yarom, ªThe NOW Mosix and Its
Preemptive Process Migration Scheme,º Bull. IEEE Technical
Committee on Operating Systems and Application Environments,
vol. 7, no. 2, pp. 5±11, 1995.

[6] S.N. Bhatt, F.R.K. Chung, F.T. Leighton, and A.L. Rosenberg, ªOn
Optimal Strategies for Cycle-Stealing in Networks of Work-
stations,º IEEE Trans. Computers, vol. 46, no. 5, pp. 545±557, 1997.

[7] J. Casas, D.L. Clark, P.S. Galbiati, R. Konuru, S.W. Otto, R.M.
Prouty, and J. Walpole, ªMIST: PVM with Transparent Migration
and Checkpointing,º Proc. Ann. PVM Users' Group Meeting, May
1995.

[8] A. Chowdhury, L.D. Nicklas, S.K. Setia, and E.L. White, ªWork-
load Characteristics for Process Migration and Load Balancing,º
Proc. ICDCS, pp. 1±7, June 1997.

[9] R.B. Dannenberg and P.G. Hibbard, ªA Butler Process for
Resource Sharing on Spice Machines,º ACM Trans. Office Informa-
tion Systems, vol. 3, no. 3, pp. 234±252.

[10] A.C. Dusseau, R.H. Arpaci, and D.E. Culler, ªEffective Distributed
Scheduling of Parallel Workloads,º Proc. SIGMETIRCS, pp. 25±36,
May 1996.

[11] M. Forum, ªMPI: A Message Passing Interface Standard,º Int'l J.
Supercomputing Applications, vol. 8, no. 3/4, 1994.

[12] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V.
Sunderam, PVM: Parallel Virtual Machine. Cambridge, Massachu-
setts: The MIT Press, 1994.

[13] A.S. Grimshaw, A. Nguyen-Tuong, and W.A. Wulf, ªCampus-
Wide Computing: Early Results Using Legion at the University of
Virginia,º J. Supercomputing Applications and High Performance
Computing, vol. 11, no. 2, pp. 129±43, 1997.

[14] M. Harchol-Balter and A.B. Downey, ªExploiting Process Lifetime
Distributions for Dynamic Load Balancing,º Proc. SIGMETRICS,
pp. 13±24, May 1996.

[15] P. Keleher, ªThe Relative Importance of Concurrent Writers and
Weak Consistency Models,º Proc. ICDCS, pp. 91±98, May 1996.

[16] P. Krueger and R. Chawla, ªThe Stealth Distributed Scheduler,º
Proc. Int'l Conf. Distributed Computing Systems (ICDCS),
pp. 336±343, May 1991.

[17] W.E. Leland and T.J. Ott, ªLoadbalancing Heuristics and Process
Behavior,º Proc. SIGMETRICS, pp. 54±69, May 1986.

[18] S. Leutenegger and X.H. Sun, ªDistributed Computing Feasibility
in a Non-dedicated Homogenous Distributed System,º Super-
computing, pp. 143±152, Nov. 1993.

[19] M. Litzkow, M. Livny, and M. Mutka, ªCondorÐA Hunter of Idle
Workstations,º Int'l Conf. Distributed Computing Systems,
pp. 104±111, June 1988.

[20] J.C. Mogul and A. Borg, ªThe Effect of Context Switches on Cache
Performance,º Proc. ASPLOS, pp. 75±84, Apr. 1991.

[21] M.W. Mutka and M. Livny, ªThe Available Capacity of a Privately
Owned Workstation Environment,º Performance Evaluation, vol. 12,
pp. 269±284, 1991.

[22] M.L. Powell and B.P. Miller, ªProcess Migration in DEMOS/MP,º
Proc. SOSP, pp. 110±119, 1983.

[23] J. Pruyne and M. Livny, ªProviding Resource Management
Services to Parallel Applications,º Proc. Second Workshop Environ-
ments and Tools for Parallel Scientic Computing, SIAM Proc. Series, J.
Dongarra and B. Tourancheau, eds., pp. 152±161, 1994.

[24] S.H. Russ, J. Robinson, B.K. Flachs, and B. Heckel, ªThe Hector
Distributed Run-Time Environment,º IEEE Trans. Parallel and
Distributed Systems, vol. 9, no. 11, pp. 1,102±1,114, 1999.

[25] K.D. Ryu, J.K. Hollingsworth, and P. Keleher, ªMechanisms and
Policies for Supporting Fine-Grained Cycle Stealing,º Int'l Conf.
Supercomputing, pp. 93±100, June 1999.

[26] G. Stellner, ªCoCheck: Checkpointing and Process Migration for
MPI,º Proc. Int'l Parallel Processing Symp., pp. 526±531, Apr. 1996.

[27] M.M. Theimer, K.A. Lantz, and D.R. Cheriton, ªPremptable
Remote Execution Facilities for the V-System,º Proc. SOSP, pp.
2±12, Dec. 1985.

[28] G. Thiel, ªLocus Operating System, A Transparent System,º
Computer Comm., vol. 14, no. 6, pp. 336±346, 1991.

[29] K.S. Trivedi, Probability and Statistics with Reliability, Queuing,
and Computer Science Applications. Prentice-Hall, 1982.

[30] S.C. Woo, M. Ohara, E. Torrie, J.P. Singh, and A. Gupta, ªThe
SPLASH-2 Programs: Characterization and Methodological Con-
siderations,º Proc. 22nd Ann. Int'l Symp. Computer Architecture,
pp. 24±37, 1995.

[31] E.R. Zayas, ªAttacking the Process Migration Bottleneck,º Proc.
SOSP, pp. 13±24, 1987.

[32] S. Zhou, X. Zheng, J. Wang, and P. Delisle, ªUtopia: A Load
Sharing Facility for Large, Heterogeneous Distributed Computer
Systems,º Proc. SPE, vol. 23, no. 12, pp. 1,305±1,336, 1993.

Kyung Dong Ryu received the BS and MS
degrees in computer engineering from Seoul
National University, Korea, in 1993 and 1995,
respectively. He is currently a PhD candidate in
the Computer Science Department at the Uni-
versity of Maryland, College Park. His current
research interests include high performance
distributed and parallel systems, resource-aware
computing, and wide-area information systems.

Jeffrey K. Hollingsworth received the BS
degree in electrical engineering from the Uni-
versity of California at Berkeley in 1988. He
received the MS and PhD degrees in computer
science from the University of Wisconsin in 1990
and 1994, respectively. He is an assistant
professor in the Computer Science Department
at the University of Maryland, College Park, and
affiliated with the Department of Electrical
Engineering and the University of Maryland

Institute for Advanced Computer Studies. His research interests include
instrumentation and measurement tools, resource aware computing,
high performance distributed computing, and computer networks. Dr.
Hollingsworth's current projects include the dyninst runtime binary
editing tool, and harmonyÐa system for building adaptable, resource-
aware programs. Dr. Hollingsworth is a member of the IEEE Computer
Society and the ACM.

698 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 11, NO. 7, JULY 2000

