
Communication Pattern Based Node Selection for Shared Networks

Srikanth Goteti
ComStock, Division of Interactive Data Corp

600 Mamaroneck Avenue
Harrison, NY, 10528

srikanth.goteti@cmstk.com

Jaspal Subhlok
University of Houston

Department of Computer Science
Houston, TX 77204

jaspal@uh.edu

Abstract

Selection of the most suitable nodes on a network to ex-
ecute a parallel application requires matching the network
status to the application requirements. We propose and val-
idate a novel two step approach that exploits the knowledge
of the communication structure of the application to address
this problem. In the first step, a small set of candidate node
groups are selected as potential sites of application execu-
tion, by analyzing the network status information and the
communication patterns used by the application. The sec-
ond step is based on the concept of a communication skele-
ton, which is a short running program that generates the
dominant communication operations of the application it
represents. The communication skeleton is executed on all
candidate groups of nodes. The node group selected for ap-
plication execution is the one that achieves the best perfor-
mance on the communication skeleton. This approach leads
to customized node selection and is particularly well suited
to situations where available network information is of poor
quality or expected communication performance cannot be
modeled accurately. We motivate this approach, describe
a prototype implementation, and present performance re-
sults for NAS Parallel Benchmarks executing on a shared
network testbed.

1. Introduction

Selection of computation nodes to execute a parallel ap-
plication is a central problem for computing on shared clus-
ters and computation grids [7, 8]. Node selection based on
CPU considerations has been addressed by several systems,
some well know examples being Condor [9] and LSF [20].
The problem of node selection is significantly more com-
plex when the communication needs of applications must
also be taken into account. The main reasons for the ad-
ditional complexity are that the communication properties
cannot be associated with individual nodes, network sta-

tus changes dynamically, and the availability of network re-
sources is difficult to measure and predict accurately. The
state of the art in resource selection with communication
considerations can be paraphrased as follows. The status
of the network is measured and predicted with tools such as
Network Weather Service [19] and Remos [10, 11], and this
information is analyzed to identify a good group of avail-
able computation nodes and network paths for application
execution. Some research projects have focused on getting
the best general group of execution nodes [3, 14, 18] while
others have developed procedures customized for a particu-
lar application or application class [4, 5, 6, 12].

This approach to node selection has the fundamental
drawback that the decisions made are, at best, only as good
as the accuracy with which the network status was mea-
sured and future network performance predicted. The per-
formance that a network delivers to an application can vary
significantly from the performance predicted by network
measurement tools for a variety of reasons, some of which
are as follows:

• Network status and prediction information may be out-
dated. Measurement of network properties, such as
available bandwidth, can be intrusive and expensive,
and the cost rises rapidly with the size of the network.
Hence, it may be practical only to perform measure-
ments relatively infrequently while the network state
changes continuously.

• Network tools typically measure the unused network
capacity or the network bandwidth achieved by a spe-
cific measurement probe. However, the relationship
between available network capacity and the perfor-
mance achieved by communication operations in an
application is complex, and depends on other fac-
tors also, such as the network transport protocols in
use. For example, the bandwidth that a TCP stream
achieves on a busy network route partly depends on
the number of other TCP streams using the links in the
route.

1

• The performance of collective communication opera-
tions, common in parallel applications, is very diffi-
cult to estimate on a shared cluster or a grid environ-
ment. We are not aware of any tools that have proven
their effectiveness in this respect. In particular, inter-
ference between multiple application communication
streams sharing the same network path, is very diffi-
cult to model.

The point is that the expected performance of an appli-
cation’s communication operations inferred from network
measurement tools can be significantly different from the
actual performance for several different reasons. This lim-
its the effectiveness of any node selection procedure entirely
based on network measurements.

This research pursues a new approach to node selection
motivated by the above discussion. The centerpiece of our
methodology is the concept of a performance skeleton of
an application, which is defined as a synthetically gener-
ated short running program that has the same fundamen-
tal execution characteristics as the application it represents,
but with no semantic relevance. The execution time of the
performance skeleton program on a given set of nodes re-
flects the execution time of the application under the same
conditions, but possibly scaled down by multiple orders of
magnitude. In this approach, the performance of the perfor-
mance skeleton on a group of nodes determines the likeli-
hood of those nodes being chosen for execution of the cor-
responding application since the performance of the skele-
ton is closely related to the performance of the application.
This methodology eliminates the impact of inherent inac-
curacy in network measurement and modeling. A perfor-
mance skeleton is constructed ahead of time and executed
prior to application execution to drive node selection.

This paper addresses only a part of the challenge of em-
ploying a performance skeleton based approach to node se-
lection. The results presented are restricted to sharing of
communication resources only. We assume that all available
computation nodes have the same available computation ca-
pacity but communication properties of the network links
connecting the nodes are varying. Hence, node selection is
based on bandwidth considerations only. In this scenario, a
performance skeleton needs to be faithful to the original ap-
plication in terms of communication behavior only. Hence,
in order to be more accurate, we will refer to them as com-
munication skeletons in this paper.

A communication skeleton is a short running program,
and that is the key to keeping the run-time overhead of
this approach acceptable. However, the number of possible
groups of nodes that are candidates for application execu-
tion grows combinatorially with the total number of avail-
able nodes. Hence, it is not practical to execute even a short
running communication skeleton on every candidate group
of nodes. Therefore, we employ a separate procedure to se-

lect a set of candidate node groups from all available nodes.
This algorithm is based on the information about the net-
work status obtained from network measurement tools and
the information about the communication pattern of an ap-
plication, which is computed in a preprocessing phase. The
final group of execution nodes is selected based on the ex-
ecution time of the performance skeleton program on the
candidate node groups.

This paper is organized as follows. The node selection
framework is described in section 2. Section 3 describes
our prototype implementation and results from experiments
to validate the node selection procedure. Section 4 explains
the capabilities and limitations of our approach and imple-
mentation, and discusses ongoing and future work. Section
5 contains conclusions.

2 Node selection framework

We first outline the main steps and components of the
node selection framework.

The first two steps are performed ahead of time, once for
each application.

1. Identify the main communication patterns of the can-
didate application.

2. Construct the communication skeleton of the applica-
tion.

The following subsequent steps are performed at the
time the application has to be scheduled for execution.

3. Obtain current network status information.

4. Identify a small set of candidate node groups for exe-
cution by employing a node selection algorithm based
on the network status and application’s communication
pattern.

5. Execute the communication skeleton program on each
candidate group of nodes. Select the node group with
the lowest execution time to schedule the application.

We now discuss each of the above steps in more detail.

2.1 Identification of communication pattern

The node selection framework relies heavily on the
knowledge of the communication patterns in the applica-
tion that has to be executed. These are captured by execut-
ing the application in a preprocessing phase on a controlled
testbed and monitoring the message traffic between nodes.
The procedure has been discussed in detail in [13, 15] in a

2

related context. The methodology completely relies on sys-
tem monitoring on the testbed while the application is exe-
cuting and does not require application knowledge or access
to the source code. The communication structure of NAS
benchmark programs inferred from such runtime measure-
ments is illustrated in Figure 2.

2.2 Communication skeleton program

The communication skeleton of an application is a syn-
thetically generated program that replicates the dominant
communication patterns employed by the application. As
stated earlier, the size and pattern of the messages ex-
changed by the nodes executing an application are inferred
by monitoring execution on a controlled testbed. Automatic
construction of skeletons from this information is an impor-
tant long term goal of our research. However, for the results
presented in this paper, manually constructed communica-
tion skeletons were employed. A program that performs a
set of representative message exchanges along the commu-
nication routes used by the application qualifies as a com-
munication skeleton of the application.

2.3 Network status information

Our network status measurement module employs Net-
work Weather Service [19], a freely available distributed
resource monitoring system. NWS gathers system level re-
source information, such as CPU load and available band-
width, for network connected compute nodes. We employ
NWS to measure the available bandwidth between all nodes
that can be used to execute an application. This step yields
a graph with compute nodes as graph nodes and available
bandwidth between them as graph edges. We will refer to
this graph as the network status graph.

2.4 Node selection algorithm

The first step in the process of node selection is a pro-
cedure that analyzes the network status graph to choose a
set of “good” candidate groups of nodes for application ex-
ecution. Another input to the node selection procedure is
the application structure, basically the number of nodes re-
quired to execute the application and pairs of nodes that
communicate in the main data exchange patterns. The ob-
jective of this algorithm is to determine the group of nodes
for which the minimum of the available bandwidth between
communicating nodes is maximized. The reason for choos-
ing this particular criterion is that the time for completion of
a collective communication step in parallel programs is typ-
ically determined by the lowest bandwidth communication
path rather than the average available bandwidth on com-
munication paths.

This communication pattern based algorithm for node
selection is presented in Figure 1. The algorithm is sim-
ilar to the one that was introduced by Subhlok et. al.
in [14], but with one important difference. The algorithm
in Figure 1 attempts to optimize performance over network
paths that are utilized by an application, while the algo-
rithm in [14] treated all network paths connecting executing
nodes equally. For example, in the algorithm in Figure 1, if
the main application communication pattern is an all to all
data exchange between computing nodes, then the network
path between each pair of nodes is optimized. However, if
the main communication pattern takes the form of a one di-
mensional ring, then only the paths composing the ring are
considered for optimization.

We informally explain the node selection algorithm
stated in Figure 1. Suppose the goal of the algorithm is
to select m optimal nodes. The algorithm starts with the
network status graph and repeatedly removes the edge with
the minimum available bandwidth from the graph. At every
step, the algorithm verifies that there are m nodes that are
connected in a way that satisfies the communication pattern
of the application. (e.g., if the communication pattern is a
ring, there must be a path from one node to another such
that a ring can be completed.) A path from one node to
another can include network routers but not other computa-
tion nodes. When removing the minimum available band-
width edge leads to a situation where m such nodes cannot
be found, then the algorithm stops. The last step is reversed
and a set of m nodes is selected.

The algorithm as presented in Figure 1 selects a single
group of optimal nodes, but our framework is based on se-
lection of a set of candidate node groups. In practice, the
algorithm is easily modified for usage in our framework by
backtracking the last few edge deletions and selecting all
feasible node groups at that point.

2.5 Final node selection with communication
skeletons

For final node selection, the communication skeleton
program is executed on each group of candidate nodes se-
lected by the node selection algorithm described above.
The group of nodes on which the communication skele-
ton achieves the best performance is selected for applica-
tion execution. An important consideration in this step is
to not execute the communication skeleton concurrently on
intersecting groups of nodes since execution on one group
of nodes is likely to impact performance on other groups.
Note that the communication skeleton program is short run-
ning, typically a few seconds long, and hence this stage is
not likely to make a significant impact on the turnaround
time of an application.

3

Input: A connected network status graph G. An application pattern graph A with m
compute nodes representing the number nodes needed by the application and the applica-
tion communicating pattern. That is, there is an edge between a pair of graph nodes in A
if the link between the corresponding application nodes is included in the main applica-
tion communication pattern. Assume that the number of computed nodes in G is at least m.

Output: A graph M containing m nodes that represents a mapping of the application to
the compute nodes that maximizes the minimum bandwidth between any pair of commu-
nicating nodes as represented in A.

1. M = null

2. Attempt to find a subgraph newM of G such that there is a path between any two
nodes of newM if there is an edge between the corresponding nodes of A. If no such
graph exists, set newM = null.

3. If (newM == null)
return (M)

Else
M = newM

4. Remove the edge with the minimum available bandwidth from G.
Goto Step 2.

Figure 1. Algorithm to select a set of nodes in a network status graph in order to maximize the
minimum available bandwidth between any pair of communicating nodes based on a given application
communication pattern graph.

3 Experiments and results

A prototype of the node selection framework discussed
in this paper was implemented and validated on a network
testbed. We first describe the experiments performed and
then discuss the results.

3.1 Experimental setup

The testbed for the experiments is a compute cluster
composed of 10 Intel Xeon dual CPU 1.7 GHz machines
connected by 100Mbps Ethernet links and a full crossbar
switch. All experimental results are based on the MPI im-
plementation of the NAS Parallel Benchmarks [2, 16]. The
codes used are BT (Block Tridiagonal solver), CG (Con-
jugate Gradient), IS (Integer Sort), LU (LU Solver), MG
(Multigrad) and EP (Embarrassingly parallel). All pro-
grams are compiled using GNU g77, (Fortran) compiler
except IS, which is compiled with the gcc (C) compiler.
The MPICH implementation of MPI is used. The band-
width between computation nodes was managed with the
Linux advanced networking iproute2 [1] in order to sim-

ulate limited bandwidth availability due to competing net-
work traffic. iproute2 works by intercepting the network
packets and passing them through artificial queues to simu-
late bandwidth limitations.

3.2 Building communication patterns and com-
munication skeletons

In order to make an application “ready” for automatic
node selection, the main communication patterns have to
discovered and a communication skeleton program has to
be created in a preprocessing phase. For the NAS bench-
mark programs included in this study, the basic communi-
cation patterns were derived by execution on a dedicated
testbed with system level monitoring of network traffic. We
will skip the details of these measurements but they are dis-
cussed in [15, 17]. The results are illustrated in Figure 2.

The next objective is to construct the communication
skeletons. The NAS benchmarks are available in several
sizes labeled Class S,W,A,B,and C, in increasing order of
the size of data structures and execution time. Class S
benchmarks run within a few seconds on a small cluster,

4

 2 3 2 3 2 3

BT CG EP

 0 1 0 1 0 1

 2 3 2 3 2 3

IS LU M G

 0 1 0 1 0 1

Figure 2. Dominant communication patterns
during execution of NAS benchmarks. The
thickness of the lines reflects the generated
communication bandwidth.

while Class C benchmarks require a fairly large system to
run at an acceptable speed. We chose class A benchmarks
as the target applications to optimize. We also chose the
corresponding class S benchmarks as the communication
skeletons for the class A benchmarks, since they closely re-
semble each other and are likely to be very good skeleton
programs. Our longer term goal in this research is to auto-
matically construct performance skeletons, So, clearly, we
are “cheating” by simply using a good skeleton program
that happens to be available in this case. The reason is that
we did not want the results to be impacted by the quality of
the skeletons that we constructed since automatically build-
ing good skeletons is an open research problem that is not
the focus of this paper. Hence, the results we obtained could
be labeled as optimistic. However, based on other ongoing
research, it is our firm belief that, in the near future, it will
be possible to automatically generate skeletons of the qual-
ity that we have used for our experiments.

3.3 Automatic node selection

In order to evaluate node selection in the presence of
network traffic, experiments were performed with varying
available bandwidth caused by simulated network traffic.
The available bandwidth on the network links connecting
the computation nodes was controlled in the following man-
ner. At any given time, every network link was assumed to
be shared by a varying number of other traffic streams. If S
streams are already sharing a network link, the bandwidth
available to our application with fair sharing is assumed to
be 1/(S + 1). Every 30 seconds, one traffic stream would
randomly enter or leave the system, with a resultant increase
or decrease in the available bandwidth on the affected link.
The bandwidth, however, was never allowed to go below

10Mbps and cannot exceed the link capacity of 100Mbps.
Based on the above simulation model, the actual bandwidth
was controlled with the iproute2 toolset.

Each NAS benchmark program was executed repeatedly
on 4 nodes selected by our prototype node selection module
based on the framework presented. NWS was employed to
measure the available bandwidth between pairs of compute
nodes on the network and build a network status graph. The
node selection algorithm presented in Figure 1 was used to
select the best three groups of nodes every time a bench-
mark program had to be scheduled and executed. Subse-
quently, the corresponding communication skeleton was ex-
ecuted on each of the three groups of nodes, and the group
on which it performed the best was the selected node group.
The benchmark program was then executed on those nodes
and the execution time was measured and compared to the
execution time on a dedicated testbed. For comparison, the
procedure was also performed with two other node selec-
tion methods. The three node selection procedures that were
evaluated and compared against each other are as follows:

1. Pattern based: The framework presented in this pa-
per.

2. All-all: The nodes were selected using the network
information, on the basis of maximizing the mini-
mum available bandwidth between any pair of selected
nodes. This approach requires a detailed analysis of
the network status graph, but does not use any applica-
tion specific information such as the communication
pattern, and does not employ communication skele-
tons.

3. Random: Nodes were selected at random for refer-
ence.

The performance achieved by the benchmark programs
on nodes selected by each of these methods was measured.
The experiments were repeated a large number of times to
get statistically meaningful results. For each benchmark
program, the average execution time with each node selec-
tion procedure was computed and compared to the execu-
tion time of the same benchmark on a dedicated testbed with
full bandwidth available on all links. The average slowdown
due to link sharing for each benchmark program and each
node selection procedure is presented in Figure 3.

3.4 Results

We observe from Figure 3 that each benchmark program
performs significantly better when pattern based node se-
lection is employed as compared to random node selection.
On average, the percentage slowdown with random node se-
lection is 40%, while that with pattern based node selection

5

0

10

20

30

40

50

60

70

80

CG IS MG LU BTP
e

rc
e

n
ta

g
e

 in
cr

e
a

se
 in

 e
xe

cu
tio

n
 t

im
e

Random

All-all

Pattern based

Figure 3. Percentage increase in the execution time of the NAS benchmarks due to network sharing
for different node selection methods.

is around 20.2%. Hence, under these particular simulated
conditions, the slowdown due to competing network traf-
fic is reduced by half with good, application specific, node
selection.

The node selection procedure labeled “all-all” can be
considered a state of the art approach to node selection, but
one that does not use the new concepts introduced in this
paper. In the all-all method, the basis for node selection is
maximizing the minimum available bandwidth between ev-
ery pair of selected nodes, as described in [14]. The method
entails a detailed analysis of the network status graph, but
no consideration is given to the application communication
structure, and communication skeletons are not used. The
average slowdown with all-all node selection is 27.6% ver-
sus 20.2% for the pattern based framework. Hence, in our
experiments, the pattern based approach to node selection
reduces the slowdown due to link sharing by roughly a quar-
ter as compared to a good approach that does not consider
application communication patterns.

We observe that the general percentage slowdown as
well as the relative performance with different node selec-
tion procedures varies dramatically across the programs in
the NAS benchmark suite. EP benchmark is not included in
the graph as it has no communication, and hence its perfor-
mance is unaffected by the changes in available bandwidth
and does not depend on the node selection procedure em-
ployed. The CG and IS benchmarks show the greatest per-
centage increase in execution time with random node selec-

tion. We observe from Figure 2 that these benchmarks are
the most bandwidth hungry of the suite, which is the rea-
son they are most affected by a reduction in the available
bandwidth.

The pattern based scheme performs better than the ran-
dom and all-all schemes for every application but there are
significant differences. The maximum improvement in per-
formance is observed for the CG benchmark. We speculate
that the reason is that only 3 pairs of nodes communicate
in CG as shown in Figure 2. A smart node selection proce-
dure has a better chance of finding a relatively small num-
ber of “good” network paths as compared to finding good
paths between every pair of selected nodes. This translates
to finding 3 good paths versus 6 good paths for 4 nodes.
Further, as mentioned earlier, CG is among the most com-
munication intensive programs in the suite, and therefore,
its performance is most sensitive to network path selection.

Another observation is that the relative improvement
with pattern based node selection, as compared to all-all
node selection, is lowest for IS and BT benchmarks. This is
not surprising since the main communication pattern in IS
and BT benchmarks is an all to all data exchange. Hence,
the analysis of network status graph is identical for pattern
based and all-all procedures and the difference is only due
the use of communication skeletons in the pattern based
framework.

The broad conclusion from these experiments is that the
pattern based approach to node selection offers considerable

6

improvement in expected performance over random node
selection and all-all node selection procedures, but the ex-
tent of improvement is strongly dependent on the applica-
tion characteristics. We should also caution that these are
limited experiments and the results will also strongly de-
pend on the network and system characteristics.

4 Discussion

This research employs application characteristics to
drive the process of automatically selecting network nodes
to execute an application. Specifically, we suggest a two
step process for node selection. In the first step, a network
status map is matched to the application communication
structure to obtain a set of potential node groups for execu-
tion. Clearly, better node selection decisions can be made if
the procedure is sensitive to application characteristics. In
the second step, an application communication skeleton is
executed on every candidate group of nodes to decide which
group offers the best potential performance. This step is in-
tended to eliminate the various inaccuracies in estimating
the communication performance an application can expect
on a group of network nodes.

The focus of this paper has been entirely on communica-
tion characteristics. We only consider variations in network
availability and base node selection on communication ca-
pacity. In practice, computation and synchronization con-
siderations are equally important. Computation nodes may
have competing loads, and impact of a slowdown in one
node in the system may get magnified because of data and
control dependencies. In related work, we have addressed
the problem of performance estimation with shared nodes
and links [17]. However, effective integration and valida-
tion of these techniques in a node selection system remains
a challenge.

We have only employed communication skeletons, that
are a special case of performance skeletons. Construction
of complete performance skeletons also includes computa-
tion and synchronization considerations. Perhaps the most
critical limitation of our system is that the communication
skeletons have to be constructed manually. It is not dif-
ficult to automatically construct a program that concisely
reproduces the measured communication pattern of an ap-
plication. However, our real goal is automatic construction
of general performance skeletons. A performance skeleton
should mirror the application it represents in all respects.
For example, the computation to communication ratio, syn-
chronization patterns, memory access patterns, fraction of
different types of instructions, message exchange patterns,
should all be closely correlated between an application and
its performance skeleton. The goal is that the relative be-
havior of the application and performance skeleton should
be similar under any computation environment and under

all network conditions. And yet the performance skeleton
is expected to execute for a very short time. Note that a per-
formance skeleton cannot be just the beginning part of the
application itself since application behavior changes over
time and the performance skeleton is expected to capture
the cumulative application activities over the full duration
of execution. Clearly, automatically constructing perfor-
mance skeletons is a major challenge, and it is also a key
long-term goal of this research. This paper focuses only on
demonstrating the value of performance skeletons for appli-
cation scheduling.

The prototype implementation and results described in
this work are essentially a “proof of concept”. We point out
the most significant limitations of our implementation and
experiments. The prototype node selection tool automati-
cally determines the best nodes for execution and schedules
the application on those nodes. However, some of the steps
in the preprocessing of the applications, to enable them for
automatic node selection, are manual. We have conducted
experiments on a small compute cluster with the bandwidth
controlled to simulate network sharing. More experimen-
tation on larger clusters and grid environments is neces-
sary to evaluate this approach rigorously. Our system cur-
rently works only for MPI message passing applications but
is not fundamentally limited to any programming model.
The NAS benchmark programs used in this research rep-
resent a variety of applications in parallel computing, but
each benchmark focuses on a single core scientific algo-
rithm. Full applications, in contrast, often employ multi-
ple different types of computations in different phases. This
certainly adds additional complexity to node selection that
is not evaluated in this work. Overall, we believe that our
results are relevant and meaningful, even though there is
significant room for more experimentation and better eval-
uation and validation.

5 Conclusions

This paper makes a case for employing application
knowledge to node selection in shared cluster and grid en-
vironments. We demonstrate how the communication pat-
tern of an application is exploited to discover good compute
nodes and network paths for execution. One of the major
problems in automatic node selection for network environ-
ments is the cost and accuracy of network usage informa-
tion. We propose application communication skeletons as
our solution approach. With the use of this method, approx-
imate network information is used to get good candidate
node groups for execution, and actual execution of skeletons
is used to make the final choice. This largely eliminates the
potential for poor choices due to inaccurate network infor-
mation since a small slice of actual execution is performed
before assignment of nodes to an application.

7

We have developed a prototype node selection frame-
work and present results from a network testbed that simu-
lates varying bandwidth availability between pairs of nodes
available for execution. The results clearly demonstrate that
node selection based on this framework is a large improve-
ment over random node selection, and also a clear improve-
ment over state of the art methods that do not employ appli-
cation knowledge. While our prototype implementation and
experiments are limited in scope, they clearly demonstrate
the potential of automated node selection and scheduling
based on an application’s communication pattern. This pa-
per is a significant step towards general resource schedul-
ing that employs broader application knowledge including
computation and synchronization information and general
performance skeletons.

6 Acknowledgments

This research was supported in part by the Los Alamos
Computer Science Institute (LACSI) through Los Alamos
National Laboratory (LANL) contract number 03891-99-23
as part of the prime contract (W-7405-ENG-36) between the
DOE and the Regents of the University of California. Sup-
port was also provided by the National Science Foundation
under award number NSF ACI-0234328 and the University
of Houston’s Texas Learning and Computation Center.

We wish to thank other current and former members of
our research group, in particular, Mala Ghanesh, Amitoj
Singh, Sukhdeep Sodhi and Shreenivasa Venkataramaiah,
for their contributions to this research.

References

[1] W. Almesberger. Linux network traffic control — imple-
mentation overview. White Paper, April 1999. Available at
ftp://lrcftp.epfl.ch/pub/people/almesber/pub/tcio-current.ps.

[2] D. Bailey, T. Harris, W. Saphir, R. van der Wijngaart,
A. Woo, and M. Yarrow. The NAS Parallel Benchmarks
2.0. Technical Report 95-020, NASA Ames Research Cen-
ter, December 1995.

[3] F. Berman, R. Wolski, S. Figueira, J. Schopf, and G. Shao.
Application-level scheduling on distributed heterogeneous
networks. In Proceedings of Supercomputing ’96, Pitts-
burgh, PA, November 1996.

[4] P. Bhatt, V. Prasanna, and C. Raghavendra. Adaptive com-
munication algorithms for distributed heterogeneous sys-
tems. In Seventh IEEE Symposium on High-Performance
Distributed Computing, Chicago, IL, July 1998.

[5] J. Bolliger and T. Gross. A framework-based approach to the
development of network-aware applications. IEEE Trans.
Softw. Eng., 24(5):376 – 390, May 1998.

Appears in the Fifth Annual Workshop on Active Middleware Services
(Autonomic Computing Workshop), Seattle, WA, June 2003

[6] H. Casanova, G. Obertelli, F. Berman, and R. Wolski. The
AppLeS Parameter Sweep Template: User-level middleware
for the grid. In Supercomputing 2000, pages 75–76, 2000.

[7] I. Foster and K. Kesselman. Globus: A metacomputing in-
frastructure toolkit. Journal of Supercomputer Applications,
11(2):115–128, 1997.

[8] A. Grimshaw and W. Wulf. The Legion vision of a world-
wide virtual computer. Communications of the ACM, 40(1),
January 1997.

[9] M. Litzkow, M. Livny, and M. Mutka. Condor — A hunter
of idle workstations. In Proceedings of the Eighth Confer-
ence on Distributed Computing Systems, San Jose, Califor-
nia, June 1988.

[10] B. Lowekamp, N. Miller, D. Sutherland, T. Gross,
P. Steenkiste, and J. Subhlok. A resource query interface for
network-aware applications. In Seventh IEEE Symposium
on High-Performance Distributed Computing, Chicago, IL,
July 1998.

[11] B. Lowekamp, D. O’Hallaron, and T. Gross. Direct queries
for discovering network resource properties in a distributed
environment. Cluster Computing, 3(4):281–291, 2000.

[12] G. Shao, F. Berman, and R. Wolski. Master/slave computing
on the grid. In 9th Heterogeneous Computing Workshop,
pages 3–16, 2000.

[13] A. Singh and J. Subhlok. Reconstruction of application layer
message sequences by network monitoring. In IASTED In-
ternational Conference on Communications and Computer
Networks, November 2002.

[14] J. Subhlok, P. Lieu, and B. Lowekamp. Automatic node
selection for high performance applications on networks.
In Proceedings of the Seventh ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, pages
163–172, Atlanta, GA, May 1999.

[15] J. Subhlok, S. Venkataramaiah, and A. Singh. Characteriz-
ing NAS benchmark performance on shared heterogeneous
networks. In 11th International Heterogeneous Computing
Workshop, April 2002.

[16] T. Tabe and Q. Stout. The use of the MPI communication
library in the NAS Parallel Benchmark. Technical Report
CSE-TR-386-99, Department of Computer Science, Univer-
sity of Michigan, Nov 1999.

[17] S. Venkataramaiah and J. Subhlok. Performance prediction
for simple CPU and network sharing. In LACSI Symposium
2002, October 2002.

[18] J. Weismann. Metascheduling: A scheduling model for
metacomputing systems. In Seventh IEEE Symposium
on High-Performance Distributed Computing, Chicago, IL,
July 1998.

[19] R. Wolski, N. Spring, and C. Peterson. Implementing a per-
formance forecasting system for metacomputing: The Net-
work Weather Service. In Proceedings of Supercomputing
’97, San Jose, CA, Nov 1997.

[20] S. Zhou. LSF: load sharing in large-scale heterogeneous dis-
tributed systems. In Proceedings of the Workshop on Cluster
Computing, Orlando, FL, April 1992.

8

