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Abstract

The performance skeleton of an application is a
short running program whose performance in any sce-
nario reflects the performance of the application it rep-
resents. Such a skeleton can be employed to quickly
estimate the performance of a large application un-
der existing network and node sharing. This paper
presents and validates a framework for automatic con-
struction of performance skeletons of parallel applica-
tions. The approach is based on capturing the compute
and communication behavior of an executing applica-
tion, summarizing this behavior and then generating a
synthetic skeleton program based on the summarized in-
formation. We demonstrate that automatically gener-
ated performance skeletons take an order of magnitude
less time to execute than the application they represent,
yet predict the application execution time with reason-
able accuracy. For the NAS benchmark suite, we ob-
served that the average error in predicting the execution
time was 6%. This research is motivated by the prob-
lem of performance driven resource selection in shared
network and grid environments.

1. Introduction

Shared networks, varying from workstation clusters
to computational grids, are an increasingly important
platform for high performance computing. Perfor-
mance of an application strongly depends on the dy-
namically changing availability of resources in such dis-
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tributed computing environments. Estimating the per-
formance of an application on a given set of resources
under varying network and node sharing conditions is
a challenge that must be addressed for selecting the
best set of execution nodes for an application. This
paper introduces performance skeletons, which are cus-
tomized short running programs whose performance
mirrors the performance of the application they rep-
resent.

The performance skeleton of an application is a syn-
thetically generated program that has the same fun-
damental execution characteristics as the application
it represents. The execution time of the performance
skeleton program on a given set of nodes is expected
to equal the execution time of the corresponding ap-
plication under the same conditions scaled down by
a fixed large constant factor. Therefore, performance
skeletons can be used for predicting application perfor-
mance. Since this approach involves actual execution
of skeleton code at the point in time when a perfor-
mance related decision has to be made, the estimated
performance is for current conditions and no system or
network monitoring is required.

This paper introduces a simple methodology for
automatically constructing performance skeletons for
message passing parallel programs. The primary focus
in this paper is on generating skeletons to estimate per-
formance of compute and communication bound appli-
cations under CPU and network sharing, rather than
on predicting performance across nodes with different
system architectures. The main consideration is that
the performance skeleton have the same basic compu-
tation and communication behavior as the application
it represents. The basic approach is to monitor the ap-
plication message exchanges and CPU utilization pat-
tern, summarize this execution information, and gen-
erate a synthetic skeleton program that will reproduce



the summarized computation and communication be-
havior. The procedure does not require access to the
source code or any other information about the appli-
cation. We have implemented this approach and vali-
dated it with NAS benchmark programs running on a
shared test-bed. We present results that demonstrate
the ability of performance skeletons to predict applica-
tion performance accurately.

2 Related Work

This research is motivated by the problem of re-
source selection in the emerging field of grid comput-
ing [8, 9]. Condor [10] and LSF [28] address node selec-
tion based on CPU and software considerations effec-
tively. Research on node selection based on broader
system and network resources has been in the con-
text of getting the best general group of execution
nodes [4, 20, 26] or customized procedures to select exe-
cution nodes for a particular application or application
class [5, 6, 7, 14]. Recent work on performance predic-
tion in our group [17, 21, 24, 25] uses a general applica-
tion characterization framework to create a customized
performance model for each application that can pre-
dict application performance when the current avail-
ability of system resources is provided as input. Hence
this model depends on the accuracy of network status
information provided by tools such as NWS [22, 27] and
Remos [11, 12], which can be expensive to maintain and
may be inaccurate or outdated. We build on the gen-
eral application characterization framework mentioned
above to create customized skeletons for each applica-
tion. Then we employ these skeletons for performance
estimation and node selection thereby eliminating the
dependence on network monitoring tools.

Reed et.al. [13] generate compact application signa-
tures using a curve-fitting approach to reduce event-
tracing overheads. Their goal is to use application sig-
natures for online performance monitoring and tuning.
Snavely et.al. [18] create application and machine sig-
natures to simulate application behavior across differ-
ent system or processor architectures. Calder et.al. [15,
16] exploit periodic application behavior to identify
portions of the program that are representative of an
application for the purpose of architectural simula-
tions. While all these research efforts have their own
different goals, we have borrowed ideas from them to
drive this project.

3 Performance Skeletons

A performance skeleton of an application is defined
as a short running program that has the same fun-

damental execution characteristics as the application
it represents, although it has no semantic relevance.
The execution time of the performance skeleton is de-
signed to be proportional to the execution time of the
corresponding application under any execution condi-
tion. That is, if the performance skeleton executes in
1/20th of the time it takes to execute an application on
a dedicated testbed, the execution time of the skeleton
should always be 1/20th of the application execution
time on any computation platform under any resource
sharing scenario. The goal is to infer the expected per-
formance of an application in a new or changed envi-
ronment by simply executing the application’s perfor-
mance skeleton. We would like to point out that the
skeleton execution is completely different from actu-
ally executing the application for a short time. The
skeleton should capture the total execution of an ap-
plication in a short time while the beginning part of an
application is typically not representative of the entire
application in terms of execution characteristics.

The challenge of this research is to develop a pro-
cedure to construct performance skeletons automati-
cally. Ideally a performance skeleton and the corre-
sponding application should generate similar resource
usage and system activity, which implies similar com-
putation activity, memory access pattern, communi-
cation behavior and synchronization behavior. In this
paper we have focused on performance prediction when
the application always runs on the same types of nodes
but network and CPU resources are shared and hence
their availability changes dynamically. The skeletons
we construct are not expected to predict performance
accurately on systems with different node architecture
or memory hierarchy from the one employed for skele-
ton construction. The skeletons discussed in this paper
mimic the compute/communication phases of the ap-
plications. The computation phases in the skeletons
consist of generic computation which may not be ef-
fective for prediction on different system and memory
architectures. The skeletons employ the same kind of
communication calls as the application.

The skeleton based approach to performance predic-
tion is designed for distributed scientific applications
with a relatively static computation structure. Ap-
plications with dynamic load balancing, for instance,
cannot employ this approach to performance predic-
tion effectively. The approach can be used for many
applications outside the domain of scientific comput-
ing also but a discussion is beyond the scope of this
paper. Our implementation of the skeleton construc-
tion framework is for MPI message passing programs.



4 Skeleton Creation Framework

We first outline the main steps involved in the cre-
ation of a performance skeleton from a distributed
memory message passing MPI application.

1. Application is executed on a controlled testbed
and information about CPU and communication
behavior is recorded.

2. Application execution information collected in the
previous step is summarized into a compact rep-
resentation.

3. Source code for the corresponding performance
skeleton program is generated from the compact
execution representation.

Note that this skeleton construction procedure is based
on measured execution properties and does not involve
access to the source code. We now discuss each of the
above steps in more detail.

4.1 Execution data collection

To generate the execution trace of an MPI applica-
tion we link it with a profiling library developed for this
purpose and run it on a dedicated testbed without any
competing processes or traffic. The profiling library
records information for each process in a separate trace
file. Each MPI operation called, parameters passed to
it, and its start time and end time, are recorded. Tim-
ing measurement is done to microsecond granularity
using the Linux gettimeofday system call [1]. Time for
computation operations is recorded as the time spent
between the end of one MPI operation and the start of
the next MPI operation. This information is sufficient
to identify the communication, computation and syn-
chronization behavior of the application. Generation of
the trace file requires no modification of the application
source code. We ran MPI applications with and with-
out recording of events with the profiling library and
verified that it does not add any significant overheads.

4.2 Create compact representation

The goal of this step is to generate a compact
representation of the execution trace. This compact
representation should capture the high-level computa-
tion, communication and synchronization patterns of
the application. This step is divided into two stages.
In the first stage we read the trace log for each process
and represent it as a sequence of events. We then group
similar events and replace them by a new event which

represents the average of this group. As an exam-
ple, suppose we encounter the following two operations:

MPI Send(Node 3, 2000 bytes), and
MPI Send(Node 3, 1800 bytes)

If both these events occur only once, they are both
replaced by the following operation:

MPI Send(Node 3, 1900 bytes)

Grouping similar events helps in generating a more
compact representation. Events that are grouped to-
gether are execution phases of approximately equal du-
ration and message calls with similar parameters. Dif-
ferent type of MPI calls or identical calls to exchange
messages with different nodes are never grouped to-
gether.

This stage converts the trace log into a sequence of
execution events, which can be represented as a string
of symbols such as:

α β γ β γ β γ κ α α ....

representing the sequence of execution events with
different occurrences of the same symbol referring to
functionally identical execution events.

In the second stage we identify and mark repeated
execution behavior as loops. The problem of identify-
ing repeating application behavior is now represented
as the problem of finding repeating sub-strings within a
string. We have developed an algorithm [19] which re-
cursively identifies all the repeating sub-strings, start-
ing with the largest matches and working down to sub-
string matches of length 1. The repeating sub-strings
are then organized as recursive loop nests with sub-
strings of symbols as loop bodies and the number of
repetitions as the number of loop iterations. This is
the compact representation of the trace log.

4.3 Generating performance skeleton

The next step is to generate the performance skele-
ton of the application from the compact representation
discussed above. It is desirable that the performance
skeletons be short running since execution of the per-
formance skeleton is an overhead in performance esti-
mation. However, the prediction accuracy is likely to
be lower for shorter running skeletons. In our frame-
work, the desired ratio K between the execution time
of the application and the execution time of the corre-
sponding performance skeleton is provided as a param-



eter. The fraction K essentially places an upper-bound
on the execution time of the skeleton.

The construction of performance skeleton begins
with generating a program by converting the symbols
in the compact representation to actual ’C’ program-
ming language code that creates similar system activity
with synthetic computation code and synthetic MPI
calls. This is the initial uncompressed performance
skeleton program. Next, this skeleton code is scanned
and the numbers of iterations in loops with more than
K iterations are reduced by a factor K. Additional loops
with less than K iterations may have to be generated
to maintain the execution activity sequence.

At this point the skeleton consists of compressed
loops, loops that are not compressed because the num-
ber of iterations is less than K, and uncompressed code
outside of loops. The uncompressed loops are now un-
rolled, that is, they are replaced by the individual oper-
ations within the loop repeated for each iteration of the
loop. Groups of K occurrences of execution operations
in the uncompressed part of skeleton are identified and
replaced by a single occurrence. Finally all remaining
uncompressed operations with less than K occurrences
are scaled down by a factor K by adjusting their param-
eters. For a compute operation we reduce the duration
by a factor of K, for communication operations we re-
duce the bytes exchanged by a factor of K. This yields
the final performance skeleton consisting of synthetic
’C’ code with MPI calls.

One weakness of this approach is that scaling down
a communication operation by reducing the number of
bytes exchanged is not accurate. Execution time of the
reduced operation would be higher than expected be-
cause communication operations have two time compo-
nents; latency, which is fixed for all message sizes, and
message transfer time, which can be scaled down lin-
early. By reducing the number of bytes exchanged we
only reduce the message transfer time, leaving the la-
tency component intact. A more accurate scaling down
cannot be achieved without making some assumptions
about the execution environments. However, we point
out that this kind of reduction is a “last resort” that is
employed only for iterations that remain after division
by K and operations not in loops. In practice, the im-
pact on overall performance estimation is minimal for
most applications.

5 Experiments and Results

A prototype framework for automatic construction
of performance skeletons was implemented. Automat-
ically constructed skeletons were then used to predict
application execution time in a variety of scenarios and

the predictions were compared to the measured appli-
cation execution time for validation. Additional ex-
periments were performed to compare the prediction
accuracy of this approach to other simple approaches.
This section describes the validation experiments and
discusses the results.

5.1 Experimental setup

The testbed for the experiments is a compute clus-
ter composed of 10 Intel Xeon dual CPU 1.7 GHz ma-
chines connected by Gigabit Ethernet links and a full
crossbar switch. Results are presented for experiments
conducted on 4 nodes. All experimental results are
based on the MPI implementation of the NAS Paral-
lel Benchmarks [3, 23]. The codes used are BT (Block
Tridiagonal solver), CG (Conjugate Gradient), IS (In-
teger Sort), LU (LU Solver), MG (Multigrid) and SP
(Pentadiagonal solver). All programs are compiled us-
ing GNU g77, (Fortran) compiler except IS, which is
compiled with the gcc (C) compiler. The MPICH im-
plementation of MPI is used. The bandwidth between
computation nodes was managed with the Linux ad-
vanced networking iproute2 [2] in order to simulate lim-
ited bandwidth availability due to competing network
traffic. iproute2 works by intercepting the network
packets and passing them through artificial queues to
simulate bandwidth limitations.

5.2 Accuracy of skeleton based prediction

To evaluate the performance skeleton approach we
first constructed performance skeletons for class B NAS
benhmark codes. The desired ratio between the execu-
tion time of the skeleton and the application (K in ear-
lier discussion) was selected to be 10. The actual ratio
L between the execution time of the application and
the corresponding performance skeleton is then com-
puted by measuring their execution times on a testbed
with no other competing process or network traffic. We
have:

L =
ApplicationExecutionT ime

SkeletonExecutionT ime

Note that L and K are close to each other but
not identical because of the approximations inherent
in skeleton construction. For our experiments, K was
set to 10, while L varied between 11 and 13. Employ-
ing L over K for prediction is expected to yield better
accuracy since some of the inaccuracies in skeleton con-
struction are filtered out as they affect all executions
of a skeleton equally and this was verified by actual
experiments.
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Figure 1. Percentage difference between predicted execution time based on performance skeletons
and measured execution time for NAS benchmarks for 5 resource sharing scenarios. A negative
error value implies that the execution time was overestimated while a positive value implies that it
was underestimated. The average error over all benchmarks is computed with absolute error values.

Subsequently, the benchmarks and corresponding
performance skeletons are run on the same testbed un-
der the following five resource sharing scenarios:

1. Two competing compute intensive processes are
run on one node.

2. Above two processes are run on all four nodes.

3. Available bandwidth on one of the links was re-
duced to 10Mbps using iproute2.

4. Bandwidth on all links was reduced to 10Mbps.

5. Competing processes as above on one node and
bandwidth reduced on one link.

In each case we have

PredictedApplicationExecutionT ime =
L ∗ SkeletonExecutionT ime

The ActualApplicationExecutionT ime is obtained
by direct measurement during actual application exe-
cution in the same scenario. We then determine the

accuracy of prediction by comparing this predicted ap-
plication execution time with the measured applica-
tion execution time. The percentage difference between
measured and predicted execution times are plotted in
Figure 1.

We observe that prediction error is relatively small
for all scenarios spanning a range between 0 and 18%.
The average prediction error is 6%. The conclusion is
that performance skeletons can effectively predict exe-
cution time, at least under these scenarios.

We also observe from Figure 1 that prediction error
is generally higher for execution scenarios with com-
peting traffic. We speculate that one of the reasons is
the non-linear reduction in execution time of communi-
cation operations in some situations discussed earlier.
Finally, different benchmark programs exhibit different
levels of prediction error but no clear pattern emerges.
Further analysis of the relationship between applica-
tion characteristics and prediction error is beyond the
scope of this paper but is discussed in [19].
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Figure 2. Performance prediction error with performance skeletons and other simple methods. Re-
sults are averaged over the 5 scenarios of node and/or link sharing stated earlier.

5.3 Comparison with other prediction approaches

We performed additional experiments to compare
prediction accuracy of such performance skeletons ver-
sus two other “reasonable” approaches to performance
prediction listed as follows:

Average Prediction: The average slowdown of the
entire benchmark suite under a given resource
sharing scenario was used to predict the execu-
tion time for every program in the same scenario.
The reasoning is that, if all programs slow down
roughly equally under resource competition, there
is no need for customized performance skeletons
for applications discussed in this paper. A generic
short running program could be run to predict the
execution time for any application under resource
sharing.

Class S Prediction: The experiments described in
this paper were performed on Class B NAS bench-
marks, which run in 10s to 100s of seconds with-
out load on 4 machines in our cluster. Each NAS
benchmark also has a Class S version which runs
in a few seconds. In this case, the Class S bench-
marks were used as the performance skeletons for
the Class B benchmarks for performance predic-
tion. The reasoning is that since both classes of
benchmarks perform the same fundamental calcu-
lations but on different data sizes and scales, the

short running class S benchmarks could be consid-
ered good manually generated performance skele-
tons.

The performance prediction error for each of these
approaches is plotted in Figure 2. Clearly, the per-
formance skeleton approach to performance prediction
performs much better than the others. The conclu-
sion is that monitoring system activity as the basis for
constructing performance skeletons is superior to other
simple minded approaches. We would like to point out
here that the Class S benchmarks execute in a few sec-
onds which is generally significantly less time than the
skeletons that are used for results presented in this pa-
per. For a fairer comparison we should use skeletons
that run as fast as the Class S benchmarks, which is a
subject of ongoing experiments.

6 Discussion

We outline the limitations of the skeleton based ap-
proach to performance prediction as well as the limita-
tions of our implementation.

Execution on an architecture different from the
testbed used for skeleton creation: While cre-
ating a performance skeleton, we make no effort
to reproduce the instructions in the original appli-
cation or the memory access pattern. Hence the
skeletons are not expected to predict performance



accurately if used on nodes with a different mem-
ory or CPU architecture. This is being addressed
in ongoing research.

Different number of nodes and data sets than
the prototyping testbed: A skeleton models
the application behavior for a certain number of
executing nodes and hence cannot be employed di-
rectly for execution on a different number of nodes.
The results presented in this paper use the same
data sets for the prototyping run and performance
estimation experiments. Construction of skeletons
that can be scaled across number of nodes or data
set sizes is a topic for future research.

Synchronization behavior: The current imple-
mentation of our framework does not accurately
model the synchronization behavior of the corre-
sponding full application. While constructing the
skeleton we set the duration of a compute opera-
tion within a loop to its average duration across all
iterations of the loop. This may cause the skeleton
to display less synchronization delays as compared
to the full application. We believe that this may be
a cause for the high prediction error in some sce-
narios. A better approach would be to use the fre-
quency distribution of compute durations instead
of taking the average. Further experimentation is
required to test this reasoning.

Wide area networks: All results presented in this
paper are for a local cluster. Bandwidth sharing in
a small cluster is simulated using artificial queues
and is more uniform when compared with a wide
area network, which may have several application
streams competing for available bandwidth. How-
ever, we believe that performance skeleton based
prediction approach will work for wide area net-
works if the sharing conditions are same (or sim-
ilar) during skeleton and application execution.
This is because the performance skeleton repro-
duces corresponding application’s communication
behavior and hence its performance will get af-
fected in the same manner as that of the full ap-
plication. In any case, extensive experimentation
is needed for validation of this approach on wide
area network and computation grids.

Adaptive applications: We assume that each appli-
cation node performs the same amount of work in-
dependent of CPU and network conditions. Hence,
if the application modified the work allotted to
different nodes or changed its execution behavior
due to changes in network or node conditions, e.g.
a dynamically adjusting master-slave application,

then prediction using the current implementation
of our framework will not work. Clearly signifi-
cant additional investigation is required to adapt
this approach to dynamic load balancing and other
adaptive applications.

7 Conclusions

This paper makes a case for automatically employ-
ing the knowledge of an application’s periodic behavior
to performance estimation in shared cluster and grid
environments. A major problem in performance pre-
diction and automatic node selection for shared net-
work environments is the cost and accuracy of network
and node usage information. We describe a perfor-
mance estimation framework that does not directly re-
quire network or node usage information, thus elimi-
nating the potential for estimation errors due to inac-
curate network information. In our experiments the
framework was effective in predicting the performance
of programs in the NAS parallel benchmark suite under
a variety of resource sharing conditions. Our system
currently works for MPI message passing applications
but is not fundamentally limited to any programming
model since it analyzes the execution events of an ap-
plication and requires no source code modification.

Clearly more work needs to establish and generalize
this approach to performance prediction and its ap-
plication to resource management and, this has been
discussed in the previous section. However, we believe
that this paper makes a compelling case that this new
approach to performance prediction has clear advan-
tages in shared network and grid computing.
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