
An Introduction to MPI
Edgar Gabriel

An Introduction to MPI

Edgar Gabriel

An Introduction to MPI
Edgar Gabriel

Overview
• Distributed memory machines
• Basic principles of the Message Passing Interface (MPI)

– addressing
– startup
– data exchange
– process management
– communication

An Introduction to MPI
Edgar Gabriel

Distributed memory machines

Compute node

message passing network
administrative network

M
em

or
y

Processor 1

Processor 2

N
et

w
or

k
ca

rd
 1

N
et

w
or

k
ca

rd
 2

local disks

An Introduction to MPI
Edgar Gabriel

Communication between different machines

M
em

or
y

Processor 1

Processor 2

N
et

w
or

k
ca

rd
 1

N
et

w
or

k
ca

rd
 2

local disks

M
em

or
y

Processor 1

Processor 2

N
et

w
or

k
ca

rd
 1

N
et

w
or

k
ca

rd
 2

local disks

Internet

webserver.provider.com
129.74.11.55

mypc.my-university.edu
183.69.14.54

http request

1st Process
(Client)

2nd Process
(Server)

Host Name and
Host Address

Protocol

An Introduction to MPI
Edgar Gabriel

Communication between different
machines on the Internet

• Addressing:
– hostname and/or IP Address

• Communication:
– based on protocols, e.g. http or TCP/IP

• Process start-up:
– every process (= application) has to be started separately

An Introduction to MPI
Edgar Gabriel

The Message Passing universe
• Process start-up:

– Want to start n-processes which shall work on the
same problem

– mechanisms to start n-processes provided by MPI
library

• Addressing:
– Every process has a unique identifier. The value of the

rank is between 0 and n-1.
• Communication:

– MPI defines interfaces/routines how to send data to a
process and how to receive data from a process. It
does not specify a protocol.

An Introduction to MPI
Edgar Gabriel

History of MPI

• Until the early 90’s:
– all vendors of parallel hardware had their own message

passing library
– Some public domain message passing libraries available
– all of them being incompatible to each other
– High efforts for end-users to move code from one

architecture to another
• June 1994: Version 1.0 of MPI presented by the MPI

Forum
• June 1995: Version 1.1 (errata of MPI 1.0)
• 1997: MPI 2.0 – adding new functionality to MPI

An Introduction to MPI
Edgar Gabriel

Simple Example (I)
MPI command to start process

Rank of the 2nd process Rank of the 1st process

Number of processes which have
been started

number of processes to be started

name of the application to start

An Introduction to MPI
Edgar Gabriel

Simple example (II)

PC of the end-user

Parallel
computer
(e.g. PC
cluster)

mypc> mpirun –np 2 ./t1

application t1 with
rank = 0

application t1 with
rank = 1

mpirun starts the application t1
• two times (as specified with the –np argument)
• on two currently available processors of the parallel machine
• telling one process that his rank is 0
• and the other that his rank is 1

An Introduction to MPI
Edgar Gabriel

Simple Example (III)
#include “mpi.h”

int main (int argc, char **argv)
{
int rank, size;

MPI_Init (&argc, &argv);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
MPI_Comm_size (MPI_COMM_WORLD, &size);

printf (“Mpi hi von node %d job size %d\n”,
rank, size);

MPI_Finalize ();
return (0);

}

An Introduction to MPI
Edgar Gabriel

MPI basics

• mpirun starts the required number of processes
• every process has a unique identifier (rank) which is

between 0 and n-1
– no identifiers are duplicate, no identifiers are left out

• all processes which have been started by mpirun are
organized in a process group (communicator) called
MPI_COMM_WORLD

• MPI_COMM_WORLD is static
– number of processes can not change
– participating processes can not change

An Introduction to MPI
Edgar Gabriel

MPI basics (II)

• The rank of a process is always related to the process
group
– e.g. a process is uniquely identified by a tuple

(rank, process group)

• A process can be part of the several groups
– i.e. a process has in each group a rank

MPI_COMM_WORLD, size=7 0 1 2 3 4 5 6

0 1 2new process group, size = 5 3 4

An Introduction to MPI
Edgar Gabriel

Simple Example (IV)

---snip---

MPI_Comm_rank (MPI_COMM_WORLD, &rank);
MPI_Comm_size (MPI_COMM_WORLD, &size);

---snip---

Function returns the size of a process group

Default process group containing all
processes started by mpirun

Function returns the rank of a process
within a process group

Rank of a process within
the process group
MPI_COMM_WORLD

Number of processes in
the process group
MPI_COMM_WORLD

An Introduction to MPI
Edgar Gabriel

Simple Example (V)

---snip---
MPI_Init (&argc, &argv);
---snip---
MPI_Finalize ();
---snip---

Function closes the parallel environment
• should be the last function called in the application
• might stop all processes

Function sets up parallel environment:
• processes set up network connection to each other
• default process group (MPI_COMM_WORLD) is set up
• should be the first function executed in the application

An Introduction to MPI
Edgar Gabriel

Second example – scalar product
of two vectors

• two vectors are distributed on two processors
– each process holds half of the original vector

Process with rank=0

)12...0(−Na)12...0(−Nb)...2(NNa)...2(NNb

Process with rank=1

An Introduction to MPI
Edgar Gabriel

Second example (II)

• Logical/Global view of the data compared to local view of
the data

Process with rank=0

)12...0(−Na)...2(NNa

Process with rank=1

)0()0(aalocal �

)1()1(aalocal �

)2()2(aalocal �

)12()(−� Nanalocal

…

)2()0(Naalocal �

)12()1(+� Naalocal

)22()2(+� Naalocal

)1()(−� Nanalocal

…

An Introduction to MPI
Edgar Gabriel

Second example (III)

• Scalar product:

• Parallel algorithm

– requires communication between the processes

�
−

=

=
1

0

][*][
N

i

ibias

��
−

=

−

=

+=
1

2/

12/

0

])[*][(])[*][(
N

Ni

N

i

ibiaibias

��� ���� ����� ���� ��
1

12/

0

0

12/

0

])[*][(])[*][(

=

−

=

=

−

=
�� +=

rank

N

i
locallocal

rank

N

i
locallocal ibiaibia

An Introduction to MPI
Edgar Gabriel

Second example (IV)
#include “mpi.h”

int main (int argc, char **argv)
{
int i, rank, size;
double a_local[N/2], b_local[N/2];
double s_local, s;

MPI_Init (&argc, &argv);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
MPI_Comm_size (MPI_COMM_WORLD, &size);

s_local = 0;
for (i=0; i<N/2; i++) {
s_local = s_local + a_local[i] * b_local[i];

}

An Introduction to MPI
Edgar Gabriel

Second example (V)
if (rank == 0) {
/* Send the local result to rank 1 */
MPI_Send (&s_local, 1, MPI_DOUBLE, 1, 0,

MPI_COMM_WORLD);
}
if (rank == 1) {
MPI_Recv (&s, 1, MPI_DOUBLE, 0, 0,

MPI_COMM_WORLD, &status);

/* Calculate global result */
s = s + s_local;

}

An Introduction to MPI
Edgar Gabriel

Second example (VI)
/* Rank 1 holds the global result and sends it now

to rank 0 */
if (rank == 0) {
MPI_Recv (&s, 1, MPI_DOUBLE, 1, 1, MPI_COMM_WORLD,

&status);
}
if (rank == 1) {
MPI_Send (&s, 1, MPI_DOUBLE, 0, 1, MPI_COMM_WORLD);

}

/* Close the parallel environment */
MPI_Finalize ();
return (0);

}

An Introduction to MPI
Edgar Gabriel

Sending Data

---snip---

MPI_Send (&s_local, 1, MPI_DOUBLE, 1, 0,
MPI_COMM_WORLD);

---snip---

Process group containing all
processes started by mpirun

Data element which
shall be send

Rank of processes in the process group MPI_COMM_WORLD
to which the message shall be sent

Number of elements
which shall be send

Data Type of the element
which shall be send

a user defined integer (tag) for
uniquely identifying a message

An Introduction to MPI
Edgar Gabriel

Receiving Data

---snip---

MPI_Recv (&s_local, 1, MPI_DOUBLE, 0, 0,
MPI_COMM_WORLD, &status);

---snip---

Process group

Data element where
the data shall be received

Rank of processes in the process
group which sent the message

Number of elements
which shall be recvd

Data Type of the element
which shall be recvd

a user defined integer (tag) for
uniquely identifying a message

Status information about
the message

An Introduction to MPI
Edgar Gabriel

Faulty examples (I)
• Sender mismatch:

– if rank does not exist (e.g. rank > size of MPI_COMM_WORLD),
the MPI library can recognize it and return an error

– if rank does exist (0<rank<size of MPI_COMM_WORLD) but does
not send a message => MPI_Recv waits forever => deadlock

if (rank == 0) {
/* Send the local result to rank 1 */
MPI_Send (&s_local, 1, MPI_DOUBLE, 1, 0,

MPI_COMM_WORLD);
}
if (rank == 1) {
MPI_Recv (&s, 1, MPI_DOUBLE, 5, 0,

MPI_COMM_WORLD, &status);

}

An Introduction to MPI
Edgar Gabriel

Faulty examples (II)
• Tag mismatch:

– if tag outside of the allowed range (e.g. 0<tag<MPI_TAG_UB)
the MPI library can recognize it and return an error

– if tag in MPI_Recv then the tag specified in MPI_Send
=> MPI_Recv waits forever => deadlock

if (rank == 0) {
/* Send the local result to rank 1 */
MPI_Send (&s_local, 1, MPI_DOUBLE, 1, 0,

MPI_COMM_WORLD);
}
if (rank == 1) {
MPI_Recv (&s, 1, MPI_DOUBLE, 0, 18,

MPI_COMM_WORLD, &status);

}

An Introduction to MPI
Edgar Gabriel

What you’ve learned so far

• Six MPI functions are sufficient for programming a
distributed system memory machine

MPI_Init(int *argc, char ***argv);
MPI_Finalize ();

MPI_Comm_rank (MPI_Comm comm, int *rank);
MPI_Comm_size (MPI_Comm comm, int *size);

MPI_Send (void *buf, int count, MPI_Datatype dat,
int dest, int tag, MPI_Comm comm);

MPI_Recv (void *buf, int count, MPI_Datatype dat,
int source, int tag, MPI_Comm comm,
MPI_Status *status);

An Introduction to MPI
Edgar Gabriel

So, why not stop here?

• Performance
– need functions which can fully exploit the capabilities of

the hardware
– need functions to abstract typical communication patterns

• Usability
– need functions to simplify often recurring tasks
– need functions to simplify the management of parallel

applications

An Introduction to MPI
Edgar Gabriel

So, why not stop here?

• Performance
– asynchronous point-to-point operations
– one-sided operations
– collective operations
– derived data-types
– parallel I/O
– hints

• Usability
– process grouping functions
– environmental and process management
– error handling
– object attributes
– language bindings

An Introduction to MPI
Edgar Gabriel

Collective operation

• all process of a process group have to participate in the
same operation
– process group is defined by a communicator
– all processes have to provide the same arguments
– for each communicator, you can have one collective

operation ongoing at a time
• collective operations are abstractions for often occurring

communication patterns
– eases programming
– enables low-level optimizations and adaptations to the

hardware infrastructure

An Introduction to MPI
Edgar Gabriel

MPI collective operations
MPI_Barrier
MPI_Bcast
MPI_Scatter
MPI_Scatterv
MPI_Gather
MPI_Gatherv
MPI_Allgather
MPI_Allgatherv
MPI_Alltoall
MPI_Alltoallv
MPI_Reduce
MPI_Allreduce
MPI_Reduce_scatter
MPI_Scan

MPI_Exscan
MPI_Alltoallw

An Introduction to MPI
Edgar Gabriel

More MPI collective operations

• Creating and freeing a communicator is considered a
collective operation
– e.g. MPI_Comm_create
– e.g. MPI_Comm_spawn

• Collective I/O operations
– e.g. MPI_Write_all

• Window synchronization calls are collective operations
– e.g. MPI_Win_fence

An Introduction to MPI
Edgar Gabriel

MPI_Bcast

• The process with the rank root distributes the data
stored in buf to all other processes in the
communicator comm.

• Data in buf is identical on all processes after the
bcast

• Compared to point-to-point operations no tag, since
you cannot have several ongoing collective
operations

MPI_Bcast (void *buf, int cnt, MPI_Datatype dat,
int root, MPI_Comm comm);

An Introduction to MPI
Edgar Gabriel

MPI_Bcast (II)
MPI_Bcast (buf, 2, MPI_INT, 0, comm);

buf on root

rbuf on rank=0

rbuf on rank=1

rbuf on rank=2

rbuf on rank=3

rbuf on rank=4

An Introduction to MPI
Edgar Gabriel

MPI_Scatter (II)

sbuf on root

rbuf on rank=0

rbuf on rank=1

rbuf on rank=2

rbuf on rank=3

rbuf on rank=4

MPI_Scatter (sbuf, 2, MPI_INT, rbuf, 2, MPI_INT, 0, comm);

An Introduction to MPI
Edgar Gabriel

MPI Error handlers
• An error handler is a function which is called by the MPI library in

case an error occurs
– Wrong input parameters
– Network or process failures

• MPI defines two predefined error handlers:
– MPI_ERRORS_ARE_FATAL (Default): Abort the application on

the first error
– MPI_ERRORS_RETURN: Return error-code to user

• State of MPI undefined
• does not necessarily allow the user to continue to use MPI

after an error is detected
• User can register its own error handler functions

An Introduction to MPI
Edgar Gabriel

User application

MPI API

MPI Component Architecture (MCA)

PML

T E
G …

PTL

T C
P

/I P

S
ha

re
d

M
em

IB…

Memory
Pooling

P
ro

c
P

riv
at

e

S
ha

re
d

P
in

ne
d

…

Memory
Management

P
ow

2
b i

nn
n g

B
es

t f
i t

…

Some implementation aspects: Open MPI

An Introduction to MPI
Edgar Gabriel

Some Links

• MPI Forum:
– http://www.mpi-forum.org

• My personal MPI home page:
– http://www.cs.uh.edu/~gabriel/mpihome.html

• Open MPI:
– http://www.open-mpi.org

• MPICH:
– http://www-unix.mcs.anl.gov/mpi/mpich/

