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Abstract

The performance skeleton of an application is a short
running program whose execution time in any scenario re-
flects the estimated execution time of the application it rep-
resents. Such a skeleton can be employed to quickly estimate
the performance of a large application under existing net-
work and node sharing. This paper presents a framework
for automatic construction of performance skeletons of a
specified execution time and evaluates their use in perfor-
mance prediction with CPU and network sharing. The ap-
proach is based on capturing the execution behavior of an
application and automatically generating a synthetic skele-
ton program that reflects that execution behavior. The paper
demonstrates that performance skeletons running for a few
seconds can predict the application execution time fairly ac-
curately. Relationship of skeleton execution time, applica-
tion characteristics, and nature of resource sharing, to ac-
curacy of skeleton based performance prediction, is ana-
lyzed in detail. The goal of this research is accurate perfor-
mance estimation in heterogeneous and shared computation
environments.

1. Introduction

Computational grids are emerging as the vehicle for fu-
ture high performance scientific and commercial comput-
ing. Execution environments for grids have to address allo-
cation of resources to applications, and that is driven by the
expected performance of an application on different parts of
a grid. Estimation of application performance has an impor-
tant role to play in grid computing, and the problem is much
more complex for a shared heterogeneous computation en-
vironment than for conventional high performance comput-
ing platforms.

The research community clearly recognizes the impor-
tance of performance estimation in grid environments and

substantial research effort has been invested in measure-
ment, modeling, and prediction of various system resources.
Measurement and prediction of CPU availability has been
studied in [11, 33]. Measurement and modeling of network
bandwidth and latency is a very active area of research [7,
14, 18, 26]. NWS (Network Weather Service) [34] and RE-
MOS (Resource Monitoring System) [16] are two systems
that have been specifically designed for measurement of
available CPU and network resources in grid environments.
NWS, in particular, is in widespread use as a CPU and band-
width monitoring and prediction tool.

Systems for resource management and scheduling for
problem solving on grid environments include Netsolve [8],
Nimrod/G [6], Gallop [32], AppLeS [4] and Condor [15,
19]. These systems rely on measured and predicted avail-
ability of CPU, bandwidth and other resources to make re-
source allocation and management decisions where appli-
cable. AppLeS [4] pioneered application level scheduling,
where resource selection is performed by agents associated
with an application based on available resource information,
rather than by a central resource manager. A number of al-
gorithms and frameworks have been proposed for resource
selection in networked environments based on system status
information, a few examples being [4, 27]. Some of the re-
cent research has emphasized the importance of application
properties in resource allocation and addresses resource se-
lection based on mapping application properties to the sys-
tem status [5, 9, 20, 24, 29, 31].

While the research discussed above represents many dif-
ferent directions, the state of the art approach to resource se-
lection for applications can be broadly summarized as con-
sisting of the following steps:

1. System characterization: Measure and predict the sta-
tus and availability of system resources such as CPU
and network capacities.

2. Application characterization: Develop a model that
captures the dependence of an application’s perfor-
mance on availability of resources.



3. Mapping and scheduling: Select the best nodes to ex-
ecute the application based on available system status
and application characteristics.

We argue that this state of the art has the following in-
herent limitations that motivate a different paradigm:

• Maintaining accurate current system status informa-
tion is inherently expensive. In order to have recent
CPU and network information whenever a resource as-
signment decision has to be made, available system re-
sources have to be monitored continuously and status
information has to be broadcast frequently. For net-
work properties, measurements themselves consume
bandwidth and the complexity increases quadratically
with the size of the available grid. High speed back-
bone network links are particularly challenging, espe-
cially since it is not desirable to consume a critical
shared resource for measurements.

• Estimating application performance based on system
status is inherently error prone. Measurement tools
provide resource availability and utilization informa-
tion such as CPU load factor and unused bandwidth
on various components of a grid. On the other hand,
the key information of interest for resource manage-
ment is how a particular application will perform on a
set of resources under current system status. Predict-
ing the performance of application tasks from system
status information is very difficult. The following ex-
amples underline the complexity:

– The amount of CPU time that a process is likely
to get on a computation node cannot be deter-
mined even when the load average on the node
is known since it partly depends on the synchro-
nization structure of the parallel and distributed
applications in the system.

– The expected duration of a bulk transfer cannot
be estimated even when accurate point to point
unused bandwidth information is available since
it depends on the transport protocols used by the
application and other traffic on the network.

Finally even if performance of individual node
computations and data transfers can be determined, es-
timating collective communication and overall appli-
cation performance is still challenging as it depends
on the nature of sharing in the network and the appli-
cation structure.

The conclusion is that it is virtually impossible to esti-
mate application performance from network status in many
scenarios. This has motivated us to follow a different ap-
proach to estimating performance in shared heterogeneous
grid environments which is based on the claim:

The most effective and efficient way to estimate the perfor-
mance of an application under the existing status of grid re-
sources is brief monitored execution of code that mimics the
application.

We refer to such code as the performance skeletonof
the application. More formally, a performance skeleton is a
synthetically generated short running program whose exe-
cution time always reflects the performance of the applica-
tion it represents. Hence, simply executing the performance
skeleton in a shared execution environment provides an es-
timate of application performance in that environment. The
resource selection for an application is then addressed as
follows. A group of candidate node sets is identified for ex-
ecution (using existing approximate methods) and the final
choice is made by comparing the execution time of the ap-
plication skeleton on each node set.

The central contribution of this paper is a framework for
automatic construction of accurate performance skeletons
for distributed applications and evaluation of the capabil-
ity of automatically generated skeletons to predict perfor-
mance efficiently and accurately.

While we have used resource selection in shared grid en-
vironments for motivation of this research, it is important
to point out that this approach to performance prediction
has broad applicability. Another example is prediction of
the performance of important applications on a future ar-
chitecture under simulation. Since execution under simula-
tion is multiple orders of magnitude slower than real execu-
tion, this skeleton based approach can be particularly appro-
priate. The real application does not have to be simulated at
all as the skeleton can be built on existing machines.

The basic philosophy in construction of a performance
skeleton is that if the skeleton executes operations that are
representative of application execution, the performance of
the skeleton and the application will change similarly in re-
sponse to changes in the execution environment. Hence, a
performance skeleton must capture the execution behavior
of the application in terms of synchronization and message
exchange patterns, CPU usage patterns, and memory ac-
cess patterns, yet execute for a very short time only. Our
approach is to measure the application performance behav-
ior during execution, summarize it by identifying repeating
phases, and then reproduce it as a synthetic skeleton pro-
gram.

We briefly discuss other projects that summarize appli-
cation behavior and their goals. Reed et.al. [23, 17] gen-
erate compact application signatures using a curve-fitting
approach to reduce event-tracing overheads for online per-
formance monitoring and tuning. Snavely et.al. [24] create
application and machine signatures to simulate application
behavior across different system or processor architectures.
Duesterwald et.al. [12] identify phase behavior for kernel-
level resource aware scheduling. Sherwood et.al. [21, 22]



exploit periodic application behavior to identify portions of
the program that are representative of an application for
the purpose of architectural simulations. Our approach is
driven by many of the ideas and concepts developed in these
projects. However, we have a very different goal, which is
to develop an independent skeleton program. An alternate
approach is explored in FAST [10], a tool that performs
abstract simulations while completely avoiding execution
of computation code. This approach ignores program con-
trol flow, which can impact the communication pattern and
computation time. FAST also requires significant modifica-
tion to the source program, while our approach does not re-
quire access to the source code.

2. Performance skeletons

A performance skeleton is defined as a program whose
execution time is directly related to the execution time of
the application it represents; if the execution time of a skele-
ton is 1/1000th of the application execution time on a ded-
icated cluster, then this relationship should hold in any ex-
ecution environment even when nodes and links are shared
with other applications. This definition is idealistic, and in
practice, the goal is to build a skeleton that conforms to
these conditions as closely as possible. The skeleton should
also be as short-running as possible as skeleton execution is
an overhead. We would like to point out that skeleton exe-
cution is very different from actually executing the applica-
tion for a short time. The skeleton should capture the total
execution of an application in a short time while the begin-
ning part of an application is typically not representative of
the entire application.

For the performance behavior of a skeleton to be simi-
lar to that of an application, the execution and resource us-
age patterns of the skeleton must be similar to the dominant
corresponding patterns of the application. We have the fol-
lowing specific criteria:

1. CPU activity: The processing done by the CPU and
CPU busy/idle phase pattern should be similar for the
application and the skeleton.

2. Memory activity: The memory access pattern in the
skeleton should be representative of the application.
This is particularly important to get similar cache per-
formance on nodes with different memory hierarchies.

3. I/O activity: The I/O pattern in the skeleton should be
representative of the application.

4. Communication and synchronization: The data ex-
change patterns among processes should be similar for
the application and skeleton to preserve the commu-
nication and synchronization performance. The sizes,
types, frequencies and the global patterns of the net-
work messages exchanged should be similar.

5. Application phase transitions: An application transi-
tions between different phases of execution at multi-
ple levels of granularity. The sequence of these phases,
as well as the CPU, memory and communication ac-
tivities in each phase, should be reflected in the skele-
ton.

Our long term project goal is to generate skeletons conform-
ing to the above constructive definition but this paper is lim-
ited to performance skeletons which mimic the communica-
tion sequences and coarse computation behavior of the ap-
plication. Such skeletons are sufficient for predicting per-
formance of compute and communication bound applica-
tions under resource sharing. Reproduction of memory ac-
cesses and fine-grain instruction level computation behavior
is critical for performance estimation across different pro-
cessor and memory architectures, but not essential for sim-
ple CPU and network sharing scenarios. We discuss our ef-
forts in reproducing memory behavior for performance pre-
diction in [30].

3. Automatic construction of skeletons

We have developed a framework for automatic construc-
tion of performance skeletons and implemented it for mes-
sage passing MPI programs. We outline the procedure in
this section; details and algorithms employed are available
in [25]. The main steps are as follows:

1. Record application’s execution trace: The application
is executed on a controlled testbed and its execution ac-
tivity, specifically CPU usage and message exchanges,
is recorded. This is the execution trace.

2. Compress execution trace into an execution signature:
The repeated patterns in the recorded execution trace
are identified and used to generate a compact repre-
sentation of the trace by introducing a “loop structure”.
The new compact representation is the execution sig-
nature.

3. Generate performance skeleton program from the exe-
cution signature: The application execution signature
is converted to a computer program which generates
execution activity that is similar to the recorded execu-
tion signature but with execution time scaled down by
a given factor K. This is the performance skeleton.

This skeleton construction procedure is illustrated in Fig-
ure 1. This procedure does not involve source code analysis,
modification or instrumentation and hence has broad appli-
cability. The skeleton construction details are driven by the
desired ratio between the execution time of the application
and the corresponding performance skeleton, which we call
the scaling factor. We now discuss the steps in more de-
tail.
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Figure 1. Construction of application performance skeletons.

3.1. Recording of execution trace

To generate the execution trace of an MPI application, it
is linked with a profiling library developed for this purpose
and executed on a dedicated testbed without any competing
processes or network traffic. The profiling library records
information for each application process in a separate trace
file. Each MPI library call, along with the parameters passed
to it and its start time and end time, are recorded. Tim-
ing measurement is done to microsecond granularity with
Linux gettimeofday system call [1]. Time for computation
operations is recorded as the time spent between the end
of one MPI operation and the start of the next MPI oper-
ation. Generation of the trace file requires no modification
of the application source code. We verified that the execu-
tion time overhead of trace generation is negligible, typi-
cally well under 1% of the execution time.

3.2. Compression of execution trace to execution
signature

The application execution trace is a long record of mes-
sage exchanges and interleaved compute operations of vary-
ing duration. Most of the time during application execution
is typically spent in repeating loops as application execu-
tion activity tends to be cyclic. The goal of this step is to
identify cyclic behavior in the execution trace to generate
a compact execution signature. While establishing repeat-
ing behavior we look for segments of the execution trace
with similar activity rather than exactly identical segments.
This process consists of clustering similar execution events
in the trace followed by conversion of repeated operation se-
quences into a loop structure.

Clustering similar execution events:

The objective of this stage is to replace the execu-
tion trace by a string of symbols where substantially
similar execution events are placed in one cluster and
assigned the same symbol.

As an example, suppose we encounter the follow-
ing two operations in a trace:

MPI Send(Node 3, 2000 bytes), and
MPI Send(Node 3, 1800 bytes)

If both these events occur only once, they are both re-
placed by the following operation:

MPI Send(Node 3, 1900 bytes)
Grouping similar events helps in generating a more
compact representation. Events that are grouped to-
gether are execution phases of approximately equal du-
ration or message calls with similar parameters. Our
approach treats different MPI primitives and blocking
and non-blocking calls as distinct events, thus ensur-
ing that they are never grouped together. We identify
the non blocking calls and associated MPI Wait() to
determine the corresponding overlapped region. This
helps develop a faithful representation of the applica-
tion’s communication structure.

Formally we have developed a measure for dissimi-
larity of events in N– dimensional space based on [13],
with one dimension for each parameter of an execution
event. The extent of clustering is controlled by a simi-
larity threshold which can be assigned a value between
0 and 1. A lower similarity threshold represents more
strict rules for clustering, but will lead to less compres-
sion. A threshold of 0 implies that only identical events
are clustered together.

This stage converts the trace log into a string of



symbols such as:
αββγββγββγκαα

where each occurrence of a symbol represents an ex-
ecution event with different occurrences of the same
symbol referring to functionally identical execution
events.

Clustering of similar events and representing them
by an “average event” implies some loss of informa-
tion but leads to significant compression, and subse-
quently, smaller skeletons. This tradeoff can be man-
aged with the similarity threshold parameter.

Identification of cycles:
The objective of this step is to identify repeated ex-

ecution segments and compress them as loops. Since
the previous step converts the execution trace into a se-
quence of frequently repeating symbols, the problem
of identifying repeating application behavior is now
represented as the problem of finding repeating sub-
strings within a string. As an example, the following
string:

αββγββγββγκαα
should be replaced by:

α[(β)2γ]3κ[α]2

We have developed an algorithm [25] which recur-
sively identifies all the repeating sub-strings, starting
with the largest matches and working down to sub-
string matches of a single symbol. The repeating sub-
strings are then organized as recursive loop nests with
sub-strings of symbols as loop bodies and the number
of repetitions as the number of loop iterations.

We now address how a given value of similarity thresh-
old translates to specific rules for compression and then dis-
cuss how the value of similarity threshold is determined.
For message passing operations, the value of the similar-
ity threshold linearly relates to the maximum difference in
message sizes allowed for communication operations to be
combined into a cluster. The above compression procedure
is applied across communication operations without regard
to interleaving computations. When two sequences of com-
munication events with interspersed computation events are
to be combined, an average value of execution time for the
corresponding computation events in the sequence is used
to build the compressed sequence. This approach represents
maximum flexibility in combining computation events but
was found to be effective in our experience.

An iterative process is employed to determine the opti-
mal value of the similarity threshold based on the desired
compression ratio Q between the length of the execution
trace and the length of the compressed execution signature.
Initially the similarity threshold is set to 0 and the cluster-
ing and compression procedure is applied. If the degree of
compression is less than the desired ratio Q, the similar-

ity threshold is increased gradually until the desired com-
pression of Q (or higher) is achieved. Now, the question is
how should Q be determined ? Based on our experience, we
have used Q = K/2 where K is the scaling factor between the
application execution time and the desired skeleton execu-
tion time. It is desirable to have an upper bound on similar-
ity threshold so that very different execution events are not
combined. In practice, this may not be a significant issue.
The maximum similarity threshold that was required across
the NAS benchmarks for meaningful experiments was al-
ways less than .20 which we consider acceptable.

3.3. Generation of performance skeleton program
from execution signature

The previous stage gave us the execution signature which
is a compressed record of the complete execution of the ap-
plication. The execution signature compresses execution in-
formation by using a loop structure with loop bodies repre-
senting repeating execution behavior. Our goal in this step
is to create a short running program in a programming lan-
guage like C/C++ which reproduces the scaled down dom-
inant execution behavior represented by the execution sig-
nature. The specific goal is to take the application’s execu-
tion signature and the desired scaling factor K as inputs, and
generate an appropriate performance skeleton. The skeleton
construction procedure is outlined as follows:

1. The numbers of loop iterations in the application sig-
nature are reduced by a factor K. Loop iterations that
form the remainder in this division process are un-
rolled and become a component of the unreduced part
of the signature.

2. Groups of K occurrences of identical execution oper-
ations anywhere in the unreduced part of the skeleton
are identified and replaced by a single occurrence.

3. All remaining unreduced operations are scaled down
by a factor K by adjusting their parameters. For com-
pute operations, the duration of execution is reduced
by a factor K. For communication operations, the num-
ber of bytes exchanged is reduced by a factor K.

4. This modified application signature is converted to
synthetic C code by generating corresponding syn-
thetic loops, MPI calls, and compute operations.

More details are available in [25]. One weakness of this
approach is that scaling down a communication operation
by reducing the number of bytes exchanged is not accu-
rate. Execution time of the reduced operation would typi-
cally be higher than expected because communication op-
erations have two time components; latency, which is fixed
for all message sizes, and message transfer time, which can
be scaled down linearly. By reducing the number of bytes



exchanged we only reduce the message transfer time, leav-
ing the latency component intact. A more accurate scaling
down cannot be achieved without making some assump-
tions about the execution environments. However, we point
out that this kind of reduction is a “last resort” that is em-
ployed only for iterations that remain after division by K
and for operations not in loops. In practice, the impact on
overall performance estimation is expected to be minimal
for most applications.

3.4. Shortest running “good” skeleton

It is desirable that the performance skeletons be short
running since execution of the performance skeleton is an
overhead in performance estimation. However, the predic-
tion accuracy is likely to be lower for shorter running skele-
tons. The framework we have developed is designed to con-
struct skeletons for any scaling factor that is provided, and
equivalently, for an arbitrary skeleton execution time. A key
question in this research is as follows: How short running
can a skeleton be and still generate reasonable performance
estimates ?

To address this, the skeleton construction framework
heuristically determines the shortest runtime skeleton that it
believes can be constructed without significantly sacrificing
prediction accuracy, and issues a warning if the requested
scaling factor implies a smaller skeleton. To determine the
shortest “good” skeleton, the framework identifies the dom-
inant sequence of execution events in the application that
comprise a significantly large percentage of application ex-
ecution time. A skeleton is considered a good skeleton if at
least one full iteration of the dominant sequence of execu-
tion events is included.

As an example consider the NAS IS (Integer Sort) bench-
mark whose main communication operation is a large all-
all transfer. The accuracy of the skeleton is expected to be
good if full all-all transfers are included. Hence the mini-
mum size for a good skeleton will be the shortest skeleton
that includes at least one full all-all transfer.

4. Experiments and results

A prototype framework for automatic construction of
performance skeletons has been implemented. We used it
to generate skeletons to predict the performance of the cor-
responding applications on a network testbed.

4.1. Experimental setup

The testbed for the experiments is a compute cluster
composed of 10 Intel Xeon dual CPU 1.7 GHz machines
connected by Gigabit Ethernet links and a full crossbar
switch. Results are presented for experiments conducted on

4 nodes. All experimental results are based on the MPI im-
plementation of the NAS Parallel Benchmarks [3, 28]. The
codes used are BT (Block Tridiagonal solver), CG (Con-
jugate Gradient), IS (Integer Sort), LU (LU Solver), MG
(Multigrid) and SP (Pentadiagonal solver). All programs
are compiled using GNU g77 (Fortran) compiler except
IS, which is compiled with the gcc (C) compiler. The
MPICH implementation of MPI is used. The bandwidth be-
tween computation nodes was managed with the Linux ad-
vanced networking iproute2 [2] in order to simulate lim-
ited bandwidth availability due to competing network traf-
fic. iproute2 works by intercepting the network packets and
passing them through artificial queues to simulate band-
width limitations.

4.2. Experiments conducted

Performance skeletons were constructed for each Class
B NAS Benchmark program with an intended skeleton ex-
ecution time of 10 seconds, 5 seconds, 2 seconds, 1 second
and 0.5 second by defining the appropriate scaling factors.

Subsequently, the benchmarks and the corresponding
performance skeletons were executed on the same testbed
under the following five resource sharing scenarios:

1. Two competing compute intensive processes are run
on one node.

2. Two competing compute intensive processes are run
on each node.

3. Available bandwidth on one of the links was reduced
to 10Mbps using iproute2.

4. Available bandwidth on each link was reduced to
10Mbps.

5. Competing processes as above on one node and re-
duced bandwidth as above on one link.

(Note that at least two processes are required to create
significant CPU contention on dual processor nodes.)

For each application, the execution time was predicted
for each resource sharing scenario and each skeleton as
the product of the skeleton execution time and the corre-
sponding measured scaling ratio. The measured scaling ra-
tio is similar to the scaling factor except that actual skele-
ton execution time on a dedicated testbed is used which can
be slightly different from the intended execution time for
which the skeleton was constructed. The predicted execu-
tion time was compared to the actual measured application
execution time for all scenarios. We now present the results.

4.3. Validation of skeleton properties

The performance skeletons are expected to have execu-
tion behavior that reflects the application. As a basic test,



we compared the percentage of time spent in the communi-
cation (MPI) operations versus other computations for the
skeletons and the application. The results are illustrated in
Figure 2.
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Figure 2. Time spent by NAS benchmarks and
corresponding skeletons in different execu-
tion activities. The bar with horizontal lines
is for the actual application.

We observe that the ratio between the computation and
communication time is broadly similar for the skeletons and
the corresponding application. The 0.5 second skeleton for
the LU benchmark shows a somewhat larger communica-
tion time ratio than the other cases. We expect that very
small skeletons will not represent the application as faith-
fully as larger skeletons as more approximations are in-
volved in their construction. The ratios for the skeletons of
BT benchmark show more variation than others. The con-
clusion is that moderate variations are possible because of
the nature of skeleton construction process but most skele-
tons are fairly close to their application in this respect.

4.4. Validation of performance prediction

Average error in execution time predicted by the perfor-
mance skeletons across applications and skeleton sizes is
plotted in Figure 3. These results are averaged across re-
source sharing scenarios. We observe that the average pre-
diction error across all benchmarks, scenarios and skeleton
sizes is a relatively low 6.7% implying that the performance
skeletons can predict execution time effectively. We now
discuss the relationship of prediction accuracy to applica-
tion characteristics, skeleton size and resource sharing sce-
narios.

Skeleton size and benchmarks:Our goal of “short run-
ning” performance skeletons is to reduce overheads but pre-
serve prediction accuracy. From Figure 3 we observe that
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Figure 3. Prediction error for NAS bench-
marks across skeletons sizes from 10 to 0.5
seconds. The error is averaged across all re-
source sharing scenarios.

the relationship between average prediction error and skele-
ton size shows no distinct pattern across benchmarks. For
some benchmarks, prediction error does not change much
when going from 10 second to 0.5 second skeletons. How-
ever, error is usually close to the highest for the smallest
0.5 second skeletons. The average error across all appli-
cations for 0.5 seconds skeletons is around 8% versus the
range around 5% to 6% for other cases.

The minimum execution times of a “good” skeleton for
each benchmark as determined by our framework, based on
discussion in section 3.4, is listed in Figure 4. According to
this table, the skeletons that are flagged as potentially “not
good” are 0.5 and 1 second skeletons for BT, 0.5, 1, and
2 second skeletons for IS, and 0.5 and 1 second skeletons
for LU. Indeed the 4 cases with the highest prediction er-
ror, i.e., the 0.5 second BT skeleton and 0.5,1, and 2 sec-
ond IS skeletons, were flagged to have low prediction value
by the skeleton construction framework.

Application Smallest Skeleton
BT 1.01 sec 
CG 0.13 sec 
IS 3 sec 
LU 1.97 sec 
MG 0.34 sec 
SP 0.34 sec 

Figure 4. Estimated minimum execution time
for the smallest good skeleton.

The prediction errors for each size skeleton are grouped
together and displayed in Figure 5. While there is no uni-
form pattern again, the number of cases with a relatively



large prediction error increase with reduced skeleton sizes
and are clearly higher for 0.5 second skeletons.
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Figure 5. Prediction error for skeletons of dif-
ferent sizes for NAS benchmarks. The error
is averaged across all resource sharing sce-
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The main conclusion is that performance skeletons of a
few seconds are normally adequate for reasonably accurate
performance prediction, with a loose correlation between
smaller skeletons and lower prediction accuracy. Also, the
framework generates meaningful application specific lower
bounds for skeleton sizes below which the prediction power
of a skeleton is less reliable.

Sharing scenarios: We examine how the nature of shar-
ing relates to accuracy of performance prediction. Our ex-
periments have spanned sharing of one or all CPUs, one
or all communication links, and a combination of one node
and one link. Figure 6 shows prediction error under different
sharing scenarios when employing representative 10 second
skeletons. We observe that the prediction error is higher for
scenarios that include competing traffic. In the case of CPU
sharing only, the error is higher for the “unbalanced” shar-
ing of a single node versus sharing of all nodes.

We believe that prediction error is higher for net-
work sharing because communication operations cannot
be scaled down linearly unlike compute operations, as dis-
cussed in section 3.3. We speculate that the error in
unbalanced execution scenarios is higher because of poten-
tial inaccuracy in reproduction of synchronization behavior
in performance skeletons. While constructing a skele-
ton we set the duration of compute operations within loops
to their average duration across iterations of the loop. A
more accurate approach that considers frequency distribu-
tion of the duration of compute events will be taken in the
future.
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Figure 6. Prediction error for NAS bench-
marks across five resource sharing scenar-
ios. A 10 second skeleton was used.

4.5. Comparison with other prediction techniques

We performed additional experiments to compare pre-
diction accuracy of such performance skeletons versus two
other simple and “reasonable” approaches to performance
prediction listed as follows:

Average Prediction: The average slowdown of the entire
benchmark suite under a given resource sharing sce-
nario was used to predict the execution time for every
program in the same scenario. The reasoning is that,
if all programs slow down roughly equally under re-
source competition, there is no need for customized
performance skeletons for applications discussed in
this paper; instead, a generic short running program
could be run to predict the execution time for any ap-
plication under resource sharing.

Class S Prediction: The experiments described in this pa-
per were performed with Class B NAS benchmarks,
which run in 30 to 900 seconds without load on 4 ma-
chines in our cluster. Each NAS benchmark also has
a Class S version which typically runs in less than
a second. In this case, the Class S benchmarks were
used as the performance skeletons for the Class B
benchmarks for performance prediction. The reason-
ing is that since both classes of benchmarks perform
the same fundamental calculation but on different data
sizes and scales, the short running class S benchmarks
could be considered good manually generated perfor-
mance skeletons.

The performance prediction error for each of these ap-
proaches is plotted in Figure 7. The performance skeleton
approach based on the framework in this paper is clearly
better than the other methods. Prediction with 0.5 sec-
ond skeletons, which roughly take as long to run as Class
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prediction error for the NAS benchmark suite
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S benchmarks, is also clearly superior to other methods.
Hence the overhead of our approach is also competitive.

The above results are significant for the following rea-
sons. The fact that “average prediction” approach is rela-
tively ineffective proves that applications have widely vary-
ing execution behavior and hence an approach that is cus-
tomized to applications is required. The inability of Class S
benchmarks to predict the behavior of larger Class B bench-
marks shows that one cannot simply run an application with
a very small input data set and expect it to have similar ex-
ecution behavior as running with realistic data sets.

5. Limitations and extensions

Our current framework is only a step toward a com-
prehensive solution for execution driven performance pre-
diction and has many limitations. Prediction across CPU
and memory architectures cannot be made without better
modeling of instruction level execution and memory ac-
cess patterns. The current implementation is limited to MPI
programs. The implementation can be improved to better
manage scaling down of communication. More experimen-
tation, particularly on wide area networks is needed for
stronger validation. Additional work is needed to scale pre-
dictions across different numbers of processors and differ-
ent size data sets. However, the current framework is effec-
tive for performance prediction in basic shared execution
environments.

6. Concluding remarks

This research is in the direction of the broader topic of
resource selection and performance estimation in grid com-
puting environments. We believe that knowledge of an ap-
plication’s cyclic behavior can be effectively employed in
grid performance estimation and resource selection frame-
works. This paper introduces performance skeletons, which
are short running programs that can be used for performance
estimation with resource sharing. The main advantage of a
performance skeleton based approach is that it avoids the
cost and inaccuracy associated with determining up-to-date
information regarding node and network usage and translat-
ing it to expected application performance.

We demonstrate that automatically generated perfor-
mance skeletons that run in seconds can predict application
performance accurately, and that our framework can ef-
fectively compute the size of the shortest possible “good”
skeleton that can estimate performance accurately. The pa-
per also offers insight into how application characteristics,
skeleton size and nature of resource competition im-
pact prediction accuracy. In summary, the paper presents
a promising approach to performance estimation with re-
source sharing and provides convincing evidence that it is
practical and effective.
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