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Abstract

The goal of this research is to develop performance pro-
files of parallel and distributed applications in order to
predict their execution time under different network con-
ditions. This paper measures the resource requirements of
the NAS benchmark programs and characterizes their per-
formance in a shared heterogeneous environment. The pro-
grams in the benchmark suite were executed on a controlled
testbed and their usage of CPU, bandwidth, and memory
were measured. The performance of the benchmark pro-
grams was also measured under controlled sharing of CPU
and bandwidth. The results are used to characterize the
behavior of the NAS benchmark programs with resource
sharing. The paper demonstrates that the core system ac-
tivity of a program can be accurately measured by passive
probing, and that this measured system activity is the key
to the prediction of program performance when resources
must be shared. Our methods rely on system level mea-
surements alone, and therefore, application knowledge or
access to the source code, is not required. Hence, the tech-
niques apply across programming languages and models.
This paper is an important step towards building an au-
tomated framework to infer execution characteristics and
estimate performance on shared networks. Such a frame-
work has an important role in resource selection in shared
clusters and grid computing environments.

1 Introduction

Shared networks, varying from workstation clusters to dis-
tributed computation grids, are an increasingly important
platform for parallel and distributed computing. Perfor-
mance of an application strongly depends on the dynam-
ically changing availability of resources in such distributed
computation environments. Understanding and quantify-
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ing the relationship between the performance of a partic-
ular application and available resources, i.e., how will the
application perform under given network conditions, is im-
portant for resource selection and for achieving good and
predictable performance. The broad goal of this research
is automatic development of performance profiles of appli-
cations to estimate their execution behavior under different
network conditions.

This research is motivated by the problem of resource
selection in shared heterogeneous environments. The basic
resource selection problem in a shared computation net-
work can be stated as follows: “What is the best set of
nodes and links on the network for the execution of a given
application under current network conditions?”. A solu-
tion to this problem requires measurement and reporting
of network status, computing the application performance
profile for shared execution, and mapping the application
to the network based on the performance profile and the
network status. In recent years, significant progress has
been made in several of these areas. Systems to mea-
sure and predict the availability of resources on a network
have been developed, some examples being NWS[18] and
Remos[10]. Research has addressed algorithms and sys-
tems to select nodes and schedule application classes onto
networks [2, 4, 13] but these efforts assume that the appli-
cations fit a known simple profile. In practice, applications
show diverse structures that can be difficult to quantify. The
goal of our research is to automatically develop application
profiles to estimate performance in different resource avail-
ability scenarios. We believe that this is a criticalmissing
piecein successfully tackling the larger problem of auto-
matic resource selection.

This paper is based on experiments with the NAS Par-
allel Benchmark suite [1]. The basic result of this pa-
per is to characterize the performance of the NAS Paral-
lel benchmarks on shared networks. The paper also estab-
lishes system level measurements on a controlled network-
ing testbed as a basis for estimating program performance



on a shared network with limited resource availability. Our
approach is to measure the core execution parameters of a
program, such as the amount and pattern of data exchanged
and CPU utilization of application processes, which are in-
dependent of the execution environment. These measure-
ments are the basis of the estimation of the expected per-
formance of the program in heterogeneous or shared envi-
ronments. We present measurements of the performance
of the NAS benchmark programs under limited availability
of resources to establish the connection between the core
execution parameters and the performance with shared or
limited resources. All measurements are made by system
level probing, hence no program instrumentation is neces-
sary and there is no dependence on the programming model
with which an application was developed. The results es-
tablish the different patterns of resource requirements and
their relationship to the performance for NAS benchmarks
in a shared environment. The paper develops a basis for
performance modeling for shared heterogeneous networks.

2 Resource utilization by NAS
benchmarks

This section presents measurements and analysis of CPU,
bandwidth, and memory usage by the programs in the NAS
parallel benchmark suite.

2.1 Experimental setup

All our experimental results are based on the MPI im-
plementations of the NAS benchmarks. The codes used
are EP (Embarrassingly Parallel), BT (Block Tridiago-
nal solver), CG (Conjugate Gradient), IS (Integer Sort),
LU (LU solver), MG (Multigrid), and SP (Pentadiagonal
solver). All programs are in Fortran 77, except IS, which is
a C program. Experiments were performed on a testbed of
500 MHz, dual CPU, Pentium 2 nodes running FreeBSD
and MPICH implementation of MPI. These nodes were
connected by 100Mbps ethernet links and a full crossbar
switch. All benchmarks were compiled with class A size
for 4 nodes and executed on 4 nodes.g77 andgcc (For-
tran 77 and C compilers from GNU) were used for compi-
lation.

For the experiments described in this section, the pro-
grams were executed on a dedicated testbed, i.e., with no
other activity on the testbed. The CPU and memory uti-
lization were measured with probes based on the Unixtop
utility. The bandwidth usage was measured by employ-
ing tcpdumpto record the timestamped headers of all TCP
packets from the nodes and by using SNMP (Simple Net-
work Management Protocol) queries. Results presented in
this paper are based ontcpdumpalthough both approaches

yield virtually identical numbers as expected. The number
of network packets was measured withiptraf utility.

In the next section we present results with competing
CPU loads and limited bandwidth on network links. Ex-
ternal loads on processors were simulated with dummy
compute bound processes. Thedummynettoolkit was
employed to control the effective bandwidth on network
links, e.g., to reduce the bandwidth on a 100Mbps link to
10Mbps. Dummynet works by intercepting selected net-
work packets and passing them throughqueuesto simulate
the effects of bandwidth limitations, propagation delays,
packet loss, etc. The above discussion applies to experi-
ments with FreeBSD which we selected for presenting re-
sults in this paper. The entire suite of experiments was also
performed with Linux. The main difference in the method-
ology with Linux was the use ofNISTNetwhich provides
the same functionality as dummynet for our purposes. A
summary of the results on resource usage by NAS bench-
marks is presented in Figure 1.

2.2 Processor utilization

We observe from Figure 1 that most of the benchmark pro-
grams show a CPU utilization just under 100% with a rela-
tively small difference between the utilization on different
nodes. This indicates that most of these applications are
compute intensive, load balanced, and do not spend a lot of
time blocked for communication or I/O. The main excep-
tion is MG (Multigrid benchmark) with an average CPU
utilization around 60%. CG, and IS show average CPU
utilization of 78% and 85%, respectively, which is some-
what lower than the other benchmarks. The difference in
the CPU utilization for different nodes is very small for
most of the benchmarks. The relative exceptions are CG
and IS, which show differences around 20% and 10%, re-
spectively, between the nodes with the highest and lowest
CPU utilization. Low processor utilization implies that the
performance is expected to be more robust with CPU shar-
ing since competing applications may utilize some of the
unused CPU cycles. Also, if there is a significant differ-
ence between the CPU utilization of different nodes, nodes
with lower CPU utilization are likely to be better candidates
for CPU sharing. We will address these issues in the next
section.

2.3 Bandwidth usage

Figure 1 shows statistics on the number of bytes and num-
ber of packets exchanged between pairs of executing nodes
as well as the total communication traffic generated by the
programs. Links between pairs of nodes that exchange a
nontrivial amount of data were designatedbusy links. For
some applications all links are busy, while for others only
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Figure 1: CPU utilization and network traffic generated by NAS benchmarks during execution on a cluster

certain links are busy. This exposes the dominant commu-
nication patterns in the programs. BT, IS and SP exhibit
an all-all communication pattern, CG a one dimensional
nearest neighbor chain pattern, LU and MG a ring pattern,
while EP shows negligible communication. Figure 1 also
shows a wide variation in the bandwidth consumed by the
programs. Interestingly, within every benchmark, the band-
width consumed is roughly equal on all busy links, and in
either direction of a busy link, and therefore only one value
for link bandwidth is shown. Based on these observations,
the fundamental communication patterns of this benchmark
suite are highlighted in Figure 2.

Another interesting observation is that the average
packet size varies from 734 bytes for LU to 1030 bytes
for IS. This seems to indicate that LU sends smaller mes-
sages and IS sends larger messages, which is a known
fact [15]. However, we should be careful in drawing con-
clusions about message sizes from packet sizes, since larger
messages are broken up into small packets by the TCP and
IP communication layers, and small packets are also gen-
erated to acknowledge the receipt of data in TCP transport.
Indeed the average message size in IS is reported to be al-
most 1000 times larger than that in LU, but the average
packet size in IS is only around 40% larger than that in
LU. In related work, we have developed techniques to re-
construct application level message sequence from network
measurements.

2.4 Memory usage

Memory usage per node for the NAS benchmark programs
is tabulated in the last column in Figure 1. The amount of
memory utilized varies from around 2 Mbytes for EP and
CG benchmarks to around 117 MBytes for MG benchmark.

3 Performance of NAS benchmarks
on shared networks

We shall present and analyze the measured performance
of NAS benchmarks under the following simple network
sharing scenarios:

1. Two CPU intensive synthetic jobs were run on one of
the nodes concurrently with the benchmarks. The ex-
periment was repeated with loads on different nodes.
Since each node has a dual CPU, this implies that the
benchmark program nominally gets 2/3rds (or 67%)
percent of one CPU, as compared to 100% of one
CPU on the dedicated testbed. (Since there is only
one thread per node, at most 1 CPU can be used even
without any other load)

2. Two CPU intensive synthetic loads were run on each
of the four nodes concurrently with the benchmarks.
This implies that nominally 2/3rd of 1 CPU was avail-
able to the benchmark programs on each node.
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Figure 2: Dominant communication patterns of NAS Parallel Benchmark suite derived from traffic measurements. The width
of the line is indicative of the communication bandwidth. The dotted line for EP indicates that the dominant communication
pattern is associated with negligible bandwidth.

3. Available capacity on one of the busy links was artifi-
cially reduced to 10Mbps from 100Mbps.

4. Available capacity on each of the busy links was arti-
ficially reduced to 10Mbps from 100Mbps.

5. One of the communication links was saturated with a
synthetic data stream generated by thenetperfutility,
concurrent with the benchmark execution.

6. Different amounts of memory were made available to
the programs.

The results from these experiments are tabulated in Fig-
ure 3. We omit detailed results from the last two items, that
is, execution with a synthetic data stream and with limited
amount of memory, but include a brief discussion of the
main observations from those experiments.

3.1 Performance with computation loads

Figure 3 includes a summary of the execution times ob-
tained with competing loads. Recall that we nominally
expect the execution time to increase by 50% since the
CPU availability has nominally reduced from 1 full CPU
to 2/3 CPU. Figure 4 graphically compares the percentage
increase in execution time for the cases when competing

loads are placed on the node with the least busy CPU, the
node with the most busy CPU, (i.e., nodes with the highest
and lowest CPU utilization during dedicated execution on
the testbed) and on all nodes. Presence of competing loads
slows down the computation on those nodes and there is
also the subtle but important effect of slowing down of the
entire computation due to synchronization. Hence the ex-
ecution speed is determined by a complex interaction be-
tween multiple factors. In this paper we observe the perfor-
mance patterns and point out the main contributing factors.

We observe from Figure 4 that MG, CG, and IS, the
benchmarks that stood out earlier for relatively low CPU
utilization, also stand out as the ones with the smallest in-
crease in computation time (around 20%) in the presence of
one competing load on the least busy node. The reason is
that the competing loads partly utilize the unused CPU cy-
cles and therefore have a relatively small impact on the ex-
ecution time. For CG, the execution is significantly slower
with competing loads on the most busy CPU as compared
to competing loads being on the least busy CPU. The table
at the bottom of Figure 4 points out the reason. CG is the
only benchmark with a relatively large difference between
the CPU utilization on the most busy and the least busy
node.

We now focus on the difference in execution time when

4



 
 

Execution with load on one CPU  

 
Percentage increase in 

execution time with 
bandwidth limited to  

10 Mbps 

 
 Most busy node is loaded 

 
Least busy node is loaded 

 
 
 
 
 

Benchmark 
 

 
 

Reference 
execution 
time with 

no 
competing 

load or 
traffic 

(seconds) Percentage 
CPU 

Utilization 

Percentage 
increase in 
exec. time  

Percentage 
CPU 

Utilization 

Percentage 
increase in 
exec. time 

 
 
Percentage   
increase in 
execution 
time when 

all nodes are 
loaded  

 

On one 
busy link 

 

On all  
links 

 

EP 

BT 

CG 

IS 

LU 

MG 

SP 

 

102 

896 

25 

39 

554 

71 

608 

 

98.8 

98.6 

87.1 

90.3 

95.6 

59.8 

98.9 

 

48.0 

50.4 

48.0 

28.2 

63.0 

18.3 

49.6 

 

94.7 

94.9 

66.4 

80.0 

94.0 

58.6 

92.1 

 

45.1 

46.2 

20.0 

20.5 

56.5 

28.1 

48.8 

 

50.9 

88.7 

116.0 

100.0 

107.0 

50.7 

125.0 

 

0 

11.0 

116.6 

77.0 

8.2 

40.5 

35.0 

 

0 

50.5 

254.1 

448.7 

21.8 

83.7 

136.6 

 

Figure 3: Performance of NAS benchmarks under different network sharing scenarios

having competing CPU loads on a single node versus hav-
ing competing CPU loads on all nodes. Figure 4 shows
that for the EP benchmark program, the increase in the ex-
ecution time is approximately around 50% and does not
depend strongly on which nodes have competing loads and
whether only some or all nodes have competing loads. This
is expected since EP does not have any significant com-
munication or synchronization and the program completion
time is simply determined by the slowest executing node.

Execution times of CG, IS and SP increase the most with
competing loads on all 4 nodes in comparison with execu-
tion with competing loads on just one node. The slowdown
of an application beyond that of individual CPUs is due
to the combination of communication, synchronization and
lack of gang scheduling. That is, when one CPU is unavail-
able due to sharing, all other CPUs may become idle wait-
ing for messages, and each CPU can separately cause this
behavior at different times. We point out that CG, IS and
SP have the three highest aggregate communication band-
width demands, which partially explains the higher slow-
down, but a detailed analysis of the synchronization pat-
terns is beyond the scope of this paper.

3.2 Performance with low capacity links

Figure 5 shows the impact on the execution time when one
of the busy communication links is assigned a 10Mbps ca-
pacity rather than the 100Mbps available on the network.
The figure also plots the bandwidth utilization on the cor-

responding links during normal execution. Similarly, Fig-
ure 6 shows the increase in the execution time with all links
reduced in capacity to 10Mbps and the total network band-
width used by the application for comparison.

We observe a striking correlation between the bandwidth
utilized on a link and the performance if that link is slowed
down, as well as the total bandwidth utilization and the per-
formance if all communication is slowed down. The impact
of a slowdown in communication can be amplified by syn-
chronization constraints in a parallel program. However,
our results indicate that the bandwidth usage is the domi-
nant factor and the effect of other factors is largely uniform
across programs in the benchmark. The implication is that
the bandwidth utilization is a key indicator of application
performance with slow or congested links.

3.3 Performance with congested links and
limited memory

We have omitted detailed results on performance with one
or more links congested with competing traffic and for ex-
ecution with limited memory. The reason is brevity and
the fact that they did not introduce any new insight. Over-
all, the results for performance with congested links sup-
port the results with limited capacity links. Our measure-
ments of execution time with limited memory were also
predictable, at least on the surface. As the total available
memory was reduced, there was no impact on the execu-
tion time until the available memory approached the mem-
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Figure 4: Comparison of execution time with competing compute loads on the node with the most busy CPU, the node with
the least busy CPU, and all 4 nodes

ory that the programs needed as shown in Figure 1. When
the available memory was reduced further, the execution
times increased very rapidly to the point that several of the
benchmarks could not be executed in a reasonable amount
of time. The conclusion is simply that these programs need
the amount of memory that is there requirement in order to
execute in a reasonable fashion.

4 Related Work

This research is in the context of shared metacomputing en-
vironments pioneered by Globus [7] and Legion [8]. These
systems provide support for a wide range of functions, such
as resource location and reservation, authentication, and re-
mote process creation mechanisms. Our research is in the
broad area of resource selection and management in shared
clusters and metacomputing environments.

A number of resource management systems support the
selection of computation resources, some examples being
Condor [9] and LSF(Load Sharing Facility). However, the
selection of communication resources can be just as impor-

tant and that introduces several new challenges. A number
of systems have been developed to measure and forecast
network and CPU availability [5, 10, 12, 18]. The main
goal of our research is to be able to predict application be-
havior once a forecast of the CPU and network availability
is known. Hence, this research complements network mea-
surement and prediction research. An alternate approach
is integrated network measurement and adaptation systems
such as [4, 16] that are designed for a particular class of
applications.

Several projects have addressed application scheduling
on shared networks [2, 13, 17]. These projects address spe-
cific classes of applications and assume a simple, well de-
fined structure and resource requirements for their applica-
tion class. The focus of this research is to quantitatively
measure the resource requirements of applications so that
more precise algorithms can be used to match the applica-
tion needs and available resources.

The pattern of usage of MPI in NAS benchmarks has
been reported in [15] based on instrumenting the MPI li-
brary. A key feature of our approach is that all mea-
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surements are made at the system level and hence no
instrumentation is necessary. This research also relates
to task scheduling with CPU and communication con-
straints [3, 14] and performance prediction [6, 11].

5 Concluding remarks

We have measured the performance and system activity
generated by the MPI implementations of NAS bench-
marks in controlled environments and highlighted the key
features that determine their performance on shared het-
erogeneous networks. In this process we have demon-
strated that simple passive measurements during execution
of an application on a testbed provide valuable informa-
tion about the application structure and its performance in
shared computing environments. In particular, we show
that:

� CPU utilization and network bandwidth measure-
ments allow us to characterize an application in terms
of its communication and load distribution structure
and suggest strategies for placement of application
nodes on a busy network.

� CPU utilization measurements of an application on a
testbed are a key indicator of application performance
when some or all of the available nodes have compet-
ing jobs.

� Bandwidth utilized by an application on a testbed is
a key indicator of application performance on a busy
network. A higher bandwidth utilization is closely
correlated to reduced performance when limited band-
width is available.

We believe that this paper contributes to understanding
how system level measurements can be used to character-
ize applications and estimate their execution time on shared
networks. This approach is fairly general since it does not
require access to the source code or knowledge of the code.
The paper makes a fundamental contribution towards de-
riving models for predicting application performance in the
presence of sharing of computation and network resources.
However, more research is necessary before quantitative
performance models for shared networks can be built au-
tomatically. Perhaps the most important problem that has
to be solved is deriving the synchronization structure of a
program and its implication on performance in this context.

This paper focuses on the methodology for building per-
formance profiles for applications as a component of a re-
source selection on shared networks. A complete resource
selection framework would also include a network mea-
surement and prediction system and algorithms to map per-
formance profiles to network resources based on current

network conditions. Ongoing research is addressing the in-
tegration of these components.
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