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Abstract

Performance of virtually all parallel and distributed ap-
plications deteriorates when a CPU or a communication
link has to be shared, but the extent of the slowdown is
application dependent. In our experiments with the NAS
benchmarks, the slowdown due to congestion on a single
link varied from negligible to 120 percent. Estimation
of performance of an application under given network
conditions is of central importance for resource selection
and resource management in shared computing environ-
ments. This paper develops a framework to model the
performance of applications with CPU and link sharing.
The methodology is based on monitoring the application
behavior and resource usage on a controlled testbed. The
procedure does not require access to the source code or
the libraries. We demonstrate that the performance of
applications in simple scenarios of network and CPU
sharing can be predicted fairly accurately. For the NAS
benchmark suite, we observed that the average error in
predicting the execution time in different resource shar-
ing scenarios was in the range of 2-6% and the maximum
error was below 12%.

1 Introduction

Shared networks, varying from workstation clusters to
computational grids, are an increasingly important plat-
form for high performance computing. Performance
of an application strongly depends on the dynamically
changing availability of resources in such distributed
computing environments. Understanding and quantify-
ing the relationship between the performance of a partic-
ular application and available resources, i.e., how will the
application perform under given network conditions, is
important for resource selection and for achieving good
and predictable performance. The goal of this research is
automatic development of performance profiles that can

Appears in LACSI Symposium 2002

estimate application execution behavior under different
network conditions.

This research is motivated by the problem of resource
selection in shared heterogeneous environments which
can be stated as follows: “What is the best set of nodes
and links on the network for the execution of a given ap-
plication under current network conditions?” A solution
to this problem requires the following steps:

1. Application characterization: Development of an
application performance profile that captures the re-
source needs of an application and models its per-
formance under different network conditions.

2. Network characterization: Tools and techniques to
measure and predict network conditions such as
network topology, available bandwidth on network
links, and load on compute nodes.

3. Mapping and scheduling:Algorithms to select the
best resources for an application based on existing
network conditions and application’s performance
profile.

Figure 1 illustrates the general framework for re-
source selection. In recent years, significant progress has
been made in several of these components. Systems that
characterize a network by measuring and predicting the
availability of resources on a network exist, some exam-
ples being NWS[23] and Remos[11]. Various algorithms
and systems to map and schedule applications onto a net-
work have been proposed, such as [2, 4, 16]. However,
these efforts assume that the applications fit a known
simple profile. In practice, applications show diverse
structures that can be difficult to quantify. Our research
is focused on application characterization and builds on
earlier work on dynamic measurement of resource us-
age by applications [17]. The goal is to automatically
develop application profiles to estimate performance in
different resource availability scenarios. We believe that
this is a critical missing piece in successfully tackling the
larger problem of automatic resource selection.
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Figure 1: Framework for resource selection in a network computing environment

This paper introduces a framework to model and pre-
dict the performance of parallel applications in simple
network sharing scenarios, such as shared nodes and
links. Our approach is to measure the core execution pa-
rameters of a program, such as the message exchange
sequences and CPU utilization pattern, and use them as
a basis for performance modeling with resource shar-
ing. All measurements are made by system level probes,
hence no program instrumentation is necessary and there
is no dependence on the programming model with which
an application was developed. We present measurements
of the performance of the NAS benchmark programs that
demonstrate that our methodology can predict the execu-
tion time with link and node sharing fairly accurately.
In terms of the overall framework for resource selec-

tion, this research contributes and validates an applica-
tion characterization module, albeit with limitations.

2 Modeling performance with re-
source sharing

We present the basic results that we have developed for
prediction of performance with shared CPUs and net-
work links. The basis for the performance prediction
model for an application is a set of measurements made
while executing the application on a dedicated testbed.
The model is provided with the existing availability of
network resources as input and it predicts application
performance under those conditions. The prediction
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model for a given application is based on the measured
computation and communication characteristics of the
application.

• Computation: Application processes switch be-
tween CPU usage (busy) and non-usage (idle)
phases during normal execution. (We use the terms
“idle” and “sleep” interchangeably in this paper).
The average time duration for a CPU busy phase la-
beled busytimephase and the average time duration
for a CPU idle phase labeled idletimephase are as-
sumed to be known.

• Communication: The sequence and size of mes-
sages exchanged between every pair of nodes exe-
cuting the application are assumed to be known. For
a given pair of nodes, the number of messages ex-
changed between them is labeled nummessages and
the average size of the messages is labeled avgmsg-
size.

The procedure for computing these application char-
acteristics is outlined later in this paper.

2.1 Execution with one shared node

We investigate the impact on total execution time when
one of the nodes running an application is shared by an-
other competing CPU intensive process. The basic prob-
lem can be stated as follows: If a parallel application
executes in time T on a dedicated testbed, what is the
expected execution time if one of the nodes has a com-
peting load? We shall assume that the CPU idle phases
of the application are “short” in normal execution. We
will quantify “short” later in this discussion.

The basic question we have to address is what hap-
pens to application execution when there is a single com-
peting CPU process on one of the nodes. Suppose the ap-
plication repeatedly executes for busytimephase seconds
and then sleeps for idletimephase seconds during normal
execution. The execution time with a competing load de-
pends on how the scheduler arbitrates the CPU between
the application process and the competing load process.
The details of CPU scheduling are complex and vary
significantly, even between different Unix systems, say
FreeBSD and Linux. However, the goal of the scheduler
in such a situation is to be fair and provide equal CPU
time to the two processes. If neither of the processes en-
ters a sleep phase, the scheduler simply gives alternate
equal time slices to the two processes. In practice, when
our application process is scheduled and reaches a sleep
phase (typically waiting to receive a message), it will be
evicted and not be able to completely use its time slice.
The scheduler uses a sophisticated priority update mech-
anism to allocate the application process a larger share

of the CPU if it wakes up in the near future. Under the
assumption that sleeps are “short”, the application will
always wake up in time to reclaim the share of the CPU
time it could not use because of its sleeps. The result
is that our application and the competing CPU process,
both receive a fair share of the CPU even in the presence
of sleeps.

Now what happens to the total execution time of an
application due to sharing? The results for different CPU
busy-idle patterns is illustrated in Figure 2. We discuss
two cases separately:

• busytimephase <= idletimephase : In this case
there is no increase in the execution time. The rea-
son is that every busytimephase has a larger com-
pensating idletimephase. Hence the competing pro-
cess gets equal or more than its share of the CPU
when our application is “sleeping”. In other words,
since our application process is sleeping for more
time than it is busy, it always preempts the com-
peting process whenever it is ready to execute, and
incurs no delays due to CPU sharing.

• busytimephase > idletimephase : In this situ-
ation, the competing process cannot get its entire
fair share of the CPU when the application pro-
cess is idle. Hence the application will observe an
increased execution time due to processor sharing.
Consider a segment consisting of an idletimephase
followed by a busytimephase. The CPU must be
shared for busytimephase - idletimephase seconds
and the corresponding execution time will be dou-
bled. Hence the increase in execution time will be
busytimephase - idletimephase. Therefore, the frac-
tion by which the overall execution time will in-
crease is:

busytimephase− idletimephase

busytimephase + idletimephase

The above cases are also illustrated in Figure 2.
We now revisit the assumption that the idle times must

be short. The reason is that schedulers remember past
usage only over a short window of time. A scheduler
attempts to give equal CPU time to two competing pro-
cesses by allocating a higher fraction of CPU in the near
future to a process that had to relinquish its time slice be-
cause it entered a sleep phase. However, a scheduler does
not carry this “credit” indefinitely. If a process enters a
very long sleep phase, it will not be fully compensated
for the share of the CPU it did not use. The length of this
sliding epoch during which the scheduler attempts to give
a fair share of the CPU to all processes is implementation
specific. For the standard FreeBSD implementation [9],
this period is roughly 5*load-average seconds. We omit
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Figure 2: CPU usage during application execution on a dedicated compute node and with a competing load. (a) The
application uses the CPU continuously. The execution time is doubled with load. (b) The application uses the CPU
for 300 milliseconds and sleeps for 50 milliseconds. The execution time increases by the factor (300-50/350) with
a competing load. (c) The applications uses the CPU for 50 milliseconds and then sleeps for 300 milliseconds. The
application execution time is unaffected by a competing load.

the analysis for the cases when the sleeps are large, but
it is discussed in [21]. In most parallel applications, the
sleep phases are short from this standpoint.

The general result is as follows. Suppose an appli-
cation executes as a sequence of busy and idle CPU
phases with average durations of busytimephase and idle-
timephase over all the epochs during execution. An
epoch length is implementation dependent with a repre-
sentative value of 5*load-average for FreeBSD. If the
same application is executed with a competing CPU
bound process, then:

If busytimephase <= idletimephase, the execu-
tion time of the application is unchanged.

If busytimephase > idletimephase, the execution
time increases by a factor:

busytimephase− idletimephase

busytimephase + idletimephase

Execution time with two or more competing loads or

for a given load average can be predicted in a similar
fashion, but a discussion is omitted for brevity.

2.2 Execution with one shared communi-
cation link

We analyze the impact on execution time if a network
link has to be shared or the performance of a link changes
for any reason. The performance of a network link is
characterized by the latency and bandwidth observed by
an application communicating over the link. The basic
problem can be stated as follows: If a parallel applica-
tion executes in time T on a dedicated testbed, what is
the expected execution time if the effective latency and
bandwidth on a network link change from L and B to
newL and newB, respectively.

The difference in execution time is the difference in
time taken for sending and receiving messages after the
link properties have changed. If the number of messages
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traversing this communication link is nummsgs and
the average message size is avgmsgsize, then the time
needed for communication increases by:

[(newL + avgmsgsize/newB) −
(L + avgmsgsize/B)] ∗ nummsgs

This equation will be used to predict the increase in
execution time when the effective bandwidth and latency
on a communication link change.

3 Framework for performance pre-
diction

The procedure employed for performance prediction pro-
ceeds as follows. The target application is executed on a
controlled testbed and system level activity generated by
it is measured. These measurements are processed to in-
fer program level activity such as CPU busy-idle cycles
and message exchange sequences. The program level ac-
tivity constitutes the parameters for the general perfor-
mance prediction model developed in Section 2. The
result is a customized model that can predict the per-
formance of a specific application under given network
conditions.

3.1 Application message exchange se-
quence

Our framework requires the knowledge of the size and
number of messages exchanged between any two exe-
cuting nodes. A simple way to determine the message
sequence is to instrument the code, or use a profiling li-
brary. However, one of the goals of this project is to be
able to determine the message exchange pattern without
access to the source code or special libraries. To achieve
this, the traffic between all pairs of nodes is monitored
with TCPDump utility available on Unix systems, and
the TCP packet sequence is analyzed to determine the
application level message sequence. This procedure is
not the topic of this paper but has been validated in [14].
We simply state that, in our experience, the two meth-
ods give functionally identical results. In this paper we
present and use the message sizes obtained from using an
MPI profiling library since they are exact. However, em-
ploying the TCP packet analysis method yields virtually
identical results.

3.2 CPU utilization pattern

Our framework requires the knowledge of an applica-
tion’s sequence of CPU busy and idle phases while ex-
ecuting on a testbed. For this purpose, a CPU probe pro-

gram based on Unix top utility was developed. The CPU
was probed every 20 milliseconds to check whether our
application was actively executing. This provides the se-
quence and length of busy and idle phases with a granu-
larity of 20 milliseconds. For reference, a typical value
of CPU time slice given by the scheduler to a process is
100 milliseconds. Our CPU probe can also obtain the
CPU utilization as measured by the Unix kernel over a
specified interval of time. This gives us two methods
to measure the CPU utilization of an application. As a
practical matter, we used results from direct probing, but
if there was a significant difference between the results
from the two methods, the specific experiment was re-
peated.

CPU probing provides us the lengths of the CPU busy
and idle phases as well as the overall CPU utilization.
The next goal is to determine the fraction of time spent by
the CPU on computation and communication. As noted
earlier, we can determine the sequence of messages ex-
changed by a pair of nodes. Next, we experimentally de-
termine the observed user level latency, say L, and band-
width, say B, on our testbed. The time to send or re-
ceive a message of size msgsize can then be computed
as L + msgsize/B. Hence the total time to send all mes-
sages, and the fraction of time spent in communication,
can be determined.

3.3 Prediction of execution time with CPU
and link sharing

The final goal is to predict the execution time under given
network conditions. We developed the theoretical ba-
sis for such prediction in section 2. The parameters of
this performance prediction model are CPU busy and
idle sequence, CPU percentage utilization for computa-
tion and communication, and the sizes and sequence of
messages exchanged between pairs of nodes. We have
explained how each of these is obtained, hence our pre-
diction model is complete.

For prediction of execution time in a new environ-
ment, the load average on the nodes and the effective
latency and bandwidth on the links must be known. For
the cases where only one node has competing loads, or
a single link is shared, the expected execution time can
be directly computed from the model in section 2. When
one node has a competing load and one of the links con-
necting it is shared, then the model is applied as follows.
First, the expected execution time is computed assuming
only that a link is shared, that is, the node sharing is ig-
nored. Along with the increase in execution time for this
scenario, the increase in the average CPU busy time, and
the increase in CPU utilization, are also computed. The
increase in computation time due to competing loads is
then computed using the predicted CPU behavior with a
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shared link as obtained above as the starting point. The
result is the predicted value of execution time with a busy
link and a busy node.

We only consider the cases when one node has com-
peting loads, and additionally when one connecting link
to this node is shared. We will discuss the issues in gen-
eralization of this method later in this paper.

4 Experiments and results

For the validation of our prediction framework, we con-
ducted a set of experiments with NAS Parallel bench-
marks [1]. The codes used are EP (Embarrassingly
Parallel), BT (Block Tridiagonal solver), CG (Conjugate
Gradient), IS (Integer Sort), LU (LU solver), MG (Multi-
grid), and SP (Pentadiagonal solver). Experiments were
performed on a testbed of 500 MHz, Pentium 2 nodes
running FreeBSD. The nodes are connected by a 100
Mbps switched network. Experiments were performed
with the MPI implementation of benchmarks and the en-
vironment runs the MPICH implementation of MPI. All
benchmarks were compiled with class A size for 4 nodes
and executed on 4 nodes. g77 and gcc (Fortran 77 and
C compilers from GNU) were used for compilation. The
end-to-end latency and bandwidth observed on this net-
work were 400 microseconds and 70Mbps, respectively.
The dummynet toolkit [12] was employed to control the
nominal bandwidth on network links, e.g., to make a
100Mbps link act like only 10Mbps was available.

The programs were first executed with no other activ-
ity on the testbed, and measurements were made to in-
fer the various program properties as discussed in earlier
sections. The summary of results is presented in Figure
3. We observe that the programs show a wide diversity
in all aspects of resource utilization.

Subsequently, the same benchmarks were run on the
same testbed under the following three scenarios:

1. A synthetic CPU intensive process was run on one
of the nodes during benchmark execution.

2. The available bandwidth on one of the links was re-
duced to a nominal 10Mbps with dummynet during
benchmark execution.

3. A synthetic CPU intensive process was run on one
node and the bandwidth on a connecting link was
reduced to 10Mbps during benchmark execution.

For each of these scenarios, the execution time was
predicted using the framework developed in this paper,
and the results were compared with measured execution
time. The results are charted in Figure 4.

The figure shows normalized predicted and measured
execution times based on a value of 100 for execution

with no load for each benchmark. We observe that the
predicted and measured values are fairly close. The pre-
diction error is in the range of 0-7.8% with an average
of 2.3% for execution with one compute load, 0.7-7.4%
with an average of 2.0% for execution with one busy link,
and 0.9-11.8% with an average of 5.7% for execution
with one compute load and one busy link. We consider
the prediction errors low given the nature of the measure-
ments and the methodology. Hence the basic conclusion
is that the framework developed in this paper can predict
the execution time effectively for such scenarios.

5 Limitations and extensions

We have made a number of assumptions, implicit and
explicit, in our treatment and presented results for only
a few scenarios. We now attempt to distinguish between
the fundamental limitations of this work and the assump-
tions that were made for simplicity.

• Loads and traffic on all nodes and links: We
presented results when only one node and/or link
is facing competition for resources. To estimate
execution time accurately when several nodes and
links have different resource availability will re-
quire an analysis of the synchronization structure of
the program This is currently being researched in
this project.

• Execution on a different network from where an
application was prototyped: If the relative execu-
tion speed between the two types of nodes, and the
latency and bandwidth of the new network can be
inferred, a prediction can be performed. This task
may be trivial, e.g., when moving between nodes
of similar architectures, but may require additional
measurements on the new network, e.g., if the new
nodes have a fundamentally different architecture
such as a vector node.

• Wide area networks: All results presented in this
paper are for a local cluster. The basic principles
are designed to apply across wide area networks.
However, our model does not account for sharing
of bandwidth by different communication streams
within the application which can be an important
factor in wide area computing.

• Different data sets and number of nodes than the
prototyping testbed: If the performance pattern is
strongly data dependent, an accurate prediction is
not possible but the results from this work may still
be used as a guideline. This work does not make
a contribution for performance prediction when the
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Figure 3: Measured execution characteristics of NAS benchmarks

number of nodes is scaled, but we conjecture that it
can be matched with other known techniques.

• Application level load balancing: We assume that
each application node performs the same amount of
work independent of network conditions. Hence, if
the application had internal load balancing, e.g., a
master-slave computation where the work assigned
to slaves depends on their execution speed, then our
prediction model cannot be applied directly.

6 Related Work

This research is in the context of shared metacomputing
environments pioneered by Globus [7] and Legion [8].
These systems provide support for a wide range of func-
tions, such as resource location and reservation, authen-
tication, and remote process creation mechanisms. Our
research is in the broad area of resource selection and
management in shared clusters and metacomputing envi-
ronments.

A number of resource management systems sup-
port the selection of computation resources, some ex-
amples being Condor [10] and LSF(Load Sharing Fa-
cility). However, the selection of communication re-
sources can be just as important and that introduces sev-
eral new challenges. A number of systems have been
developed to measure and forecast network and CPU
availability [5, 11, 15, 23]. The main goal of our re-
search is to be able to predict application behavior once
a forecast of the CPU and network availability is known.
Hence, this research complements network measurement

and prediction research. An alternate approach is in-
tegrated network measurement and adaptation systems
such as [4, 20] that are designed for a particular class
of applications.

Several projects have addressed application schedul-
ing on shared networks [2, 16, 22]. They target spe-
cific classes of applications and assume a simple, well
defined structure and resource requirements for their ap-
plication class. The focus of this research is to quantita-
tively measure the resource requirements of applications
so that more precise algorithms can be used to match the
application needs and available resources.

The pattern of usage of MPI in NAS benchmarks has
been reported in [19] based on instrumenting the MPI
library. A key feature of our approach is that all mea-
surements are made at the system level and hence no
instrumentation is necessary. This research also relates
to task scheduling with CPU and communication con-
straints [3, 18] and performance prediction for parallel
systems [6, 13].

7 Concluding remarks

This paper demonstrates that detailed measurements of
the resources that an application needs and uses can be
used to build an accurate model to predict the perfor-
mance of the same application under different network
conditions. Such a prediction framework can be applied
to applications developed with any programming model
since it is based on system level measurements alone
and does not employ source code analysis. In our ex-
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Figure 4: Comparison of predicted and measured execution times in different resource sharing scenarios. The execu-
tion time with no load is normalized to 100 units for each program.

periments, we observed that the framework was remark-
ably accurate in predicting the execution time of the pro-
grams in the NAS parallel benchmark suite with compet-
ing loads and traffic.

The scope of this paper is limited to competition for
resources on a single link and/or a single node. However
the methods employed in this research can form the basis
for more general prediction frameworks. We believe that
prototyping and modeling application execution charac-
teristics is an important component of resource selection
and resource management for shared computing environ-
ments and this paper makes a clear contribution in that
direction.
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