
RECONSTRUCTION OF APPLICATION LAYER
MESSAGE SEQUENCES BY NETWORK MONITORING

Amitoj Singh Jaspal Subhlok

 Fermi National Accelerator Laboratory Department of Computer Science, University of Houston
Batavia, IL, 60510 Houston, TX, 77204

 USA USA

Abstract

Monitoring communication is central to the develop-
ment and tuning of parallel and distributed applica-
tions. Available tools for network monitoring typically
capture the network traffic at TCP or IP layers, but a
software developer is most interested in the message
exchange sequence between pairs of nodes executing
the application. However, capturing application level
traffic requires instrumenting the application code,
which is cumbersome and not even an option in most
cases. We present a procedure that reconstructs the
application layer message sequences by analyzing TCP
layer traffic. The basic idea is that, since TCP traffic is
constructed with a well defined procedure from appli-
cation traffic, it should be possible to reconstruct appli-
cation message exchanges from TCP segments. We
demonstrate that the procedure is effective, although
not perfect, by extensive experimentation with NASA’s
NAS parallel benchmarks.

Keywords

TCP, network monitoring, NAS benchmarks, grid
computing

1 Introduction

Monitoring the communication behavior of distributed
applications is important for resource management and
performance debugging aspects of application devel-
opment. A number of tools are available to monitor
network traffic, some examples being tcpdump, iptraf,
and SNMP based probes, and more advanced tools
built with these and intrusive network measurements
[8,14]. While these tools measure network traffic, often
the user’s real intent is to capture the messages ex-
changed by application processes. The two are not the
same since application traffic is typically segmented
into fixed size packets by the network protocol layers.
In general, it is not possible to directly capture the ap-
plication message sequences without instrumenting the

application itself, which is generally not an option. The
goal of this research is to reconstruct the application
layer communication from the network communication
captured at the TCP level.

The resultant approach allows the discovery of mes-
sage sequences between application processes using
any application level protocol without any knowledge
of the application and without access to the application
code.

This research is motivated by the resource selection
and management in grid computing [2,5,6,7,11]. The
basic question is as follows: On what set of nodes will
a parallel or distributed application perform the best ?
Our approach to solving this problem consists of the
following steps:

Application Characterization: Development of an
application performance profile that captures the re-
source needs of an application and models its perform-
ance under different network conditions.

Network characterization: Measure the existing net-
work conditions such as CPU loads and available
bandwidth on network links.

Node selection: Estimate the application performance
on different sets of nodes on the network under existing
network conditions using the application profile and
select the best nodes for execution.

The research presented in this paper is on the subject of
constructing an application profile. To achieve this, it
is necessary to know the precise pattern of message
exchanges between application processes so that the
performance of message exchanges and the application
can be estimated under different network conditions.
Rest of this paper describes and validates a scheme to
infer the application level message exchanges from
network traffic.

The paper specifically focuses on constructing user
level messages based on the TCP segment stream be-
tween pairs of nodes executing an application. Our goal
is to be able to generate the sequence of messages with
the size in bytes of each message between communi-

cating nodes. The experiments presented in this paper
are for parallel applications using the MPI communica-
tion library for message passing. The basic procedure is
to first collect the sequence of TCP segments at nodes
or intermediate routers using a utility such as
TCPDump. Since the construction of TCP segments
from application messages follows a well-defined
process, we attempt to “reverse engineer” the process
to obtain the size and sequence of application layer
messages. The results are validated by capturing this
information for NAS benchmarks [1] executing on a
cluster of workstations and comparing it with the actual
message exchange sequence for NAS benchmarks
measured with program instrumentation.

2 Principles of message reconstruction

Let us first examine how the TCP segments are con-
structed from application messages. When a new mes-
sage is received from the application layer for trans-
mission, it is entered into a new TCP segment [9]. If
the message is smaller than the maximum segment size
(MSS), the entire message fits into a single segment.
Otherwise, a sequence of TCP segments are composed
and transmitted until the complete application layer
message is processed. The key information that we
exploit for application layer message reconstruction is
as follows:

An application message is typically fragmented into a
consecutive sequence of TCP segments and all except
the last segment is of size MSS.

Based on this, we can simply locate the TCP segments
of size less than MSS and reconstruct the size of the
application layer message. While this is our guiding
principle, there are several factors that make the proc-
ess complex:

• When an application sends two or more messages
rapidly, they often get combined. That is, the last
TCP segment for the first message also includes
the beginning of the next message.

• In some cases, an incomplete TCP segment gets
transmitted even though the application level mes-
sage it is carrying as payload is not finished. That
is, a TCP segment containing the middle of an ap-
plication message may be of size smaller than
MSS indicating that the message has finished
when in fact it has not.

Above occurrences are unpredictable and depend on
the specific system activity sequence each time a pro-
gram is executed. We use heuristics to minimize the
impact of these factors and show that message se-
quences can be captured with very good, although im-
perfect, accuracy with our procedure.

3 Procedure for message reconstruction

The procedure for reconstructing the application layer
message sequence from the TCP stream detected on the
network is divided into the following phases:

First phase: Separate TCP streams.

Second phase: Sanitize a TCP stream.

Third phase: Reconstruct application layer messages.

Fourth phase: Error minimization by applying
“best-of-three” technique.

3.1 Separating TCP streams
A typical network link is traversed by several TCP
streams, each consisting of a series of TCP segments.
We are interested in each TCP stream containing data
that was exchanged by the application of interest.

There are two approaches to separating the TCP
streams. First is based on the fact that every TCP
stream transfers data segments between unique pairs of
port numbers and IP addresses. The second approach is
based on the fact that each TCP stream normally spans
a unique series of sequence numbers. Both approaches
can fail under pathological conditions but are effective
in practice. In our example we demonstrate the second
approach as it is related to the later phases of analysis.

3.2 Sanitizing a TCP stream
TCP treats a data transfer as a stream of bytes with an
assigned sequence number for each byte. TCP seg-
ments can get lost or arrive out of order. TCP acknowl-
edges received segments and retransmits lost segments.
Further, the tcpdump mechanism can occasionally not
register a segment in heavy traffic.

We need to detect missing segments and filter out du-
plicate transmissions. Duplicate transmissions are easy
to detect and are simply discarded. If a fixed number of
bytes are missing in the TCP stream, it is assumed that
a TCP segment(s) of corresponding size was lost for
some reason, and a segment of that size is “inserted” in
the stream. At the end of this phase, we have a sequen-
tial series of segments spanning from the first to the
last byte of data that was sent.

3.3 Reconstructing application layer message
stream

As stated earlier, the central idea of the reconstruction
procedure is that an application message is typically
fragmented into a consecutive sequence of TCP seg-
ments and all except the last segment is of size MSS.
Hence, the last TCP segment corresponding to an ap-
plication level message is the only one that is smaller
than MSS. Note that for short messages, the last seg-

ment is also the first segment. In general, we assume
that a new application level message starts after a seg-
ment that is smaller than MSS and ends at the next
segment that is smaller than MSS.

3.3 “Best of three” error minimization
When an application “pauses” execution during the
transfer of a message to the transport layer (e.g., when
the CPU has to be relinquished to service an interrupt),
a TCP segment smaller than MSS may be sent before
the message is finished. This would lead to incorrect
identification of messages with our procedure. How-
ever, it is extremely unlikely that the same message
will be split in the same way on two different runs.
Similarly, it is possible that two short messages may be
packed in the same segment, but it is unlikely that iden-
tical packing will happen on consecutive runs.

This motivates the best-of-three technique that we use
to minimize errors. We run the same application three
times with the same input and use the previous phases
to generate three output files containing the sequence
of application messages that were generated. The true
application level message sequence should be identical
for the three runs. At places in the series where the 3
constructed sequences do not agree, we look for the
majority to agree and take that as the correct subse-
quence. In almost all cases, two or all of the runs agree.
If not, a random choice is made, but it is also possible
to have a scheme where additional runs may be used to
increase accuracy further when needed.

4 Example message reconstruction

In the following example each TCP packet will be rep-
resented as shown below.
source > destination : s : e (d)
node1 > node2 : 8345 : 9793 (1448)

where

s - starting sequence number
e - ending sequence number
d - data size in bytes in the TCP segment

the MSS = 1448 for our setup.

The following is a simplified snapshot of a TCP com-
munication sequence captured while running a sample
parallel application. We will analyze the output and try
to reconstruct the parallel application message.

1. node1 > node2: 88801:88833(32)
2. node1 > node2: 1:1449(1448)
3. node1 > node2: 88833:88897(64)
4. node1 > node2: 1449:2897(1448)
5. node1 > node2: 2897:4345(1448)
6. node1 > node2: . 7241:8238(997)

From the range of sequence numbers, it is clear that
line numbers 1 and 3 correspond to one TCP sequence
and the remaining lines correspond to another TCP
sequence. Separating the two streams, we have :
stream1:
1. node1 > node2: 88801:88833(32)
3. node 1 > node2: 88833:88897(64)

stream 2:
2. node1 > node2: 1:1449(1448)
4. node1 > node2: 1449:2897(1448)
5. node1 > node2: 2897:4345(1448)
6. node1 > node2: . 7241:8238(997)

Stream1 clearly consists of two messages of size 32
and 64 respectively, and need not be analyzed further.
We now focus on stream2. We first renumber the seg-
ments in order :

1. node1 > node2: 1:1449(1448)
2. node1 > node2: 1449:2897(1448)
3. node1 > node2: 2897:4345(1448)
4. node1 > node2: . 7241:8238(997)

A simple analysis of the stream shows that bytes with
sequence numbers between 4345 and 7241 are unac-
counted for. Now, 7241 – 4345 = 2896, which is dou-
ble of 1448, our MSS (Maximum Segment Size). Our
analysis concludes that two segments of size MSS were
not reported, and therefore we “insert” the missing
segments. The corrected output file is as follows:

1. node1 > node2: 1:1449(1448)
2. node1 > node2: 1449:2897(1448)
3. node1 > node2: 2897:4345(1448)
 3.1 node1 > node2: 4345 :5793(1448) (inserted)
 3.2 node1 > node2: 5793:7241(1448) (inserted)
4. node1 > node2: . 7241:8238(997)

This stream corresponds to a single application layer
message that finished with the segment shown in line 4
since that is the first segment smaller than 1448. It is
evident that an application layer message of 8237 bytes
was split into five 1448 and one 997 byte data seg-
ments as illustrated below:

Sanitized TCP stream Application Message

1448
1448
1448 8237 bytes
1448
1448
997

The above corresponds to a section of the TCP stream
for the test application, which was a small parallel pro-
gram. When this program is run multiple times, the
application layer message stream generated by the
above procedure is not always identical, although the
total number of bytes remains the same. We show three
sample results from reconstruction from different runs
of the program:
Reconstructed application layer message stream:

 run 1 run 2 run 3
1. 8237 8237 8269
2. 32 32 64
3. 64 7336 7272
4. 7272

 15605 15605 15605

We now illustrate the “best of three” heuristic we used
to reconcile the differences between runs to produce
the most probable true sequence of application mes-
sages. The basic approach is as follows. Each run cor-
responds to a sequence of cuts that divide the stream of
15605 bytes into messages. We illustrate the cuts cor-
responding to each run as follows:
 Cut at run1 run2 run3
1. 8237 Yes Yes No
2. 8237+32=8269 Yes Yes Yes
3. 8269+64=8333 Yes No Yes
4. 8333+7336=15605 Yes Yes Yes

We only accept the cuts that occur in majority of the
runs and ignore the others. This gives us the following
final result:

Message Sequence = 8237, 32 , 64 , 7272
Total bytes = 15605
Please note that the sample inputs were chosen to illus-
trate the problems associated with this approach. In
practice, most messages are detected exactly without
the complications discussed here.

5 Experiments and results

 In order to validate this approach to application level
message reconstruction, we performed a set of experi-
ments with the NAS parallel benchmarks 1,13]. The
codes used are BT (Block Tridiagonal solver), CG
(Conjugate Gradient), IS (Integer Sort), LU (LU
solver), MG (Multigrid), and SP (Pentadiagonal
solver). All programs are in Fortran 77, except IS,
which is a C program. All benchmarks were compiled
with class A size for 4 nodes and executed on 4 nodes.
g77 and gcc (Fortran 77 and C compilers from GNU)

were used for compilation. The programs were exe-
cuted on a small 100Mbps Ethernet based cluster of 4
Pentium workstations. The NAS benchmarks are
MIMD parallel programs with extensive and frequent
communication, and hence challenging test cases for
message reconstruction

The MPI implementation of the NAS benchmarks was
used. MPI is a portable message passing library, and
the implementation used runs on top of TCP. Hence the
MPI messages are broken into TCP segments for
transmission. The benchmark applications were exe-
cuted and tcpdump was employed to capture TCP
headers. The procedure in this paper was employed to
reconstruct the application level MPI message ex-
changes. The results were compared against the exact
message sequence captured separately by profiling the
communication calls in these programs and re-
executing.

Before we present the results, we need to discuss one
detail of MPI communication. MPI introduces addi-
tional control messages in addition to the application
communication. There are a large number of these
messages but they are very small (typically around 32
bytes) and generate well under 1% of the total traffic in
all of our example applications. Since there is no way
to verify what the MPI control traffic is supposed to be,
we shall limit our discussion to application data seg-
ments only except that we shall note where the applica-
tion traffic is not captured accurately because of the
control traffic.

The results of our experiments are presented in Table
1 and also illustrated in Figure 1. We list the main ob-
servations:

• Almost all application messages were captured
either precisely or approximately: While the ma-
jority of the application level messages are cap-
tured precisely, a significant fraction of the mes-
sages are not. However almost all of the remaining
messages are constructed approximately – either
the number of bytes in the reconstructed message
was off by a small number (less than 100) of bytes
due to mixing with control traffic or two consecu-
tive messages are reconstructed as a single mes-
sage.

• The accuracy of the procedure varies widely
among benchmarks: While all messages in the IS
benchmark are constructed accurately, the recon-
struction of almost all messages in LU was ap-
proximate.

• Reconstruction is poor for small messages: The
major difference between the benchmarks IS and
LU, the cases that demonstrate the most accurate
and the least accurate reconstruction, respectively,

is that IS sends a few very large messages, while
LU sends a large number of small messages. The
conclusion is that the reconstruction procedure

captures most of the large messages accurately but
the small messages only approximately.

Benchmark Application
 Description

Messages
detected exactly

correctly
(EXACT
MATCH)

Messages
detected exactly

OR
combined with
upto 100 bytes
of system data

Messages
detected
exactly

OR
combined with
upto 100 bytes
of system data

AND/OR
Combined

with one other
application

message
(APPROX
MATCH)

Messages
identified

completely
incorrectly

(NO MATCH)

Name Number
of Mes-
sages

Average
message

size
(Bytes)

Num-
ber

%-age Num-
ber

%-age Num-
ber

%-
age

Num-
ber

%-age

BT 620 150,620 384 62 434 70 620 100 0 0
CG 416 56,001 383 92 416 100 416 100 0 0
IS 11 2,117,547 11 100 11 100 11 100 0 0
LU 15,324 3,948 252 2 15,032 98 15,324 100 0 0
MG 154 81,422 82 53 142 92 150 97 4 3
SP 1,458 112,836 1,088 75 1,310 90 1458 100 0 0

Table 1. Reconstruction of application level messages for NAS benchmarks

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

BT CG IS LU MG SP

NAS Benchmark

M
es

sa
ge

 R
ec

on
st

ru
ct

io
n

NO MATCH
APPROX MATCH
EXACT MATCH

Figure 1. Accuracy of application level message reconstruction for NAS benchmarks

6 Conclusions

We have introduced and validated a simple framework
to capture the application level message exchanges in a
distributed application by monitoring and analyzing
TCP traffic. The procedure works well for large mes-
sages, but pairs of distinct small messages often appear
as a single message after reconstruction. While the
procedure is not perfect, it is sufficient for the purpose
for which it is designed, which is, characterizing an
application’s communication behavior for resource
selection in grid environments and understanding the
communication patterns. The procedure is entirely
based on system and network measurements, and there-
fore no access to source code or libraries is necessary.

7 Acknowledgements

This research was sponsored by the Los Alamos Com-
puter Science Institute (LACSI) through Los Alamos
National Lab contract number 03891-99-23 as part of
the prime contract (W-7405-ENG-36) between the
DOE and the Regents of the University of California.
Support was also provided by the Texas Advanced
Technology Program under grant number 003652-
0424, and University of Houston's Texas Learning and
Computation Center.

We also wish to thank other members of our research
group, in particular Shreenivasa Venkataramaiah and
Srikanth Goteti, for their valuable contributions to this
research.

References

[1] D. Bailey, T. Harris, W. Saphir, R. Van Der
Wijngaart, A. Woo, & M. Yarrow, The NAS Parallel
Benchmarks 2.0, Tech. Rep. 95-020, NASA Ames Re-
search Center, December 1995.

[2] F. Berman, R. Wolski, S. Figueira, J. Schopf, & G.
Shao, Application-level scheduling on distributed het-
erogeneous networks. In Proceedings of Supercomput-
ing ’96, Pittsburgh, PA, November 1996.

[3] P. Bhatt, V. Prasanna, & C. Raghavendra, Adaptive
communication algorithms for distributed heterogene-
ous systems. In Seventh IEEE Symposium on
High-Performance Distributed Computing, Chicago,
IL, July 1998.

[4] P. Dinda, Statistical properties of host load in a
distributed environment. In Fourth Workshop on Lan-
guages, Compilers, and Runtime Systems for Scalable
Computers, Pittsburgh, PA, May 1998.

[5] I. Foster, & K. Kesselman, Globus: A meta-
computing infrastructure toolkit. Journal of Super-
computer Applications 11, 2 (1997), 115--128.

[6] A. Grimshaw, & W. Wulf, The Legion vision of a
worldwide virtual computer. Communications of the
ACM 40, 1 (January 1997).

[7] M. Litzkow, M. Livny, & M. Mutka, Condor --- A
hunter of idle workstations. In Proceedings of the
Eighth Conference on Distributed Computing Systems,
San Jose, California, June 1988.

[8] B. Lowekamp, N. Miller, D. Sutherland, T. Gross,
P. Steenkiste, & J. Subhlok, A resource query interface
for network-aware applications. In Seventh IEEE Sym-
posium on High-Performance Distributed Computing,
Chicago, IL, July 1998.

[9] J. Postel, (ed.), Transmission Control Protocol-
DARPA Internet Program Protocol Specification, RFC
793, USC/Information Sciences Institute, Sept. 1981.

[10] M. Stemm, S. Seshan, & R. Katz, Spand: Shared
passive network performance discovery. In USENIX
Symposium on Internet Technologies and Systems,
Monterey, CA, June 1997.

[11] J. Subhlok, P. Lieu, & B. Lowekamp, Automatic
node selection for high performance applications on
networks. In Proceedings of the Seventh ACM
SIGPLAN Symposium on Principles and Practice of
Parallel Programming, Atlanta, GA, May 1999, pp.
163--172.

[12] J. Subhlok, & G. Vondran, Optimal latency--
throughput tradeoffs for data parallel pipelines. In
Eighth Annual ACM Symposium on Parallel Algo-
rithms and Architectures, Padua, Italy, June 1996, pp.
62--71.

[13] T. Tabe, & Q. Stout, The use of the MPI commu-
nication library in the NAS Parallel Benchmark, Tech.
Rep. CSE-TR-386-99, Department of Computer Sci-
ence, University of Michigan, Nov 1999.

[14] R. Wolski, N. Spring, & C. Peterson, Implement-
ing a performance forecasting system for metacomput-
ing: The Network Weather Service. In Proceedings of
Supercomputing ’97, San Jose, CA, Nov 1997.

	Abstract
	Keywords
	Introduction
	Principles of message reconstruction
	Procedure for message reconstruction
	Separating TCP streams
	Sanitizing a TCP stream
	3.3 Reconstructing application layer message stream
	“Best of three” error minimization

	Example message reconstruction
	Experiments and results
	Conclusions
	Acknowledgements
	References

