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Idea of Volunteer Computing

s aka global computing or public resource computing
= Perform computations by exploiting unused cycles:
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Volunteer Computing

= Run another GUEST application simultaneously
with the HOST application

Time =

Cpu utilization

e Guest exploits idle cycles
 No impact on host execution



Volunteer Computing Today

= Exploit idle compute cycles to solve large scale
(scientific) applications.
= Primarily “embarrassingly parallel” or “bag of
tasks” applications

= Volunteer Computing Systems
= BOINC: Compute time donated by public on PCs

« SETI@Home (1 million PCs) , Protein folding,
Climate Prediction, ...

= CONDOR: Idle desktops in an organization
= ENTROPIA: Commercial product



Volunteer Computing on Clusters
Compute Clusters are a large source of CPU

cycles

For volunteer computing:
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Advantages

= Homogeneous groups of high performance
nodes

= Maintained by IT professionals
= Always running
= High interconnectivity between nodes

Disadvantages
= They are always busy!



Contributions of this Work

Address the following questions:

= Pattern and extent of unused cpu cycles and
memory on compute clusters ?

= Can they be exploited for guest applications
without impacting the main host applications ?
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Avallability of CPU Cycles on Clusters

= Clusters vary widely in usage
= many are used for computing 100%o of the time

= Others may not be: a group of research clusters
IN a recent study varied 7-22%0 In usage

= ... And when they are busy executing applications:

= What fraction of cpu cycles and memory are
unused ?

= What are the usage patterns ?

POINT: Idle cluster can be trivially used for volunteer
computing. Can “busy” clusters also be used ?
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Empirical Study of CPU/Memory Usage
on a Cluster

= Data Collected from a busy cluster at University of
Houston

= 30 Node Beowulf cluster - Intel Xeon Dual
processor nodes with 2 Gb RAM, 1 Gbps ethernet
network

= CPU and memory usage and availability monitored
= Information source was /proc filesystem
=« Data collected every 5 minutes over 1 month

= Usage graphs for a 1 month period (July 2005)
coming up!



Sample Cluster Node Usage
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Usage of Representative Nodes
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CPU Usage on different time scales
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Usage Experiment Observations

= CPU Utilization varies, with monthly average over a
node varying from 25%b6 to 85%0

= Memory usage also varies — average between 30%b
and 90%o for nodes

= Stability over windows of hours to days- steady or
a slow climb (for memory)

Mini conclusion: long and predictable periods of CPU
and memory underutilization could be used for
volunteer computing even when nodes are “busy”




Part 2 of Talk:
Is Fine Grain Cycle-Stealing practical ?

Processor may have unused cycles (typically host
process blocked on 1/0), at a fine grain (msecs)

= Can they be used for guest applications ?
= Would this slow down the main host application ?
= Is the slowdown acceptable ?

APPROACH: Empirical measurements to gain insight.
Focus on measuring/minimizing host application
slowdown.



Experiments Overview

Step 1 . Host application executed In dedicated
mode

Step 2 : The Host application executed in shared
mode with a Guest application at /owest priority

Then Slowdown of Host application due to cycle
stealing by Guest application is computed:

Percentage Slowdown = (Ts — Td)/ Td *100
Ts — Execution time in shared mode
Td — Execution time In dedicated mode
Experiments on small (10 dual nodes) Linux cluster.
NAS benchmarks used as host/qguest applications
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Experimental Setup

GOAL: Measure slowdown of parallel host applis due
to a (sequential) guest application:

= Number of nodes = 4 (8 processors)

= Host applications: NAS Class B benchmarks

= Guest application: NAS EP benchmark (“sequential”)
= Host application threads = 8 (2 per node)

= Guest application threads = 4 (1 per node)

= Priority of Host application = Normal (nice = 0)

= Priority of Guest application = Lowest (nice = 19)

s LiInux 2.4 and Linux 2.6 kernels



Slowdown on different OS Kernels
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“Tuning”: Changing the load balance frequency

CSaUH among CPU queues from 200 msecs to 10 msecs.
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Observations:
Slowdown on different OS Kernels

O 2.4 kernel O 2.6 kernel A 2.6 kernel (tuned)
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- Slowdown with regular Linux is unnacceptably
high, although lower with 2.6 kernel

e Slowdown with “tuning” typically < 5 %6 (avg
3.8 20). Not zero but could be tolerable
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Benefit to Guest Application

Measure increase In normalized system throughput
with a guest app vs dedicated host app execution

System Throughput Increase
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Parallel Guest Application

Parallel App CG as guest versus sequential EP
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Scaling Behavior
Employ 8 nodes (16 threads) versus 4 nodes (8 threads)

m 4 Nodes (8CPUs) m 8 Nodes (16 CPUK)
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Avg slowdown increases modestly — 3.6%0 to 4.5%0
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Raising Priority of Host

Increase priority of host application: Normal to Highest

m Host app at nice =0 @ Host app at nice =-20
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Overall tie — slowdown increases for some apps!
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Discussion

= Clusters have unused CPU and memory resources
= Beside idle time, resources are often underused

= Utilizing busy clusters for volunteer computing is a
challenge with current Linux

= Some tuning necessary for acceptable behavior

= Even slowdowns <5 96 are an issue

= Scalability needs to be investigated further

= Performance with parallel guests discouraging
=« But most guests today are “sequential”
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Conclusive Discussion

= Paper offers some basic guidelines to employ
volunteer computing on clusters

= Summary — do it when CPU is relatively idle and
enough memory is available

= Support for Zero Priority Processes that always
yield to other higher priority processes will go a
long way In solving these problems

= Current schedulers too worried about starvation
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Conclusive Conclusions

= Volunteer computing on clusters is very attractive

= Number of clusters is increasing and many are
relatively idle

= This is one component of making true parallel
volunteer computing possible

= Most poor scientists will be able to use other
people’s clusters

= Significant hurdles remain, especially in making
scheduling more friendly
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CS@UH

Contact: www.cs.uh.edu/—jaspal

jaspal@uh.edu

Thanks !!
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http://www.cs.uh.edu/~jaspal

Impact of lowering the priority of Guest
application
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Observations:

*By running the guest application at lower priority, the slowdown of main app reduces

considerably

CSQUH. not slowdown at all (guest app gets enough cpu from idle time)

EP as guest app
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Impact of lowering the priority of Main

application

0O Main app at nice =0 m Main app at nice =-20
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Observations:

* Increasing priority of Main app to highest does not help

@IGRHY EP (main app)
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CPU1 CPU2
High1 {R)  High2 (R)
Low1 (R)
Initial State
CPUA1 CPU2
Low1 (R) High1 (R}
High2 (R) gm=m

HighZ wakes up, and bath high
priofity processes are sharng one
Cpu, whare as low prionty process
gets another cpu to itseif
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CPUA CPU2

High1 (R}
Low1 (R)

High2 (S)

HighZ goes to sleep waiting on a
MP| message and CPU2 becomes

idle
CPUA CPu2
Low1 (R) High1(R)
High2 {5)

since CPUZ beomces idles, load
balancer gets invoked and migrates

High1 on CPU2, so that both cpus
are busy
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Slowdown of different types of guest

applications
0O EP Guest App (4 nodes) m CG Guest App (4 nodes)
@ EP Guest App (8 nodes) @ CG Guest App (8 nodes)
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Observations:

*CG guest application slows down more than EP guest application

Mber of nodes increase, slowdown of CG increases whereas slowdown of EP
S
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Types of Guest Applications
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Avg cpu and memory utilization of 30
nodes over 1 month period
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Observations:

Avg cpu

utilization = 63.80%
Avg memory

utilization = 52.14%

There are idle cpu cycles available to steal (at a fine grain)

mlts are presented in order of increasing memory utilization
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Linux 2.6 kernel Scheduler and nice
values

= Scheduling = f (dynamic priority)

= Dynamic priority = static priority + interactivity bonus
= Static priority = nice value

= Timeslice = f (nice value)

Nice value Timeslice Priority

-20 800ms highest

0 100ms Normal (default)
+19 5ms lowest

= Load balancer introduced as part of kernel (Run queue per
cpu)
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