
1

Volunteer Computing on Clusters

Deepti Vyas* & Jaspal Subhlok

University of Houston

*Currently with Halliburton

2

Idea of Volunteer Computing
aka global computing or public resource computing
Perform computations by exploiting unused cycles:

Time

C
PU

 u
til

iz
at

io
n

Sample execution of a HOST application

3

Volunteer Computing
Run another GUEST application simultaneously
with the HOST application

Time

C
pu

 u
til

iz
at

io
n

• Guest exploits idle cycles
• No impact on host execution

4

Volunteer Computing Today
Exploit idle compute cycles to solve large scale
(scientific) applications.

Primarily “embarrassingly parallel” or “bag of
tasks” applications

Volunteer Computing Systems
BOINC: Compute time donated by public on PCs

SETI@Home (1 million PCs) , Protein folding,
Climate Prediction, …

CONDOR: Idle desktops in an organization
ENTROPIA: Commercial product

5

Volunteer Computing on Clusters
Compute Clusters are a large source of CPU

cycles
For volunteer computing:

Advantages
Homogeneous groups of high performance
nodes
Maintained by IT professionals
Always running
High interconnectivity between nodes

Disadvantages
They are always busy!

6

Contributions of this Work
Address the following questions:

Pattern and extent of unused cpu cycles and
memory on compute clusters ?

Can they be exploited for guest applications
without impacting the main host applications ?

7

Availability of CPU Cycles on Clusters
Clusters vary widely in usage

many are used for computing 100% of the time
Others may not be: a group of research clusters
in a recent study varied 7-22% in usage

… And when they are busy executing applications:
What fraction of cpu cycles and memory are
unused ?
What are the usage patterns ?

POINT: Idle cluster can be trivially used for volunteer
computing. Can “busy” clusters also be used ?

8

Empirical Study of CPU/Memory Usage
on a Cluster

Data Collected from a busy cluster at University of
Houston

30 Node Beowulf cluster - Intel Xeon Dual
processor nodes with 2 Gb RAM, 1 Gbps ethernet
network

CPU and memory usage and availability monitored
Information source was /proc filesystem
Data collected every 5 minutes over 1 month

Usage graphs for a 1 month period (July 2005)
coming up!

9

CPU utilization / Memory Utilization

0
10
20
30
40
50
60
70
80
90

100

Time : 1 month period
(Compute Node C1-0)

%
 U

til
iz

at
io

n

Sample Cluster Node Usage

10

Usage of Representative Nodes

0
10
20
30
40
50
60
70
80
90

100

0

10

20

30

40

50

60

70

80

90

100

0

10

20

30

40

50

60

70

80

90

100

0

10

20

30

40

50

60

70

80

90

100

CPU utilization / Memory Utilization

11

CPU Usage on different time scales

0
10
20
30
40
50
60
70
80
90

100

0

10

20

30

40

50

60

70

80

90

100

0

10

20

30

40

50

60

70

80

90

100

0

10

20

30

40

50

60

70

80

90

100

TOTAL 12 HOUR PERIOD FROM THE BEGINNING OF ABOVE GRAPHS

TOTAL 1 MONTH PERIOD

12

Usage Experiment Observations

CPU Utilization varies, with monthly average over a
node varying from 25% to 85%
Memory usage also varies – average between 30%
and 90% for nodes
Stability over windows of hours to days- steady or
a slow climb (for memory)

Mini conclusion: long and predictable periods of CPU
and memory underutilization could be used for
volunteer computing even when nodes are “busy”

13

Part 2 of Talk:
Is Fine Grain Cycle-Stealing practical ?

Processor may have unused cycles (typically host
process blocked on I/O), at a fine grain (msecs)

Can they be used for guest applications ?
Would this slow down the main host application ?

Is the slowdown acceptable ?

APPROACH: Empirical measurements to gain insight.
Focus on measuring/minimizing host application
slowdown.

14

Experiments Overview
Step 1 : Host application executed in dedicated

mode
Step 2 : The Host application executed in shared

mode with a Guest application at lowest priority
Then Slowdown of Host application due to cycle

stealing by Guest application is computed:
Percentage Slowdown = (Ts – Td)/ Td *100

Ts – Execution time in shared mode
Td – Execution time in dedicated mode

Experiments on small (10 dual nodes) Linux cluster.
NAS benchmarks used as host/guest applications

15

Experimental Setup
GOAL: Measure slowdown of parallel host applis due

to a (sequential) guest application:

Number of nodes = 4 (8 processors)
Host applications: NAS Class B benchmarks
Guest application: NAS EP benchmark (“sequential”)
Host application threads = 8 (2 per node)
Guest application threads = 4 (1 per node)
Priority of Host application = Normal (nice = 0)
Priority of Guest application = Lowest (nice = 19)

Linux 2.4 and Linux 2.6 kernels

16

Slowdown on different OS Kernels

0.00
5.00

10.00
15.00
20.00
25.00
30.00
35.00
40.00
45.00
50.00

BT CG EP FT LU MG SP Avg

Host application

%
 S

 l
o

w
 d

 o
 w

 n

2.4 kernel 2.6 kernel 2.6 kernel (tuned)

“Tuning”: Changing the load balance frequency
among CPU queues from 200 msecs to 10 msecs.

17

Observations:
Slowdown on different OS Kernels

0.00
5.00

10.00
15.00
20.00
25.00
30.00
35.00
40.00
45.00
50.00

BT CG EP FT LU MG SP Avg

Host application

%
Sl

ow
do

w
n

2.4 kernel 2.6 kernel 2.6 kernel (tuned)

• Slowdown with regular Linux is unnacceptably
high, although lower with 2.6 kernel
• Slowdown with “tuning” typically < 5 % (avg
3.8 %). Not zero but could be tolerable

18

Benefit to Guest Application

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

BT &
Guest

CG &
Guest

EP &
Guest

FT &
Guest

LU &
Guest

MG &
Guest

SP &
Guest

Avg S
ys

te
m

 T
hr

ou
gh

pu
t I

nc
re

as
e

Average improvement around 38%
(progress of guest app – slowdown of host app)

Measure increase in normalized system throughput
with a guest app vs dedicated host app execution

19

Parallel Guest Application

0.00
2.00
4.00
6.00
8.00

10.00
12.00
14.00
16.00
18.00
20.00

BT CG EP FT LU MG SP Avg

Host application

%
 S

 l
o

w
 d

 o
 w

 n

E P as Guest C G as guest

Parallel App CG as guest versus sequential EP

Average slowdown increases to ~9 %

20

Scaling Behavior

0.00
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00
9.00

BT CG EP FT LU MG SP Avg

Host application

%
 S

 l
o

w
 d

 o
 w

 n

4 Nodes (8 CPUs) 8 Nodes (16 CPUs)

Employ 8 nodes (16 threads) versus 4 nodes (8 threads)

Avg slowdown increases modestly – 3.6% to 4.5%

21

Raising Priority of Host

0.00
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00
9.00

10.00

BT CG EP FT LU MG SP Avg

Host application

%
 S

 l
o

w
 d

 o
 w

 n

Host app at nice = 0 Host app at nice = -20

Increase priority of host application: Normal to Highest

Overall tie – slowdown increases for some apps!

22

Discussion
Clusters have unused CPU and memory resources

Beside idle time, resources are often underused

Utilizing busy clusters for volunteer computing is a
challenge with current Linux

Some tuning necessary for acceptable behavior
Even slowdowns < 5 % are an issue
Scalability needs to be investigated further
Performance with parallel guests discouraging

But most guests today are “sequential”

23

Conclusive Discussion
Paper offers some basic guidelines to employ
volunteer computing on clusters

Summary – do it when CPU is relatively idle and
enough memory is available

Support for Zero Priority Processes that always
yield to other higher priority processes will go a
long way in solving these problems

Current schedulers too worried about starvation

24

Conclusive Conclusions
Volunteer computing on clusters is very attractive

Number of clusters is increasing and many are
relatively idle

This is one component of making true parallel
volunteer computing possible

Most poor scientists will be able to use other
people’s clusters

Significant hurdles remain, especially in making
scheduling more friendly

25

Thanks !!
Questions?

Contact: www.cs.uh.edu/~jaspal
jaspal@uh.edu

http://www.cs.uh.edu/~jaspal

26

Impact of lowering the priority of Guest
application

Observations:

•By running the guest application at lower priority, the slowdown of main app reduces
considerably

•FT does not slowdown at all (guest app gets enough cpu from idle time)

0.00

10.00

20.00

30.00

40.00

50.00

60.00

BT CG EP FT LU MG SP Avg

Main application

%
sl

ow
do

w
n

of
 m

ai
n

ap
pl

ic
at

io
n

guest app at nice = 0 guest app at nice = 19

EP as guest app

27

Impact of lowering the priority of Main
application

Observations:

• Increasing priority of Main app to highest does not help

•Except EP (main app)

0.00
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00
9.00

10.00

BT CG EP FT LU MG SP Avg

Main application

%
sl

ow
do

w
n

of
 m

ai
n

ap
pl

ic
at

io
n

Main app at nice = 0 Main app at nice = -20

Running at nice = -20, needs root access

28

29

Slowdown of different types of guest
applications

Observations:

•CG guest application slows down more than EP guest application

•As number of nodes increase, slowdown of CG increases whereas slowdown of EP
decreases

0.00

200.00

400.00

600.00

800.00

1000.00

1200.00

BT CG EP FT LU MG SP Avg

Main application

%
sl

ow
do

w
n

of
 g

ue
st

 a
pp

lic
at

io
n

EP Guest App (4 nodes) CG Guest App (4 nodes)

EP Guest App (8 nodes) CG Guest App (8 nodes)

30

Types of Guest Applications

Communication Pattern of NAS Benchmark,
where thickness of line shows bandwidth

Benchmark Avg cpu
utilization (%)

BT 90

CG 65

EP 100

FT 53

LU 94

MG 73

SP 81

31

Avg cpu and memory utilization of 30
nodes over 1 month period

0

10
20

30

40
50

60

70

80
90

100

Nodes

%
 u

til
iz

at
io

n

%cpu utilization %memory utilization

Results are presented in order of increasing memory utilization

Observations:

Avg cpu

utilization = 63.80%

Avg memory

utilization = 52.14%

There are idle cpu cycles available to steal (at a fine grain)

32

Linux 2.6 kernel Scheduler and nice
values

Scheduling = f (dynamic priority)
Dynamic priority = static priority + interactivity bonus
Static priority = nice value
Timeslice = f (nice value)

Load balancer introduced as part of kernel (Run queue per
cpu)

Nice value Timeslice Priority

-20 800ms highest

0 100ms Normal (default)

+19 5ms lowest

	 Volunteer Computing on Clusters�
	Idea of Volunteer Computing
	Volunteer Computing
	Volunteer Computing Today
	Volunteer Computing on Clusters
	Contributions of this Work
	Availability of CPU Cycles on Clusters
	Empirical Study of CPU/Memory Usage on a Cluster
	Usage of Representative Nodes
	CPU Usage on different time scales
	Usage Experiment Observations
	Part 2 of Talk:�Is Fine Grain Cycle-Stealing practical ?
	Experiments Overview
	Experimental Setup
	Slowdown on different OS Kernels
	Observations:�Slowdown on different OS Kernels
	Benefit to Guest Application
	Parallel Guest Application
	Scaling Behavior
	Raising Priority of Host
	Discussion
	Conclusive Discussion
	Conclusive Conclusions
	Impact of lowering the priority of Guest application
	Impact of lowering the priority of Main application
	Slowdown of different types of guest applications
	Types of Guest Applications
	Avg cpu and memory utilization of 30 nodes over 1 month period

