Volunteer Computing on Clusters

Deepti Vyas* & Jaspal Subhlok

University of Houston

*Currently with Halliburton

Idea of Volunteer Computing

s aka global computing or public resource computing
= Perform computations by exploiting unused cycles:

CS@UH

CPU utilization

A A A

Time =

Sample execution of a HOST application

Volunteer Computing

= Run another GUEST application simultaneously
with the HOST application

Time =

Cpu utilization

e Guest exploits idle cycles
 No impact on host execution

Volunteer Computing Today

= Exploit idle compute cycles to solve large scale
(scientific) applications.
= Primarily “embarrassingly parallel” or “bag of
tasks” applications

= Volunteer Computing Systems
= BOINC: Compute time donated by public on PCs

« SETI@Home (1 million PCs) , Protein folding,
Climate Prediction, ...

= CONDOR: Idle desktops in an organization
= ENTROPIA: Commercial product

Volunteer Computing on Clusters
Compute Clusters are a large source of CPU

cycles

For volunteer computing:

CS@UH

Advantages

= Homogeneous groups of high performance
nodes

= Maintained by IT professionals
= Always running
= High interconnectivity between nodes

Disadvantages
= They are always busy!

Contributions of this Work

Address the following questions:

= Pattern and extent of unused cpu cycles and
memory on compute clusters ?

= Can they be exploited for guest applications
without impacting the main host applications ?

CS@UH

Avallability of CPU Cycles on Clusters

= Clusters vary widely in usage
= many are used for computing 100%o of the time

= Others may not be: a group of research clusters
IN a recent study varied 7-22%0 In usage

= ... And when they are busy executing applications:

= What fraction of cpu cycles and memory are
unused ?

= What are the usage patterns ?

POINT: Idle cluster can be trivially used for volunteer
computing. Can “busy” clusters also be used ?

CS@UH 7

Empirical Study of CPU/Memory Usage
on a Cluster

= Data Collected from a busy cluster at University of
Houston

= 30 Node Beowulf cluster - Intel Xeon Dual
processor nodes with 2 Gb RAM, 1 Gbps ethernet
network

= CPU and memory usage and availability monitored
= Information source was /proc filesystem
=« Data collected every 5 minutes over 1 month

= Usage graphs for a 1 month period (July 2005)
coming up!

Sample Cluster Node Usage

% Utilization
cBEBE588388

100

|

I L ‘“ Y-

Time : 1 month period
(Compute Node C1-0)

CPU utilization / Memory Utilization

Usage of Representative Nodes

100 100
% M 0
80 80
70 70
60 60
50 50
40 401
Y %1 I
20 20 1
10 10 4
0 0]
100 100
0 - s 0 -
80 - 80 -
70 70
60 | ' 60 | L
50 + 50 -
40 + 40 -
30 - 30 -
20 - 20
10 - 10
0 \ | Al 01 —I,I A
W CPU utilization / Memory Utilization

10

N8A3E83 888

o b

8

CPU Usage on different time scales

|

cBBB8588I88E

TOTAL 1 MONTH PERIOD

8

cEBEB8BIBE

58888388

S

0]

TOTAL 12 HOUR PERIOD FROM THE BEGINNING OF ABOVE GRAPHS

Usage Experiment Observations

= CPU Utilization varies, with monthly average over a
node varying from 25%b6 to 85%0

= Memory usage also varies — average between 30%b
and 90%o for nodes

= Stability over windows of hours to days- steady or
a slow climb (for memory)

Mini conclusion: long and predictable periods of CPU
and memory underutilization could be used for
volunteer computing even when nodes are “busy”

Part 2 of Talk:
Is Fine Grain Cycle-Stealing practical ?

Processor may have unused cycles (typically host
process blocked on 1/0), at a fine grain (msecs)

= Can they be used for guest applications ?
= Would this slow down the main host application ?
= Is the slowdown acceptable ?

APPROACH: Empirical measurements to gain insight.
Focus on measuring/minimizing host application
slowdown.

Experiments Overview

Step 1 . Host application executed In dedicated
mode

Step 2 : The Host application executed in shared
mode with a Guest application at /owest priority

Then Slowdown of Host application due to cycle
stealing by Guest application is computed:

Percentage Slowdown = (Ts — Td)/ Td *100
Ts — Execution time in shared mode
Td — Execution time In dedicated mode
Experiments on small (10 dual nodes) Linux cluster.
NAS benchmarks used as host/qguest applications

CS@UH 14

Experimental Setup

GOAL: Measure slowdown of parallel host applis due
to a (sequential) guest application:

= Number of nodes = 4 (8 processors)

= Host applications: NAS Class B benchmarks

= Guest application: NAS EP benchmark (“sequential”)
= Host application threads = 8 (2 per node)

= Guest application threads = 4 (1 per node)

= Priority of Host application = Normal (nice = 0)

= Priority of Guest application = Lowest (nice = 19)

s LiInux 2.4 and Linux 2.6 kernels

Slowdown on different OS Kernels

O 2.4 kernel O 2.6 kernel B 2.6 kernel (tuned)

50.00
45.00 -

40.00 -
35.00 -
30.00 Il
25.00
20.00

15.00 -

1500 || [%

5.00

O-m L [[—- [[. [. [- [
BT CG EP

FT LU MG SP AVg
Host application

%Slowdown

“Tuning”: Changing the load balance frequency

CSaUH among CPU queues from 200 msecs to 10 msecs.
i 16

Observations:
Slowdown on different OS Kernels

O 2.4 kernel O 2.6 kernel A 2.6 kernel (tuned)

50.00

45.00

40.00

35.00 - —
30.00 |

25.00 —
20.00 -

o"Hondonn
|

-1 S — 1L UL

G FT LU MG SP AVg
Host application

- Slowdown with regular Linux is unnacceptably
high, although lower with 2.6 kernel

e Slowdown with “tuning” typically < 5 %6 (avg
3.8 20). Not zero but could be tolerable

CS@UH

17

Benefit to Guest Application

Measure increase In normalized system throughput
with a guest app vs dedicated host app execution

System Throughput Increase
o 65 B 8 &8 8

8 8 8 8 8 8
[]
]

[]

]

]
]

BT & G& BP& FT& LU& MG & SP&
Quest Quest CGuest Quest QGuest Quest Quest

Average improvement around 38%o
CSUH (progress of guest app — slowdown of host app)8

Parallel Guest Application

Parallel App CG as guest versus sequential EP

20Sl owdown

20.00

18.00

16.00
14.00
12.00
10.00

8.00

6.00

4.00

2.00 -
0.00 -

m EP as Guest B CG as guest

BT s B FT LU MG SP Avg

Host application

Average slowdown increases to —9 %6

19

Scaling Behavior
Employ 8 nodes (16 threads) versus 4 nodes (8 threads)

m 4 Nodes (8CPUs) m 8 Nodes (16 CPUK)

9.00
8.00 -
7.00
6.00
5.00 -
4.00
3.00
2.00 -
1.00 -
0.00 -

%Slowdown

LU MG sP Avg

Host application
Avg slowdown increases modestly — 3.6%0 to 4.5%0

CS@UH 20

Raising Priority of Host

Increase priority of host application: Normal to Highest

m Host app at nice =0 @ Host app at nice =-20

10.00
9.00 -
8.00
7.00 -
6.00
5.00
4.00 -
3.00 -
2.00 -
1.00 -
0.00 -

%Slowdown

FT LU MG SsP Avg
Host application
Overall tie — slowdown increases for some apps!
CS@UH 21

Discussion

= Clusters have unused CPU and memory resources
= Beside idle time, resources are often underused

= Utilizing busy clusters for volunteer computing is a
challenge with current Linux

= Some tuning necessary for acceptable behavior

= Even slowdowns <5 96 are an issue

= Scalability needs to be investigated further

= Performance with parallel guests discouraging
=« But most guests today are “sequential”

22

Conclusive Discussion

= Paper offers some basic guidelines to employ
volunteer computing on clusters

= Summary — do it when CPU is relatively idle and
enough memory is available

= Support for Zero Priority Processes that always
yield to other higher priority processes will go a
long way In solving these problems

= Current schedulers too worried about starvation

CS@UH 23

Conclusive Conclusions

= Volunteer computing on clusters is very attractive

= Number of clusters is increasing and many are
relatively idle

= This is one component of making true parallel
volunteer computing possible

= Most poor scientists will be able to use other
people’s clusters

= Significant hurdles remain, especially in making
scheduling more friendly

CS@UH 24

CS@UH

Contact: www.cs.uh.edu/—jaspal

jaspal@uh.edu

Thanks !!

25

http://www.cs.uh.edu/~jaspal

Impact of lowering the priority of Guest
application

60.00

0O guest app at nice = 0 m guest app at nice = 19

50.00

40.00

30.00 -

20.00 -

10.00

%slowdown of main application

0.00

s

BT

CG EP FT LU

Main application

MG

SP

Avg

Observations:

*By running the guest application at lower priority, the slowdown of main app reduces

considerably

CSQUH. not slowdown at all (guest app gets enough cpu from idle time)

EP as guest app

26

Impact of lowering the priority of Main

application

0O Main app at nice =0 m Main app at nice =-20

10.00

9.00 |
8.00

7.00
6.00
5.00

4.00

3.00 1

%slowdown of main application

2.00 -
o0 %
0.00 ‘

BT CG EP FT LU MG

Main application

SP

Avg

_ Running at nice = -20, needs root access
Observations:

* Increasing priority of Main app to highest does not help

@IGRHY EP (main app)

27

CPU1 CPU2
High1 {R) High2 (R)
Low1 (R)
Initial State
CPUA1 CPU2
Low1 (R) High1 (R}
High2 (R) gm=m

HighZ wakes up, and bath high
priofity processes are sharng one
Cpu, whare as low prionty process
gets another cpu to itseif

CS@UH

CPUA CPU2

High1 (R}
Low1 (R)

High2 (S)

HighZ goes to sleep waiting on a
MP| message and CPU2 becomes

idle
CPUA CPu2
Low1 (R) High1(R)
High2 {5)

since CPUZ beomces idles, load
balancer gets invoked and migrates

High1 on CPU2, so that both cpus
are busy

28

Slowdown of different types of guest

applications
0O EP Guest App (4 nodes) m CG Guest App (4 nodes)
@ EP Guest App (8 nodes) @ CG Guest App (8 nodes)
1200.00
1000.00
800.00
600.00

400.00 -

200.00

CG EP FT LU MG

0.00

%slowdown of guest application

Main application

Observations:

*CG guest application slows down more than EP guest application

Mber of nodes increase, slowdown of CG increases whereas slowdown of EP
S

29

Types of Guest Applications

SP

Ly

MG

Communication Pattern of NAS Benchmark,
where thickness of line shows bandwidth

Benchmark Avg cpu
utilization (%)

BT 90

CG 65

EP 100

FT 53

LU 94

MG 73

SP 81

30

Avg cpu and memory utilization of 30
nodes over 1 month period

100
90

80

70
60

40

% utilization

30

20
10

50

¢ %cpu utilization [%memory utilization
L 4 * B =
2
’0 . . * *
* * PR
R S L S L IR SR
[|
....... * ‘o.;ll'
V'S ||
=
mEEm s EE .
[|
* [|
am *
Nodes

Observations:

Avg cpu

utilization = 63.80%
Avg memory

utilization = 52.14%

There are idle cpu cycles available to steal (at a fine grain)

mlts are presented in order of increasing memory utilization

31

Linux 2.6 kernel Scheduler and nice
values

= Scheduling = f (dynamic priority)

= Dynamic priority = static priority + interactivity bonus
= Static priority = nice value

= Timeslice = f (nice value)

Nice value Timeslice Priority

-20 800ms highest

0 100ms Normal (default)
+19 5ms lowest

= Load balancer introduced as part of kernel (Run queue per
cpu)

	 Volunteer Computing on Clusters�
	Idea of Volunteer Computing
	Volunteer Computing
	Volunteer Computing Today
	Volunteer Computing on Clusters
	Contributions of this Work
	Availability of CPU Cycles on Clusters
	Empirical Study of CPU/Memory Usage on a Cluster
	Usage of Representative Nodes
	CPU Usage on different time scales
	Usage Experiment Observations
	Part 2 of Talk:�Is Fine Grain Cycle-Stealing practical ?
	Experiments Overview
	Experimental Setup
	Slowdown on different OS Kernels
	Observations:�Slowdown on different OS Kernels
	Benefit to Guest Application
	Parallel Guest Application
	Scaling Behavior
	Raising Priority of Host
	Discussion
	Conclusive Discussion
	Conclusive Conclusions
	Impact of lowering the priority of Guest application
	Impact of lowering the priority of Main application
	Slowdown of different types of guest applications
	Types of Guest Applications
	Avg cpu and memory utilization of 30 nodes over 1 month period

