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Overview
• Distributed memory machines
• Basic principles of the Message Passing Interface (MPI)

– addressing
– startup
– data exchange
– process management
– communication
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Distributed memory machines
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Communication between different machines
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Communication between different 
machines on the Internet

• Addressing:
– hostname and/or IP Address

• Communication:
– based on protocols, e.g. http or TCP/IP

• Process start-up:
– every process (= application) has to be started separately
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The Message Passing universe
• Process start-up:

– Want to start n-processes which shall work on the 
same problem

– mechanisms to start n-processes provided by MPI 
library 

• Addressing:
– Every process has a unique identifier. The value of the 

rank is between 0 and n-1. 
• Communication:

– MPI defines interfaces/routines how to send data to a 
process and how to receive data from a process. It 
does not specify a protocol.
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History of MPI

• Until the early 90’s: 
– all vendors of parallel hardware had their own message 

passing library 
– Some public domain message passing libraries available
– all of them being incompatible to each other
– High efforts for end-users to move code from one 

architecture to another
• June 1994: Version 1.0 of MPI presented by the MPI 

Forum
• June 1995: Version 1.1 (errata of MPI 1.0)
• 1997: MPI 2.0 – adding new functionality to MPI
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Simple Example (I)
MPI command to start process

Rank of the 2nd process Rank of the 1st process

Number of processes which have 
been started

number of processes to be started

name of the application to start
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Simple example (II)

PC of the end-user

Parallel
computer 
(e.g. PC 
cluster)

mypc> mpirun –np 2 ./t1

application t1 with 
rank = 0

application t1 with 
rank = 1

mpirun starts the application t1
• two times (as specified with the –np argument)
• on two currently available processors of the parallel machine
• telling one process that his rank is 0 
• and the other that his rank is 1
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Simple Example (III)
#include “mpi.h”

int main ( int argc, char **argv ) 
{
int rank, size;

MPI_Init ( &argc, &argv );
MPI_Comm_rank ( MPI_COMM_WORLD, &rank );
MPI_Comm_size ( MPI_COMM_WORLD, &size );

printf (“Mpi hi von node %d job size %d\n”, 
rank, size);

MPI_Finalize ();
return (0);

}
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MPI basics

• mpirun starts the required number of processes
• every process has a unique identifier (rank) which is 

between 0 and n-1
– no identifiers are duplicate, no identifiers are left out

• all processes which have been started by mpirun are 
organized in a process group (communicator) called 
MPI_COMM_WORLD

• MPI_COMM_WORLD is static
– number of processes can not change
– participating processes can not change
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MPI basics (II)

• The rank of a process is always related to the process 
group
– e.g. a process is uniquely identified by a tuple

(rank, process group)

• A process can be part of the several groups
– i.e. a process has in each group a rank

MPI_COMM_WORLD, size=7 0 1 2 3 4 5 6

0 1 2new process group, size = 5 3 4
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Simple Example (IV)

---snip---

MPI_Comm_rank ( MPI_COMM_WORLD, &rank );
MPI_Comm_size ( MPI_COMM_WORLD, &size );

---snip---

Function returns the size of a process group

Default process group containing all 
processes started by mpirun

Function returns the rank of a process 
within a process group

Rank of a process within 
the process group 
MPI_COMM_WORLD

Number of processes in 
the process group 
MPI_COMM_WORLD
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Simple Example (V)

---snip---
MPI_Init (&argc, &argv );
---snip---
MPI_Finalize ();
---snip---

Function closes the parallel environment
• should be the last function called in the application
• might stop all processes 

Function sets up parallel environment:
• processes set up network connection to each other
• default process group (MPI_COMM_WORLD) is set up
• should be the first function executed in the application
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Second example – scalar product 
of two vectors

• two vectors are distributed on two processors
– each process holds half of the original vector

Process with rank=0

)12...0( −Na )12...0( −Nb )...2( NNa )...2( NNb

Process with rank=1
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Second example (II)

• Logical/Global view of the data compared to local view of 
the data

Process with rank=0

)12...0( −Na )...2( NNa

Process with rank=1

)0()0( aalocal �
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)12()( −� Nanalocal

…
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)1()( −� Nanalocal
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Second example (III)

• Scalar product:

• Parallel algorithm

– requires communication between the processes 
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Second example (IV)
#include “mpi.h”

int main ( int argc, char **argv ) 
{
int i, rank, size;
double a_local[N/2], b_local[N/2];
double s_local, s;

MPI_Init ( &argc, &argv );
MPI_Comm_rank ( MPI_COMM_WORLD, &rank );
MPI_Comm_size ( MPI_COMM_WORLD, &size );

s_local = 0;
for ( i=0; i<N/2; i++ ) {
s_local = s_local + a_local[i] * b_local[i];

}
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Second example (V)
if ( rank == 0 ) {
/* Send the local result to rank 1 */
MPI_Send ( &s_local, 1, MPI_DOUBLE, 1, 0,

MPI_COMM_WORLD);
}
if ( rank == 1 ) {
MPI_Recv ( &s, 1, MPI_DOUBLE, 0, 0, 

MPI_COMM_WORLD, &status );

/* Calculate global result */
s = s + s_local;

}
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Second example (VI)
/* Rank 1 holds the global result and sends it now

to rank 0 */
if ( rank == 0 ) {
MPI_Recv (&s, 1, MPI_DOUBLE, 1, 1, MPI_COMM_WORLD,

&status );
}
if ( rank == 1 ) {
MPI_Send (&s, 1, MPI_DOUBLE, 0, 1, MPI_COMM_WORLD);

}

/* Close the parallel environment */
MPI_Finalize ();
return (0);

}
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Sending Data

---snip---

MPI_Send (&s_local, 1, MPI_DOUBLE, 1, 0, 
MPI_COMM_WORLD );

---snip---

Process group containing all 
processes started by mpirun

Data element which 
shall be send

Rank of processes in the process group MPI_COMM_WORLD 
to which the message shall be sent

Number of elements 
which shall be send

Data Type of the element 
which shall be send

a user defined integer (tag) for 
uniquely identifying a message
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Receiving Data

---snip---

MPI_Recv (&s_local, 1, MPI_DOUBLE, 0, 0, 
MPI_COMM_WORLD, &status );

---snip---

Process group

Data element where 
the data shall be received

Rank of processes in the process 
group which sent the message

Number of elements 
which shall be recvd

Data Type of the element 
which shall be recvd

a user defined integer (tag) for 
uniquely identifying a message

Status information about 
the message
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Faulty examples (I)
• Sender mismatch:

– if rank does not exist (e.g. rank > size of MPI_COMM_WORLD), 
the MPI library can recognize it and return an error

– if rank does exist (0<rank<size of MPI_COMM_WORLD) but does 
not send a message => MPI_Recv waits forever => deadlock

if ( rank == 0 ) {
/* Send the local result to rank 1 */
MPI_Send ( &s_local, 1, MPI_DOUBLE, 1, 0,

MPI_COMM_WORLD);
}
if ( rank == 1 ) {
MPI_Recv ( &s, 1, MPI_DOUBLE, 5, 0, 

MPI_COMM_WORLD, &status );

}
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Faulty examples (II)
• Tag mismatch:

– if tag outside of the allowed range  (e.g. 0<tag<MPI_TAG_UB ) 
the MPI library can recognize it and return an error

– if tag in MPI_Recv then the tag specified in MPI_Send
=> MPI_Recv waits forever => deadlock

if ( rank == 0 ) {
/* Send the local result to rank 1 */
MPI_Send ( &s_local, 1, MPI_DOUBLE, 1, 0,

MPI_COMM_WORLD);
}
if ( rank == 1 ) {
MPI_Recv ( &s, 1, MPI_DOUBLE, 0, 18,

MPI_COMM_WORLD, &status );

}
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What you’ve learned so far

• Six MPI functions are sufficient for programming a 
distributed system memory machine

MPI_Init(int *argc, char ***argv);
MPI_Finalize ();

MPI_Comm_rank (MPI_Comm comm, int *rank);
MPI_Comm_size (MPI_Comm comm, int *size);

MPI_Send (void *buf, int count, MPI_Datatype dat,
int dest, int tag, MPI_Comm comm);

MPI_Recv (void *buf, int count, MPI_Datatype dat,
int source, int tag,  MPI_Comm comm, 
MPI_Status *status); 
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So, why not stop here?

• Performance
– need functions which can fully exploit the capabilities of 

the hardware
– need functions to abstract typical communication patterns

• Usability
– need functions to simplify often recurring tasks
– need functions to simplify the management of parallel 

applications
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So, why not stop here?

• Performance
– asynchronous point-to-point operations
– one-sided operations
– collective operations
– derived data-types
– parallel I/O
– hints

• Usability
– process grouping functions
– environmental and process management
– error handling
– object attributes
– language bindings
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Collective operation

• all process of a process group have to participate in the 
same operation
– process group is defined by a communicator
– all processes have to provide the same arguments
– for each communicator, you can have one collective 

operation ongoing at a time
• collective operations are abstractions for often occurring 

communication patterns
– eases programming
– enables low-level optimizations and adaptations to the 

hardware infrastructure
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MPI collective operations
MPI_Barrier
MPI_Bcast
MPI_Scatter
MPI_Scatterv
MPI_Gather
MPI_Gatherv
MPI_Allgather
MPI_Allgatherv
MPI_Alltoall
MPI_Alltoallv
MPI_Reduce
MPI_Allreduce
MPI_Reduce_scatter
MPI_Scan

MPI_Exscan
MPI_Alltoallw
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More MPI collective operations

• Creating and freeing a communicator is considered a 
collective operation
– e.g. MPI_Comm_create
– e.g. MPI_Comm_spawn

• Collective I/O operations 
– e.g. MPI_Write_all

• Window synchronization calls are collective operations
– e.g. MPI_Win_fence
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MPI_Bcast

• The process with the rank root distributes the data 
stored in buf to all other processes in the 
communicator comm.  

• Data in buf is identical on all processes after the 
bcast

• Compared to point-to-point operations no tag, since 
you cannot have several ongoing collective 
operations

MPI_Bcast (void *buf, int cnt, MPI_Datatype dat, 
int root, MPI_Comm comm);
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MPI_Bcast (II)
MPI_Bcast (buf, 2, MPI_INT, 0, comm);

buf on root

rbuf on rank=0

rbuf on rank=1

rbuf on rank=2

rbuf on rank=3

rbuf on rank=4
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MPI_Scatter (II)

sbuf on root

rbuf on rank=0

rbuf on rank=1

rbuf on rank=2

rbuf on rank=3

rbuf on rank=4

MPI_Scatter (sbuf, 2, MPI_INT, rbuf, 2, MPI_INT, 0, comm);
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MPI Error handlers
• An error handler is a function which is called by the MPI library in 

case an error occurs
– Wrong input parameters
– Network or process failures

• MPI defines two predefined error handlers:
– MPI_ERRORS_ARE_FATAL (Default): Abort the application on 

the first error
– MPI_ERRORS_RETURN: Return error-code to user

• State of MPI undefined
• does not necessarily allow the user to continue to use MPI 

after an error is detected
• User can register its own error handler functions
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User application

MPI API

MPI Component Architecture (MCA)
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Some implementation aspects: Open MPI
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Some Links

• MPI Forum:
– http://www.mpi-forum.org

• My personal MPI home page:
– http://www.cs.uh.edu/~gabriel/mpihome.html

• Open MPI:
– http://www.open-mpi.org

• MPICH:
– http://www-unix.mcs.anl.gov/mpi/mpich/


