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Abstract

The ability to quickly predict the throughput of a TCP
transfer between a client and a server, or between peers,
has wide application in scientific computing and commer-
cial computing. This paper presents a new approach to
fast prediction of overall throughput of a large TCP file
transfer. The method constructs the time series of windows
of segments arriving at the receiver, and predicts future
throughput by exploiting knowledge of how TCP manages
transfer window size. When the file transfer time series
resembles a known TCP pattern, this information is uti-
lized for prediction, otherwise simple heuristics are used.
We have compared TCP pattern based prediction against
traditional methods like a simple moving average, expo-
nential weighted moving average, and aggregate measured
throughput on a large suite of real life TCP traces. Our re-
sults show that TCP pattern based prediction generally per-
forms as well or better than the best of other methods in any
given scenario.

1. Introduction

The performance of any network based application de-
pends on the throughput that can be obtained on network
paths. Estimation of throughput is an important component
of applications and resource management in network com-
puting. As examples, replica selection in a grid environ-
ment [19], selection of caches in web content delivery ser-
vices [14], mirror site selection for downloading, and selec-
tion of P2P peers, are all primarily driven by the expected
throughput on network paths. In a grid environment, net-
work performance is an important part of grid services [9].

Over half of today’s network traffic uses Transmission
Control Protocol (TCP) [15]. Bulk transfer utilities like
GridFTP [5] and storage access protocols like GASS [4]
are based on TCP. The goal of this paper is to predict the

throughput of a TCP stream by inspecting the pattern of ar-
rival of segments at the receiver.

Most bandwidth measuring tools focus on avail-
able bandwidth or bottleneck bandwidth of a network
path or a particular link. However, we focus on the re-
lated but different problem of expected bandwidth of
one TCP stream. Iperf [2] is designed to measure max-
imum TCP bandwidth. To get an accurate measure-
ment, sufficient amount of data (set by size or duration)
needs to be sent over the measured link which would in-
terfere with existing network traffic. Other prior work
by Sang and Li [13] has used ARMA and MMPP sta-
tistical models to predict future bandwidth, under the
assumption that traffic is stationary and can be modeled sta-
tistically.

The most popular tool for estimating available band-
width for grid computing is Network Weather Services
(NWS) [20]. NWS measures available bandwidth by trans-
ferring a block of data and measuring the time taken for
the transfer. However, the measurement may not be repre-
sentative of the long term bandwidth. One reason is that a
TCP connection may be in slow start for a large part of the
sample transfer. Vazhkudai et al. [18] show that NWS pre-
dicted bandwidth can be as much as 5 to 34 times lower
than measured bandwidth on high speed networks, and pro-
pose some improvements. Swany [16] and Vazhkudai [17]
use statistical methods to find a correlation between pre-
dicted and measured bandwidths. Primet et al. [12] com-
pare the throughput results from NWS and measurements
from Iperf, and propose new prediction models by limit-
ing the influence of slow start to improve the accuracy of
throughput.

The central contribution of this paper is to use knowledge
of TCP patterns to make faster and more accurate band-
width prediction of a TCP flow. A TCP flow normally starts
with slow start, followed by a steady-state governed by TCP
congestion control and flow control. In principle, the behav-
ior of a TCP flow is predictable. The throughput of a TCP
flow can be formulated in terms of Round-Trip Time (RTT),



Maximum Segment Size (MSS), and loss rate [10]. How-
ever, RTT is variable and hard to estimate [7] and a reli-
able loss rate cannot be obtained until a large number of
segments have been collected. Also, a flow often does not
reach a steady state when other network traffic is changing
dynamically. Further, when a TCP sender is handling mul-
tiple streams, such as a Web server, the sender’s load and
policies are an important component of the TCP data pat-
tern. Because of these reasons and the complexity of anal-
ysis, theoretical results that describe TCP behavior are not
sufficient for quick throughput prediction in practice.

In this work we combine a knowledge of TCP patterns
with heuristics to develop the framework for an intelli-
gent real-time throughput predictor. The stream of incoming
TCP segments is converted to a time series of throughput
values. This time series is analyzed to generate a prediction
for future throughput. This throughput prediction scheme
has been validated with experiments on a large number of
real-life TCP traces. We establish that our TCP pattern-
based throughput prediction is superior to basic prediction
methods like simple moving average, exponential weighted
moving average, and employing aggregate throughput as a
predictor for future throughput.

The rest of this paper is structured as follows. Section 2
describes the methodology of TCP pattern-based through-
put prediction. Section 3 outlines the experiment setup and
discusses the results. We present some conclusions in Sec-
tion 4.

2. Methodology

2.1. TCP Flow Patterns

Data transfer patterns generated by classical TCP flow
control and TCP congestion control in steady state are il-
lustrated by example traces in Figure 1(a) and 1(b), respec-
tively. Clearly if those patterns could be identified and the
TCP connection followed that pattern for the duration of
the transfer, future bandwidth could be predicted accurately.
One thing to note is that the pattern in 1(a) may be due to
TCP flow control, but it could also be a result of traffic shap-
ing at the server. Hence we have used the more general term
“rate control” to describe the pattern. Often, a uniform traf-
fic rate is observed in TCP flows, but with frequent delays,
as shown in Figure 1(c). Finally, many flows do not show
a clear pattern, such as the example flow in Figure 1(d).
Our goal in this research is to identify the flow pattern and
use that knowledge to make a future bandwidth prediction.
However, if no clear predefined pattern is established, we
combine the knowledge with heuristics to make a through-
put prediction.
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Figure 1. TCP data transfer patterns

2.2. TCP Segment Partitioning

The throughput prediction algorithms developed in this
paper are based on an analysis of a time series of through-
put values. In a typical TCP transfer, the sender sends a win-
dow full of data segments and then waits for an acknowledg-
ment. Thus, TCP based patterns exist between number of
segments sent per RTT, and the corresponding throughput,
which is the time series to work with for throughput predic-
tion. If the throughput is measured as the amount of data re-
ceived in a fixed time period (we refer to this asFixed Inter-
val Throughput), or the instantaneous throughput based on
the amount of data in a segment and the time since the last
segment was received (we refer to this asInstant Through-
put), then there will be large meaningless fluctuations in the
throughput time series. This is illustrated in Figure 2. Instant
throughput shows a huge variation (from 220 Bytes/sec to
1 GBytes/sec) and fixed interval throughput over 100 mil-
lisecond shows a large variation (from 40 KBytes/sec to
121 KBytes/sec) when the data transfered per RTT, and the
corresponding per RTT throughput, are steady around 70
KBytes per second.

Clearly, we need to measure the data transferred per RTT
to develop a meaningful time series for throughput predic-
tion. For this we need to determine the RTT, which itself
could be changing during the course of a TCP transmis-
sion. Many RTT estimation techniques have been proposed
in literature [7,8]. We have chosen to employ the method of
Jiang and Dovrolis [7] based on SYN-ACK (SA) RTT es-
timation. Ideally RTT should be updated continuously but
we are currently using a fixed RTT. Our empirical observa-
tion is that a fixed SA RTT partitioning is a simple and ef-
fective method for our goals.

We partition the sequence of segments in chunks that are
received per RTT, and generate a new per-RTT throughput
series as follows:

The collected info is a time series,TS, of TCP segment
arrival times and payload sizes.TSi = (Ti, Bi), whereTi
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Figure 2. Different throughput series for a TCP flow. per RTT t hroughput is based on data received over a mea-
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is thei-th segment’s arrival time andBi is its payload size.
Then we apply fixed SA RTT partitioning toTSi and a new
time seriesRTh is generated, whereRThj is the through-
put over thej-th RTT.

The new time series is based on the amount of data that
arrived in each RTT. We can think of it as a throughput time
series, where each data point is the average throughput over
one RTT.

2.3. Throughput Prediction using TCP Patterns

After partitioning, we have a time series of past through-
put values. The goal is to predict average future throughput
for the TCP stream. Our first objective is to identify TCP
patterns in the throughput time series illustrated in Figure 1.
We restate the main patterns.

• Rate Control limited (RC): the receiving rate of TCP
segments is limited by receiver’s buffer size (flow con-
trol) and/or sender’s management of outgoing TCP
streams, or is application limited [21].

• Congestion Control limited (CC): the receiving rate
of TCP segments is limited by network’s condition and
driven by the repeating sequence of packet loss fol-
lowed by slow start and congestion avoidance phases.

Figures 1(a) and 1(c) show typical Rate Control limited
patterns. Figure 1(b) shows a Congestion Control limited
pattern. Figure 1(d) shows varying behavior, possibly rate
control limited with occasional packet loss.

The throughput prediction algorithm attempts to find the
main characteristics of the throughput series as follows:

• Flat regions: where throughput practically remains
constant.

• Linear Climb regions: where throughput climbs
steadily as in congestion avoidance.

• Exponential Climb regions:where throughput climbs
exponentially as in slow start.

• Drop points:where throughput drops to half or more
of previous values.

The identification of these regions is done in a forgiving
manner since the data transfer patterns rarely follow strict
TCP patterns in practice. The simple moving average of a
small window of time series values is used for identifica-
tion instead of individual values. This ensures that a small
network delay or variation in RTT will generally not pre-
vent a pattern from being identified.

Based on the above factors, the point where the slow start
ends, regions of fixed rate flow, and congestion control cy-
cles, are identified. We will refer to the point where the slow
start phase of a flow ends asTPS, representing the peak of
slow start.

Given a window sizew RTTs worth of TCP segments,
which meansw throughput values in the time series, the
general rules for throughput prediction are the following:

1. RC-based prediction: If a TCP flow is flat fromTPS

through the remaining window to series valuew, the



predicted throughput is the average throughput from
TPS to w.

2. CC-based prediction: If the rule for RC-based predic-
tion does not apply and a TCP flow has more than three
complete congestion control cycles afterTPS , the pre-
dicted throughput is the average throughput over the
most recent three complete congestion control cycles.

3. Window-based prediction: If the rules for RC and CC
based prediction do not apply, the predicted through-
put is the average throughput fromTPS to w.

This description obviously does not cover all possible
cases (e.g., special cases when no slow start is detected or
slow start consumes the entire window) or full details, but
it captures the core of the throughput prediction algorithm.
Basically, the initial slow start phase is not used for predic-
tion since it is not representative of normal behavior. Subse-
quently, if a congestion control pattern is detected, that in-
formation is used for prediction, else averaging over the rel-
evant region is used.

2.4. Illustration of Throughput Prediction

Figure 3 and Figure 4 illustrate throughput prediction for
two time series obtained from actual TCP traces. The dura-
tions of the traces in Figure 3 and Figure 4 are 475 RTTs
and 1479 RTTs, respectively. The figures show predicted
throughput and the error between predicted and measured
throughput for varying window sizes used for prediction.
The window always starts from the 1st RTT and goes up
to 100 RTTs. Predictions are always made for the next 100
RTTs. Predictions are made by our method labeled “TCP
Pattern” as well as with 3 other methods for which the pre-
dicted throughput is: 1) Average (or Aggregate) throughput
in the full window, 2) Simple moving average of the last 10
throughput values, and 3) Exponential weighted moving av-
erage (EWMA) of the last 10 throughput values.

In Figure 3, the rule for RC-based prediction is used from
15th to 25th RTTs. After a significant drop of throughput at
the 27th RTT (due to a lost segment), the Rate Control pat-
tern does not hold, but no other pattern is identified. Hence,
the default rule for Window-based prediction is used from
the 30th RTT onwards. For this example, the pattern based
prediction has lower errors than others as it excludes the
slow start phase for prediction, and averages over a longer
period than moving average approaches.

In Figure 4, Congestion control based rule is used for
prediction from the 65th RTT onwards as 3 complete CC
cycles (14-29, 29-43, and 43-63) are observed. Note that
the throughput pattern is far from textbook congestion con-
trol pattern, but the algorithm makes the judgment that the
pattern is best identified as congestion control.

Table 1. Characteristics of collected traces

Terms Values Comments
Number of traces 461
Downloaded file size 26–34 MB Average: 30 MB
Unique web sites 290 Debian/Gentoo mirrors
Average number of 24,062 (min/max/median) =
segments per trace (17,025/69,866/24,412)
Retransmitted segments 0.09% 97 out 461 traces
Average number of 97 traces
retransmitted segments 103.6 (min/max/median) =
per trace (0/2,672/4)
Average SA RTT 0.1696 sec (min/max/median) =

(0.02/2.91/0.155)
Average number of 2,589 (min/max/median) =
RTTs per trace (143/110,673/662)

3. Experiments and Results

The goal of our experiments is to validate TCP pattern-
based throughput prediction with TCP traces obtained by
downloading large files from web servers. We compare
throughput predictions made by the TCP pattern based
procedure against simple prediction methods like simple
Moving Average, Exponential Weighted Moving Average
(EWMA), and Aggregate throughput prediction, which is
the average throughput over the entire time series that is
available for prediction. A small part of the trace is used to
make a prediction about future throughput, and measured
throughput is compared against predicted throughput. The
average error in prediction is used to compare the accu-
racy of prediction methods. The experiments consisted of
three stages: trace collection, throughput prediction, and re-
sult analysis.

3.1. Experimental Setup

A total of 461 TCP transfer traces were collected from
two machines running RedHat Linux located at the Univer-
sity of Houston. These two machines used default TCP win-
dow size, since the environment is set for a typical Internet
user without any special tuning. Files with an average size
of 30 MBytes were downloaded using wget [11] from mir-
ror sites of Debian Linux [1] and Gentoo Linux [3]. TCP
headers of those traces were collected using tcpdump [6].
University of Houston has two network uplinks to the In-
ternet, one with a capacity of 30 Mbps via Verio and the
other with a capacity of 622 Mbps via Texas GigaPOP (In-
ternet2). The characteristics of these traces are summarized
in Table 1.

Traces are then processed with a perl script to compute
SA RTTs and a time series consisting of segment arrival
times and the number of bytes in a segment. The computed
value of RTTs for the traces varies from 0.02 to 2.91 sec-
onds. Retransmitted segments are included. The number of
retransmitted segments is only 0.09% of the total number
segments, so they have little impact on throughput predic-
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Figure 3. Illustration of throughput prediction and predic tion error with TCP pattern and other methods for a
Rate Controlled flow. All predictions are made for the next 10 0 RTTs.
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Table 2. Throughput prediction methods

Name Comments
Moving Average previous 10 RTTs
Exponential Weighted previous 10 RTTs
Moving Average (EWMA) weight = 0.125
Aggregate throughput average over entire prediction window
TCP Pattern prediction

tion. This information is converted to a time series consist-
ing of per-RTT throughput values.

We then make throughput prediction at every RTT us-
ing TCP pattern-based prediction, Moving Average, Expo-
nential Weighted Moving Average (EWMA), and Aggre-
gate Throughput. The parameters for these methods are de-
scribed in Table 2.

The average error for evaluating throughput prediction is
calculated as:

predicted throughput− measured throughput

measured throughput
×100%

For illustration, in Figure 4, at the 30th RTT, the pre-
dicted throughput is made based on packets collected up to
the 30th RTTs, and the measured throughput is the average
throughput between 31th and 130th RTTs. If the measured
throughput is close to zero, the average error could rise to
infinity. As this is an artifact of the computation method-
ology, all errors larger than 100% are set to 100%. For ex-
ample, in Figure 4, at the 55th RTT, the average error for
EWMA is over 100% and is set to 100%.

3.2. Results and Discussion

We analyzed 461 traces and the average prediction errors
over these traces are illustrated in Figures 5 and 6. Since we
make throughput prediction at every RTT, it is more con-
venient to use RTT as the base unit to compare average er-
rors across traces than a fixed amount of time. In Figure 5,
the window of data available for prediction is varied from
1 to 100 RTTs and a prediction is made for the duration of
200 RTTs after the point at which the prediction is made.

Figure 5 shows that the average prediction error for TCP
Pattern based prediction is the lowest or close to the low-
est for all prediction window sizes. The average error for the
better prediction algorithms varies from around 12% to 20%
depending on the prediction window size. As expected, the
error with the best methods is lower for larger prediction
window sizes since more data is available for prediction.
However, the prediction by Moving Average and EWMA
methods is not affected much since they only look at a fixed
window in the past.

For small window sizes, the average error for Moving
Average is about the same as TCP Pattern prediction. For
large window sizes Aggregate prediction is very close to
TCP Pattern prediction. EWMA predictions were less accu-
rate than the other methods on average. The results of pre-

diction for the next 100 and 400 RTTs were similar to those
reported for 200 RTTs in Figure 5.
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Figure 5. Performance of different throughput pre-
diction methods. All predictions are made for the
next 200 RTTs.

To examine the relationship between prediction accuracy
and different prediction methods, we look at Figure 6. For
each graph in the figure, the window of RTTs available to
make predictions is fixed, while the length of the future for
which predictions are made is varied from 20 to 400 RTTs.

In Figure 6(a), the prediction window is 15 RTTs. We
observe that Moving Average provides the best prediction
in this scenario, slightly better than TCP Pattern prediction.
A window size of 15 RTTs is frequently too short for pat-
tern based algorithms. The Aggregate method is not a par-
ticularly good predictor because the average typically in-
cludes slow start which leads to an underestimate of future
throughput.

The prediction window is increased to 25 RTTs in Fig-
ure 6(b). In this case the TCP Pattern based algorithm is the
best predictor, slightly better than Moving Average predic-
tion. The Aggregate method is a better predictor for predic-
tion window size of 25 RTTs than the case of prediction
window size of 15 RTTs, since the impact of slow start is
not as pronounced on average.

We finally look at Figure 6(c) with a prediction win-
dow size of 50 RTTs. In this case again, the TCP Pattern
based approach provides the best prediction. The Aggregate
method also provides predictions close to the best. The rea-
son is that when a longer window of past historical data is
available, historical average tends to become a good predic-
tor. Moving Average method performs worse for a smaller
prediction window since it only looks at a fixed window and
cannot benefit from the additional information that is avail-
able.

We summarize our observations.
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Figure 6. Performance of different throughput pre-
diction methods. Figures represent predictions
made after observing 15, 25, and 50 RTTs of down-
load data.

• The TCP-pattern based throughput prediction method
developed in this paper performs as well or better than
other methods in all scenarios.

• Throughput prediction using average throughput over
a window of time in the past works well if the win-
dow size is large enough. This observation implies
that bandwidth measurement tools like Iperf and NWS
need to run over a relatively long period of time in or-
der to get accurate measurements.

• Good predictions can be made with window sizes in
the range of 25 RTTs. This implies that good predic-
tions are possible within 5 seconds or less for most
TCP transfers. However, prediction accuracy does im-
prove modestly as prediction window size is increased.

• Finally, the best predictions from data at the begin-
ning of a TCP transfer still have an average error in
the range of 15-20%. The implication is that, although
good predictions are possible, there are inherent lim-
its on throughput predictability on the Internet.

4. Conclusion

We have presented a simple approach for fast TCP
throughput prediction that samples arrival of TCP seg-
ments and exploits knowledge of TCP patterns to get good
predictions. A fast and accurate predictor of TCP through-
put has a role in grid resource management and many
network applications. Bandwidth measurement by ac-
tive probing, like the one used in NWS, can benefit
from this research. By analyzing the data pattern gener-
ated by the probe, rather than simple averaging, a more
accurate throughput prediction can be made.

This is an early report on work in progress. There are
several ways in which our predictions can be potentially im-
proved. The process primarily consists of identifying more
specific patterns and studying the implications of recogniz-
ing the patterns for throughput prediction.

Even in situations where another method is likely to pro-
vide as good average results, our method offers some ad-
vantages. In general, our approach provides a more accu-
rate prediction when a pattern is identified, and a less accu-
rate one when a heuristic is used for prediction. Hence, we
can attach a degree of confidence to our predictors to im-
prove their usage. Also, the method is capable of judging
if enough data is available to make a reliable prediction, or
more of the transfer should be analyzed. These aspects of
research are ongoing.

The throughput prediction described in this paper is ap-
plied to a single TCP stream. Some transfers in grid envi-
ronment utilize multiple TCP streams and a tuned TCP win-
dow size on the host machines. Both these aspects are being
addressed in ongoing experiments.



The final goal is an online tool to provide real-time
throughput predictions for TCP transfers within a few
RTTs. This paper has developed a scientific basis for such
a tool.
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