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Abstract 

Monitoring communication is central to the develop-
ment and tuning of parallel and distributed applica-
tions. Available tools for network monitoring typically 
capture the network traffic at TCP or IP layers, but a 
software developer is most interested in the message 
exchange sequence between pairs of nodes executing 
the application. However, capturing application level 
traffic requires instrumenting the application code, 
which is cumbersome and not even an option in most 
cases. We present a procedure that reconstructs the 
application layer message sequences by analyzing TCP 
layer traffic.  The basic idea is that, since TCP traffic is 
constructed with a well defined procedure from appli-
cation traffic, it should be possible to reconstruct appli-
cation message exchanges from TCP segments. We 
demonstrate that the procedure is effective, although 
not perfect, by extensive experimentation with NASA’s 
NAS parallel benchmarks. 
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1 Introduction 

Monitoring the communication behavior of distributed 
applications is important for resource management and 
performance debugging aspects of application devel-
opment. A number of tools are available to monitor 
network traffic, some examples being tcpdump, iptraf, 
and SNMP based probes, and more advanced tools 
built with these and intrusive network measurements 
[8,14]. While these tools measure network traffic, often 
the user’s real intent is to capture the messages ex-
changed by application processes. The two are not the 
same since application traffic is typically segmented 
into fixed size packets by the network protocol layers. 
In general, it is not possible to directly capture the ap-
plication message sequences without instrumenting the 

application itself, which is generally not an option. The 
goal of this research is to reconstruct the application 
layer communication from the network communication 
captured at the TCP level.  

The resultant approach allows the discovery of mes-
sage sequences between application processes using 
any application level protocol without any knowledge 
of the application and without access to the application 
code. 

This research is motivated by the resource selection 
and management in grid computing [2,5,6,7,11]. The 
basic question is as follows: On what set of nodes will 
a parallel or distributed application perform the best ?  
Our approach to solving this problem consists of the 
following steps: 

Application Characterization: Development of an 
application performance profile that captures the re-
source needs of an application and models its perform-
ance under different network conditions. 

Network characterization: Measure the existing net-
work conditions such as CPU loads and available 
bandwidth on network links. 

Node selection: Estimate the application performance 
on different sets of nodes on the network under existing 
network conditions using the application profile and 
select the best nodes for execution. 

The research presented in this paper is on the subject of 
constructing an application profile. To achieve this, it 
is necessary to know the precise pattern of message 
exchanges between application processes so that the 
performance of message exchanges and the application 
can be estimated under different network conditions. 
Rest of this paper describes and validates a scheme to 
infer the application level message exchanges from 
network traffic.  

The paper specifically focuses on constructing user 
level messages based on the TCP segment stream be-
tween pairs of nodes executing an application. Our goal 
is to be able to generate the sequence of messages with 
the size in bytes of each message between communi-



cating nodes. The experiments presented in this paper 
are for parallel applications using the MPI communica-
tion library for message passing. The basic procedure is 
to first collect the sequence of TCP segments at nodes 
or intermediate routers using a utility such as 
TCPDump. Since the construction of TCP segments 
from application messages follows a well-defined 
process, we attempt to “reverse engineer” the process 
to obtain the size and sequence of application layer 
messages. The results are validated by capturing this 
information for NAS benchmarks [1] executing on a 
cluster of workstations and comparing it with the actual 
message exchange sequence for NAS benchmarks 
measured with program instrumentation. 

2 Principles of message reconstruction 

Let us first examine how the TCP segments are con-
structed from application messages. When a new mes-
sage is received from the application layer for trans-
mission, it is entered into a new TCP segment [9]. If 
the message is smaller than the maximum segment size 
(MSS), the entire message  fits into a single segment. 
Otherwise, a sequence of TCP segments are composed 
and transmitted  until the complete application layer 
message is processed. The key information that we 
exploit for application layer message reconstruction is 
as follows: 

An application message is typically fragmented into a 
consecutive sequence of TCP segments and all except 
the last segment is of  size MSS. 

Based on this, we can simply locate the TCP segments 
of size less than MSS and reconstruct the size of the 
application layer message. While this is our guiding 
principle, there are several factors that make the proc-
ess complex: 

• When an application sends two or more messages 
rapidly, they often get combined. That is, the last 
TCP segment for the first message also includes 
the beginning of the next message. 

• In some cases, an incomplete TCP segment gets 
transmitted even though the application level mes-
sage it is carrying as payload is not finished. That 
is, a TCP segment containing the middle of an ap-
plication  message may be of size smaller than 
MSS indicating that the message has finished 
when in fact it has not. 

Above occurrences are unpredictable and depend on 
the specific system activity sequence each time a pro-
gram is executed. We use heuristics to minimize the 
impact of these factors and show that message se-
quences can be captured with very good, although im-
perfect, accuracy with our procedure. 

3 Procedure for message reconstruction 

The procedure for reconstructing the application layer 
message sequence from the TCP stream detected on the 
network is divided into the following phases:  

First phase:  Separate TCP streams. 

Second phase: Sanitize a TCP stream. 

Third phase: Reconstruct application layer messages. 

Fourth phase: Error minimization by applying 
“best-of-three” technique. 

3.1 Separating TCP streams 
A typical network link is traversed by several TCP 
streams, each consisting of a series of TCP segments. 
We are interested in each TCP stream containing data 
that was exchanged by the application of interest. 

There are two approaches to separating the TCP 
streams. First is based on the fact that every TCP 
stream transfers data segments between unique pairs of 
port numbers and IP addresses. The second approach is 
based on the fact that each TCP stream normally spans 
a unique series of sequence numbers. Both approaches 
can fail under pathological conditions but are effective 
in practice. In our example we demonstrate the second 
approach as it is related to the later phases of analysis. 

3.2 Sanitizing a TCP stream 
TCP treats a data transfer as a stream of bytes with an 
assigned sequence number for each byte.  TCP seg-
ments can get lost or arrive out of order. TCP acknowl-
edges received segments and retransmits lost segments.  
Further, the tcpdump mechanism can occasionally not 
register a segment in heavy traffic.  

We need to detect missing segments and filter out du-
plicate transmissions.  Duplicate transmissions are easy 
to detect and are simply discarded. If a fixed number of 
bytes are missing in the TCP stream, it is assumed that 
a TCP segment(s) of corresponding size was lost for 
some reason, and a segment of that size is “inserted” in 
the stream. At the end of this phase, we have a sequen-
tial series of segments spanning from the first to the 
last byte of data that was sent. 

3.3   Reconstructing application layer message 
stream 

As stated earlier, the central idea of the reconstruction 
procedure is that an application message is typically 
fragmented into a consecutive sequence of TCP seg-
ments and all except the last segment is of size MSS. 
Hence, the last TCP segment corresponding to an ap-
plication level message is the only one that is smaller 
than MSS. Note that for short messages, the last seg-

 



ment is also the first segment. In general, we assume 
that a new application level message starts after a seg-
ment that is smaller than MSS and ends at the next 
segment that is smaller than MSS. 

3.3 “Best of three” error minimization 
When an application “pauses” execution during the 
transfer of a message to the transport layer (e.g., when 
the CPU has to be relinquished to service an interrupt), 
a TCP segment smaller than MSS may be sent before 
the message is finished. This would lead to incorrect 
identification of messages with our procedure. How-
ever, it is extremely unlikely that the same message 
will be split in the same way on two different runs. 
Similarly, it is possible that two short messages may be 
packed in the same segment, but it is unlikely that iden-
tical packing will happen on consecutive runs. 

This motivates the best-of-three technique that we use 
to minimize errors. We run the same application three 
times with the same input and use the previous phases 
to generate three output files containing the sequence 
of application messages that were generated. The true 
application level message sequence should be identical 
for the three runs. At places in the series where the 3 
constructed sequences do not agree, we look for the 
majority to agree and take that as the correct subse-
quence. In almost all cases, two or all of the runs agree. 
If not, a random choice is made, but it is also possible 
to have a scheme where additional runs may be used to 
increase accuracy further when needed. 

4 Example message reconstruction 

In the following example each TCP packet will be rep-
resented as shown below.  
source    >     destination :     s     :     e     ( d )     
node1     >      node2          :  8345 :  9793 (1448) 
 
where 

s - starting sequence number 
e - ending sequence number 
d - data size in bytes in the TCP segment  
 

the MSS = 1448 for our setup. 

The following is a simplified snapshot of a TCP com-
munication sequence captured while running a sample 
parallel application. We will analyze the output and try 
to reconstruct the parallel application message. 

1. node1  >  node2:   88801:88833(32) 
2. node1  > node2:    1:1449(1448) 
3. node1 > node2:     88833:88897(64) 
4. node1  > node2:    1449:2897(1448) 
5. node1  > node2:    2897:4345(1448) 
6. node1  > node2: .  7241:8238(997) 

From the range of sequence numbers, it is clear that 
line numbers 1 and 3 correspond to one TCP sequence 
and the remaining lines correspond to another TCP 
sequence. Separating the two streams, we have : 
stream1: 
1. node1  >  node2:   88801:88833(32) 
3. node 1 >  node2:   88833:88897(64) 
 
stream 2: 
2. node1  > node2:    1:1449(1448) 
4. node1  > node2:    1449:2897(1448) 
5. node1  > node2:    2897:4345(1448) 
6. node1  > node2: .  7241:8238(997) 
 
Stream1 clearly consists of two messages of size 32 
and 64 respectively, and need not be analyzed further. 
We now focus on stream2. We first renumber the seg-
ments in order : 

1. node1  > node2:    1:1449(1448) 
2. node1  > node2:    1449:2897(1448) 
3. node1  > node2:    2897:4345(1448) 
4. node1  > node2: .  7241:8238(997) 
 
A simple analysis of the stream shows that bytes with 
sequence numbers between 4345 and 7241 are unac-
counted for. Now, 7241 – 4345 = 2896, which is dou-
ble of 1448, our MSS (Maximum Segment Size). Our 
analysis concludes that two segments of size MSS were 
not reported, and therefore we “insert”  the missing 
segments. The corrected output file is as follows: 

1. node1  > node2:    1:1449(1448) 
2. node1  > node2:    1449:2897(1448) 
3. node1  > node2:    2897:4345(1448) 
  3.1 node1  > node2:    4345 :5793(1448)    (inserted) 
  3.2 node1  > node2:    5793:7241(1448)    (inserted) 
4. node1  > node2: .  7241:8238(997) 
 
This stream corresponds to a single application layer 
message that finished with the segment shown in line 4 
since that is the first segment smaller than 1448. It is 
evident that an application layer message of 8237 bytes 
was split into five 1448 and one 997 byte data seg-
ments as illustrated below: 

 

Sanitized TCP stream Application Message 
 
1448 
1448                             
1448                                            8237 bytes 
1448 
1448 
997 
 

 



The above corresponds to a section of the TCP stream 
for the test application, which was a small parallel pro-
gram. When this program is run multiple times, the 
application layer message stream generated by the 
above procedure is not always identical, although the 
total number of bytes remains the same. We show three 
sample results from reconstruction from different runs 
of the program: 
Reconstructed application layer message stream: 
 
    run 1  run 2  run 3  
1. 8237  8237  8269   
2. 32  32  64   
3. 64  7336  7272   
4. 7272 
             
  15605  15605  15605 
 
We now illustrate the “best of three” heuristic we used 
to reconcile the differences between runs to produce 
the most probable true sequence of application mes-
sages.  The basic approach is as follows. Each run cor-
responds to a sequence of cuts that divide the stream of 
15605 bytes into messages. We illustrate the cuts cor-
responding to each run as follows: 
     Cut at                          run1       run2      run3 
1.   8237       Yes   Yes   No 
2.   8237+32=8269   Yes   Yes   Yes  
3.   8269+64=8333     Yes    No   Yes  
4.   8333+7336=15605   Yes   Yes   Yes 
 
We only accept the cuts that occur in majority of the 
runs and ignore the others. This gives us the following 
final result: 

Message Sequence = 8237,  32  ,  64  ,  7272 
Total bytes = 15605 
Please note that the sample inputs were chosen to illus-
trate the problems associated with this approach. In 
practice, most messages are detected exactly without 
the complications discussed here. 

5 Experiments and results 

 In order to validate this approach to application level 
message reconstruction, we performed a set of experi-
ments with the NAS parallel benchmarks 1,13]. The 
codes used are BT (Block Tridiagonal solver), CG 
(Conjugate Gradient), IS (Integer Sort), LU (LU 
solver), MG (Multigrid), and SP (Pentadiagonal 
solver). All programs are in Fortran 77, except IS, 
which is a C program. All benchmarks were compiled 
with class A size for 4 nodes and executed on 4 nodes. 
g77 and gcc (Fortran 77 and C compilers from GNU) 

were used for compilation.  The programs were exe-
cuted on a small 100Mbps Ethernet based cluster of 4 
Pentium workstations. The NAS benchmarks are 
MIMD parallel programs with extensive and frequent 
communication, and hence challenging test cases for 
message reconstruction 

The MPI implementation of the NAS benchmarks was 
used. MPI is a portable message passing library, and 
the implementation used runs on top of TCP. Hence the 
MPI messages are broken into TCP segments for 
transmission. The benchmark applications were exe-
cuted and  tcpdump was employed to capture TCP 
headers. The procedure in this paper was employed to 
reconstruct the application level MPI message ex-
changes. The results were compared against the exact 
message sequence captured separately by profiling the 
communication calls in these programs and re-
executing.  

Before we present the results, we need to discuss one 
detail of MPI communication. MPI introduces addi-
tional control messages in addition to the application 
communication. There are a large number of these 
messages but they are very small (typically around 32 
bytes) and generate well under 1% of the total traffic in 
all of our example applications. Since there is no way 
to verify what the MPI control traffic is supposed to be, 
we shall limit our discussion to application data seg-
ments only except that we shall note where the applica-
tion traffic is not captured accurately because of the 
control traffic. 

The results of our experiments are presented in  Table 
1 and also illustrated in Figure 1. We list the main ob-
servations: 

• Almost all application messages were captured 
either precisely or approximately: While the ma-
jority of the application level messages are cap-
tured precisely, a significant fraction of the mes-
sages are not. However almost all of the remaining 
messages are constructed approximately – either 
the number of bytes in the reconstructed message 
was off by a small number (less than 100) of bytes 
due to mixing with control traffic or two consecu-
tive messages are reconstructed as a single mes-
sage. 

• The accuracy of the procedure varies widely 
among benchmarks: While all messages in the IS 
benchmark are constructed accurately, the recon-
struction of almost all messages in LU was ap-
proximate.  

• Reconstruction is poor for small messages: The 
major difference between the benchmarks IS and 
LU, the cases that demonstrate the most accurate 
and the least accurate reconstruction, respectively, 

 



is that IS sends a few very large messages, while 
LU sends a large number of small messages. The 
conclusion is that the reconstruction procedure 

captures most of the large messages accurately but 
the small messages only approximately.  

 
 

 
 
 

Benchmark Application   
   Description 

Messages  
detected exactly 

correctly 
(EXACT  
MATCH) 

Messages 
detected exactly

OR 
combined with 
upto 100 bytes 
of system data 

Messages 
detected 
exactly 

OR 
combined with 
upto 100 bytes 
of system data 

AND/OR 
Combined 

with one other 
application 

message 
(APPROX 
MATCH) 

Messages 
identified 

completely 
incorrectly 

(NO MATCH) 

Name Number 
of Mes-
sages 

Average 
message 

size  
(Bytes) 

Num-
ber 

%-age Num-
ber 

%-age Num-
ber 

%-
age 

Num-
ber 

%-age 

BT 620 150,620 384 62 434 70 620 100 0 0 
CG 416 56,001 383 92 416 100 416 100 0 0 
IS 11 2,117,547 11 100 11 100 11 100 0 0 
LU 15,324 3,948 252 2 15,032 98 15,324 100 0 0 
MG 154 81,422 82 53 142 92 150 97 4 3 
SP 1,458 112,836 1,088 75 1,310 90 1458 100 0 0 

 
Table 1. Reconstruction of application level messages for NAS benchmarks 
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Figure 1. Accuracy of application level message reconstruction for NAS benchmarks

 



6 Conclusions 

We have introduced and validated a simple framework 
to capture the application level message exchanges in a 
distributed application by monitoring and analyzing 
TCP traffic. The procedure works well for large mes-
sages, but pairs of distinct small messages often appear 
as a single message after reconstruction. While the 
procedure is not perfect, it is sufficient for the purpose 
for which it is designed, which is, characterizing an 
application’s communication behavior for resource 
selection in grid environments and understanding the 
communication patterns. The procedure is entirely 
based on system and network measurements, and there-
fore no access to source code or libraries is necessary. 
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