
An Adaptive Hierarchy Management System for Web Caches

Pranav A. Desai
Stratacache Networking

1031 E Third St.
Dayton, OH - 45429

pdesai@stratacache.com

Jaspal Subhlok
Department of Computer Science

University of Houston
Houston, TX - 77204

jaspal@cs.uh.edu

Abstract

A group of web caches can be organized into a coop-
erative hierarchy where a search for a requested object is
performed among the cooperating peer caches before the
object request is sent to the origin web server. Such co-
operation improves the overall hit ratio but introduces the
overhead of an additional step in request processing as well
as additional workload on the caches and more traffic in the
network. The main goal of cooperation is to improve the re-
sponse time observed by clients, but the result can be the
opposite, if, e.g., the network between the caches is very
busy. In this paper, we present an Adaptive Hierarchy Man-
agement System to dynamically configure a hierarchy of
caches based on existing conditions, without human inter-
vention. The system consists of a centralized controller and
distributed agents installed on the caches. The agents col-
lect and report information on cache usage. The controller
monitors the underlying network and determines the best
hierarchy based on cache and network information. The
new hierarchy is then broadcast to all agents. The agents
deploy the new hierarchy by reconfiguring the caches. The
optimal hierarchy is based on the available bandwidth on
the links between the caches and the inter-cache hit ratio.
The system was validated by processing web traces on a
Squid cache hierarchy. Performance improvement of up to
30% was observed with an adaptive hierarchy under vary-
ing network conditions.

Keywords: Web based systems, hierarchical web caching,
distributed agents, adaptive system.

1 Introduction

The rapid growth of Internet has inspired researchers
to develop new techniques to improve Web access per-
formance. One such technique is Web Proxy Caching
[1, 3, 11]. Advantages of caching include faster delivery
of web objects to clients, reduced load on the servers, and

lower Internet traffic. In order to further improve the perfor-
mance of the Web and to cope with the growing demands of
corporations, researchers have suggested networks of co-
operating caches [4, 6, 8, 11]. This helps in distributing
the load away from the server, and increases the probabil-
ity of finding an object within the group of caches. A net-
work of caches is commonly set up as a hierarchy in which
a cache has a parent-child or a sibling-sibling relationship
with other peer caches. A cache would first check if any of
its peers have the needed document, else it would forward
the request to a parent or obtain it from the web server. ICP
(Internet Cache Protocol) is most commonly used for com-
munication among caches [12], although many other proto-
cols have been proposed. Deterioration in network condi-
tions will slow down the exchange of information between
the caches leading to a deterioration of performance in the
cache hierarchy.

INTERNET

C

A

B

Figure 1. A simple caching hierarchy

Consider cooperating caches A, B, and C, that are sib-
lings of each other in an ICP based hierarchy, as shown in
Figure 1. Suppose the link A-B becomes congested, and as
a result, data transfer between A and B slows down. The
caches query their neighbors using ICP for the objects re-
quested by their clients before retrieving them from the ori-
gin server. Hence, the retrieval of an object from the origin

1



server will take longer. Further, the exchange of objects be-
tween caches A and B will take longer, and it is conceivable
that it may be faster to access an object from a server than a
sibling cache. As a result, the clients of cache A and cache
B will experience a higher latency.

If such a situation, which is not very rare, was to be
avoided, the configurations of A and B must be changed so
that they do not use each other as peers while the link A-B is
busy. However, in current implementations, this will require
manual reconfiguration of the caches. With fast changing
network conditions, manually monitoring the network and
reconfiguring the caches is not a feasible option.

In this paper, we address this problem by developing an
Adaptive Hierarchy Management System that dynamically
configures a set of distributed caches into hierarchies that
are best suited to the existing conditions. The system is
based on distributed agents that gather information, and a
central controller that is responsible for finding and deploy-
ing a hierarchy among the caches. We evaluate the perfor-
mance of an adaptive hierarchy designed by our framework
by processing web traces on a network of Squid caches.

2 Discovering a good hierarchy

The goal of this research is to configure a given set of
caches into the “best” hierarchy under existing conditions.
For this paper, we restrict ourselves to all-sibling hierar-
chies. Hence, the goal is to find out for every pair of caches
whether they should be siblings or not. We first analyze how
a sibling helps the performance of a cache and then present
a practical approach to automatically determining whether
a cache should peer with another cache as a sibling.

2.1 Benefits of a web caching hierarchy

A web cache benefits from sibling caches in a hierarchy
because some client requests are serviced by a sibling cache
avoiding a trip to the origin web server. Sibling caches are
checked before a request is sent to a web server, which un-
fortunately increases the service time for cache misses.

Case 2Case 1

BAA

Figure 2. Cache A with and without a sibling
cache B

We shall quantify the benefits a cache A gets by having
another cache B as a sibling. The situation is illustrated
in Figure 2. In Case 1, A sends all requests that result in

a local miss to the origin server, while in Case 2, A first
checks cache B, and sends only requests that are misses in
caches A and B to the origin server. The metric used for
comparison is the average response time for requests made
by clients of cache A. The improvement in average response
time observed by the clients of A due to a sibling can be
approximated as follows:

��� � ������	��
 � ����������� �������������
������	��
 � ��������

where:

� Imp = improvement in average response time going
from an individual cache (Case 1) to a simple hierar-
chy (Case 2).

� IChitratio = Inter-Cache hit ratio. The fraction of re-
quests by clients of A that are hits at B in Case 2.

� missratio = fraction of documents that have to be ob-
tained from the origin web server in a hierarchy in Case
2.

� servertime = average response time for documents that
have to be obtained from the origin web server, not
including checking for documents in siblings (same for
Case 1 and 2).

� siblingtime = average response time for documents that
are obtained from a sibling cache (cache B in the ex-
ample).

� ICPtime = average response time to check for docu-
ments in siblings.

We omit a derivation and detailed assumptions for this
equation for brevity and simply state that it is representative
of most realistic situations. In the equation, servertime is a
constant. Hence, the main factors that determine the degree
of benefit due to a hierarchy are IChitratio, siblingtime, and
ICPtime.

The only way in which a hierarchy helps in improving
performance is through hits in sibling caches. Hence, a rel-
atively high inter-cache hit ratio (IChitratio) is critical for
getting a tangible benefit from a hierarchy. The time to re-
trieve a document via a sibling cache (siblingtime) and the
time to verify if a sibling cache contains a specific docu-
ment (ICPtime) must be relatively low in order to get ben-
efits from a hierarchy. Both of these strongly depend on
network conditions. If the network connectivity is poor, it
is entirely possible that slow communication between sib-
ling caches can lead to a higher average response time when
caches are in a cooperative hierarchy. The conclusion is that

2



inter-cache hit ratio and available network bandwidth are
the key determinants of benefits that can be expected from
a hierarchy.

2.2 Procedure to determine a good hierarchy

It is clear from the above discussion that the extent of
performance benefit a cache can expect from a sibling pri-
marily depends on the percentage of hits from the other
cache and the available network bandwidth. We use a sim-
ple and practical procedure that uses threshold values of
available network bandwidth and recent inter-cache hit ratio
to determine if it is beneficial to have a sibling relationship
between a pair of caches. The core of the procedure, say
to determine if a cache B should continue to be a sibling of
cache A, can be described as follows:

If (available-bandwidth� low-bw-threshold)
Remove B as a sibling of A

If (available-bandwidth� high-bw-threshold)
Keep B as a sibling of A

If (available-bandwidth� low-bw-threshold &&
available-bandwidth� high-bw-threshold)

If (inter-cache-hit-ratio � hitratio-threshold)
Keep B as a sibling of A

Else
Remove B as a sibling of A

The thresholds in this procedure are determined empiri-
cally. The basic idea is as follows. Above a certain band-
width (high-bw-threshold), it is practically free to access
other caches, so a sibling relationship should be maintained.
Below a certain bandwidth (low-bw-threshold), it is never
profitable to contact a sibling, so the sibling relationship
should be severed. If the bandwidth is in between, the sib-
ling relationship should be maintained if the inter-cache hit
ratio is high enough to outweigh the overhead of having a
sibling.

The above procedure is simple, but practical and effec-
tive. The precise theoretical conditions for a sibling to be
profitable that we discussed earlier can be difficult to com-
pute. In our experience, the simplified procedure is just as
effective and relatively easy to implement. The framework
developed for hierarchy selection is designed so that any
other algorithm for sibling selection can be plugged in eas-
ily. The thresholds in our procedure are determined by ex-
perimentation.

3 Adaptive hierarchy management frame-
work

The goal of this research is to develop a system with
the capability to dynamically configure a set of distributed

caches into adaptive hierarchies without human interven-
tion. We now describe our complete framework to achieve
this goal. The framework consists of two major compo-
nents: a centralized controller and distributed agents.

There is one agent per cache in the framework, which
executes on the same machine as the cache. The main tasks
of an agent are as follows:

� An agent collects the cache statistics and periodically
reports them to the controller. For this research, the rel-
evant information is the number of hits that the cache
achieves from requests coming from each of the sib-
ling caches.

� Agents are responsible for deploying a new cache hi-
erarchy, although finding a new hierarchy is the task
of the controller. Once an agent receives information
about the global hierarchy, it reconfigures the local
cache on its node to conform to that hierarchy. Hence,
all agents combine to provide a mechanism for imple-
menting a new hierarchy.

The controller has the following two principal tasks:

� The controller is responsible for collecting the avail-
able bandwidth information. The mechanism for mon-
itoring bandwidth on the network is based on Network
Weather Service (NWS) [14], a freely available band-
width monitoring and prediction tool. The controller
interacts with NWS agents to gather bandwidth infor-
mation.

� The controller is responsible for determining the most
suitable caching hierarchy by implementing the proce-
dure discussed in Section 2. If it is determined that
the caching hierarchy has to be changed, the controller
broadcasts the information about the new hierarchy to
the agents who then deploy the new hierarchy.

A setup of the adaptive hierarchy management frame-
work with three caches is illustrated in Figure 3. The steps
in the working of the adaptive hierarchy management sys-
tem can be summarized as follows:

1. The controller retrieves available bandwidth informa-
tion from NWS.

2. The controller requests the agents installed on the
caches for inter-cache hit ratio information.

3. The agents gather the information from the caches and
send it to the controller.

4. The controller designs the best hierarchy based on the
hierarchy selection procedure. If the hierarchy is dif-
ferent from the existing one, it generates configuration
details for each cache.

3



5. The controller broadcasts the configuration details of
the new hierarchy to the agents.

6. The agents reconfigure the caches to conform to the
new hierarchy.

7. Above steps are repeated periodically.

AGENT AGENT

AGENT

CONTROLLER

NWS

C

A

B

Figure 3. Adaptive Hierarchy Management
System (Shows the interaction of the con-
troller with the agents installed on the caches
and with NWS)

4 Experiments and results

To evaluate the adaptive hierarchy management system,
we compare the performance of a static all-sibling hierarchy
to the case where the cache hierarchy is controlled dynami-
cally by our adaptive hierarchy management system.

4.1 Experimental setup

We performed experiments on three Squid proxy caches.
Two of the machines are 1.4Ghz Athlons with 512MB RAM
running Redhat Linux 7.2. The third machine is an 800
MHz Pentium III with 512MB RAM running FreeBSD 4.3.
All machines have 4GB reserved for Web caching and are
installed with Squid 2.3.STABLE4.

The experiments are based on traces obtained from
NLANR [9]. We randomly selected three daylong traces
from different sites in the NLANR hierarchy. We selected
approximately half million requests from each trace. We
extract the URL field from the traces for use in the experi-
ments. Simulated clients send the URLs to the caches at the
rate of 20 requests/sec. The caches are directly connected
to the Internet and serve the objects from their storage or
from the web servers. To measure the performance, we use
the mean and the median of the response time experienced
by the clients of the cache for accessing the web objects.
The results are filtered to remove very high latency values,

typically caused by server error or non-existing documents.
When needed, the available bandwidth on the links is con-
trolled by the Dummynet toolkit [7].

4.2 Determination of threshold values

The procedure for determining a hierarchy depends on
the thresholds for inter-cache hit ratios and available band-
width. These thresholds are determined heuristically by
running short sequences of traces in different available
bandwidth and hit ratio scenarios. In our experiments, the
available bandwidth is controlled by Dummynet and the hit
ratio is controlled by adding more or less repetition in the
trace. The procedure is done manually although it can be
automated. We will not present the results to determine
thresholds in detail but outline the types of experiments that
were used.

Consider the two setups labeled Hierarchy0 and Hierar-
chy1 in Figure 4. The difference between the two setups
is the presence or absence of a sibling relationship between
cache A and cache B. We compare the performance of the
caches in these two setups under varying bandwidth and
inter-cache hit ratios. The results from cache A are pre-
sented in Figure 5. The results from cache B are similar, and
hence omitted. As expected, the benefit from a sibling re-
lationship is higher for higher hit ratios and lower when the
bandwidth is reduced. We omit detailed results and discus-
sion, but based on this suite of experiments, the thresholds
were set as follows. The high and low network bandwidth
thresholds were set to 10Mbps and 1 Mbps, respectively,
and the inter-cache hit ratio threshold was set to 6%.

Hierarchy1

Sibling

Sibling Sibling

Hierarchy0

Sibling Sibling

Sibling

C

A

BC

A

B

Figure 4. Different setups of an all-sibling hi-
erarchy

4.3 Adaptive hierarchy performance

The performance of a three cache adaptive hierarchy was
compared to a fixed hierarchy. During the experiment, the
bandwidth between cache A and B varies randomly among
phases of 100 Mbps, 10 Mbps, 1 Mbps, and 0.1 Mbps with
equal probability. In the first experiment, all caches are each
others siblings. In the second case, our adaptive hierarchy

4



Figure 5. Median response times of clients of cache A under varying bandwidth on A-B link and
different hit ratios

management system is used to determine and deploy the
most suitable hierarchy periodically for the same trace. The
results are shown in Figure 6 and Figure 7.

We observe from Figure 6 that the mean response times
for cache A decreases from 0.439 seconds for a non-
adaptive hierarchy to 0.388 seconds for the adaptive hier-
archy, which is an improvement of 13%. For cache B, the
performance improvement is about 29%. Median response
time also improves but only by a small amount. The rea-
son is that the adaptive hierarchy is mostly effective in low
bandwidth conditions where the response times are high,
and that does not impact the median since the data points
still stay on the same side of the median.

Figure 7 shows the response times for individual re-
quests. While the response time patterns with and without
an adaptive hierarchy are similar for high bandwidth phases,

it is clear that the response times for adaptive hierarchy are
substantially shorter for low bandwidth phases. Response
times with an adaptive hierarchy are fairly stable even in the
face of fluctuating bandwidth, in sharp contrast to a fixed hi-
erarchy.

5 Conclusion

This paper describes a system to automatically reconfig-
ure a group of web caches into a hierarchy that is best suited
to the existing conditions. Available bandwidth between the
caches and inter-cache hit ratio are the criteria employed
for building an appropriate hierarchy. The adaptive hierar-
chy management framework consists of distributed agents
at the caches to collect information and deploy new hierar-

5



Figure 6. Performance of an adaptive hierarchy compared to a non-adaptive hierarchy

chies and a central controller that collects all information
and creates the most suitable cache hierarchy.

The goal of this research is that a group of caches be able
to take maximum advantage of each other, yet automatically
adjust when the cost of cooperation exceeds the benefits.
We have implemented the adaptive hierarchy framework
developed in this paper and validated the benefits by run-
ning web traces on a testbed of three Squid caches. Results
clearly demonstrate that an adaptive hierarchy performs sig-
nificantly better and provides stable performance in varying
network conditions.

6 Acknowledgments

This research was sponsored, in part, by the Texas
Higher Education Coordinating Board under ATP program
with grant number 003652-0424. Support was also pro-
vided by the Department of Energy through Los Alamos
Computer Science Institute and by the Texas Learning and
Computation Center. Compaq/HP loaned us the Polygraph
testbed for this project. We thank Dr. Martin Herbordt at
Boston University and Mr. Kevin Leigh at Hewlett Packard
for their advise and help in this project.

References

[1] G. Barish and K. Obraczka. World wide web caching:
Trends and techniques. IEEE Communications Magazine
Internet Technology Series, May 2000.

[2] T. Berners-Lee, R. Fielding, and H. Frystyk. Hypertext
transfer protocol HTTP/1.0, RFC 1945, May 1996.

[3] R. Cáceres, F. Douglis, A. Feldmann, G. Glass, and M. Ra-
binovich. Web proxy caching: The devil is in the details.
In Proceedings of the Workshop on Internet Server Perfor-
mance, December 1998.

[4] A. Chankhunthod, P. Danzig, C. Neerdaels, M. Schwartz,
and K. Worrell. A hierarchical internet object cache. In Pro-
ceedings of the USENIX Technical Conference, San Diego,
CA, January 1996.

[5] B. Duska, D. Marwood, and M. Feeley. The measured ac-
cess characteristics of world-wide-web client proxy caches.
In Proceedings of the USENIX Symposium on Internet Tech-
nologies and Systems (USITS ’97), December 1997.

[6] D. Povey and J. Harrison. A distributed internet cache.
In Proceedings of the 20th Australasian Computer Science
Conference, February 1997.

[7] L. Rizzo. Dummynet: a simple approach to the evaluation of
network protocols. ACM Computer Communication Review,
27(1):31–41, Jan 1997.

[8] P. Rodriguez, C. Spanner, and E. W. Biersack. Web caching
architectures: Hierarchical and distributed caching. In The
4th International Web Caching Workshop, San Diego, CA,
April 1999.

[9] Traces (sanitized access.log). National Lab of Applied Net-
work Research. Available at ftp://ircache.nlanr.net/Traces/.

[10] D. Wessels and K. Claffy. Evolution of nlanr cache hierar-
chy: Global configuration challenges, 1996.

[11] D. Wessels and K. Claffy. Application of Internet Cache
Protocol (ICP), version 2, RFC 2187, July 1997.

[12] D. Wessels and K. Claffy. ICP and the squid web
cache. IEEE Journal on Selected Areas in Communication,
16(3):345–357, April 1998.

[13] A. Wolman, G. M. Voelker, N. Sharma, N. Cardwell, A. Kar-
lin, and H. M. Levy. On the scale and performance of co-
operative web proxy caching. In Proceedings of the 17th
Symposium on Operating Systems Principles, pages 16–31,
December 1999.

[14] R. Wolski, N. Spring, and C. Peterson. Implementing a per-
formance forecasting system for metacomputing: The Net-
work Weather Service. In Proceedings of Supercomputing
’97, San Jose, CA, Nov 1997.

6



Figure 7. Response times for individual requests for an adaptive hierarchy and a non-adaptive hier-
archy

7


