Construction and Evaluation of
Coordinated Performance Skeletons

(Predicting Performance in an Unpredictable World)

Qiang Xu Jaspal Subhlok
University of Houston

HIPC 2008

Cs v UH HiPC 2008, slide 1

Getting Started

OBJECTIVE: Estimate application performance
rapidly in a foreign/dynamic environment, e.g

o Cluster with upgraded hardware or software
components, e.qg., MPI Library

o Desktop grid or “Volunteer nodes” or Amazon
EC-2 cloud...

e Execution with different number of processes
(8,16 or more processes best for 8 nodes)

e System under simulation
Common factor is a hard to model scenario

Cs v UH HiPC 2008, slide 2

Skelton Based Approach ?

Build a short running “skeleton” program that mimics
execution behavior of a given application

GOAL.: execution time of a performance skeleton is a fixed
fraction of application execution time - say 1:1000, then..

If the Application runtime is: Skeleton runs in:
10K seconds on a dedicated compute cluster |10 secs
8K seconds with Open MPI on that cluster 8 secs
20K seconds on a shared heterogeneous grid | 20 secs
1 million seconds under simulation 1000 secs

Timed execution of a performance skeleton provides
an estimate of application performance!

CS U UH HiPC 2008, slide 3

One Motivation: Mapping Distributed
Applications on Networks

==

-_.
~a

Application

Predict performance and
select nodes by actual
execution of performance 7
skeletons on groups of
nodes

Network

Cs v UH HiPC 2008, slide 4

How to Construct a Performance Skeleton ?

— Model~__ -'-’-
/ -/-* pme
Ad— How ? How ?
| g T S

APPLICATION

Central challenge in this research
Common sense dictates that an application and its
skeleton must be similar in:
— Computation behavior
— Communication behavior
— Memory behavior (partly addressed in related work)
— 1/0 Behavior (not directly addressed)

All execution behavior is to be captured in a short program
CS U UH HiPC 2008, slide 5

Skeleton Construction

Implementation for parallel MPI codes

WBata|—Model~, e

sim2 - ViS ?/w-’ ‘

APPLICATION

o
[- | SKfLETON

ﬂ Construct Executable

Performance Skeleton

Record Physical Execution Traces

~\

| Logicalize Physical Traces into a Single Logical Trace

AN

A

| Compress the Logical Trace into Compact Execution Signature

CS@UH

HiPC 2008, slide 6

APPLICATION

MPI_Isend(...,2, MPI_DOUBLE,480,...)
Pl_Irecv(...,0,MPI_DOUBLE,480,...)
Pl_Wait() /* wait for Isend*/
I_Wait() /* wait for Irecv*/
I_Isend(...,4, MP|_DOUBLE,480,...)
_Irecv(...,7,MPI_DOUBLE,480,...)
Wait() /* wait for Isend*/

Wait() /* wait for Irecv*/
end(...,3, MPI_DOUBLE,480,/..)
cv(...,8,MPI_DOUBLE,480,./.)
it() /*wait for Isend*/

it() /*wait for Irecv*/

aw

Traces

rocess

uolnezifeslfo

4

skeleton

N 2 5 5 n=N/100
AA [Z]ZCD[Z]ZE [Z]2} » {AB[Z]"CD[Z] EF[Z]} ...

Loop fDiscovery

""" ABZZCDZZEFZZABZZCDZZEFZZABZZCDZZEFZZABZZCDZZEFZZABZZCDZZEFZZARZZ
CDZZEFZZABZZCDZZEFZZABZZCDZZEFZZABZZCDZZEFZZABZZCDZZEFZZABZZCDZZEFZZ
ABZZCDZZEFZZABZZCDZZEFZZARBZZCDZZEFZZABZZCDZZEFZZABZZCDZZEFZZABZZCDZZ
EFZZABZZCDZZEFZZABZZCDZZEFZZABZZCDZZEFZZABZZCDZZEFZZABZZCDZZEFZZARZZ
CDZZEFZZARZZCDZZEFZZABZZCDZZEFZZABZZCDZZEFZZARZZCDZZEFZZARZZCDZZEFZZ
ABZZCDZZEFZZABZZCDZZEFZZABZZCDZZEFZZABZZCDZZEFZZABZZCDZZEFZZABZZCDZZ
EFZZABZZCDZZEFZZARBZZCDZZEFZZABZZCDZZEFZZABZZCDZZEFZZARZZCDZZEFZZABZZ
CDZZEFZZARZZCDZZEFZZABZZCDZZEFZZABZZCDZZEFZZABZZCDZZEFZZARZZCDZZ - -

Logical Trace Y ’ 8 | | 6 Z 8 | 6 7
; X -
1 2 0 $<—>2 0 1 o
P S
4 5 3 4 5 3 4 o
\ (8
7 H 6 7 8 6 7
<

1 2||o 1 Z\ITGl\

MPI_lsend(...,.EAST, MPI_DOUBLE,480,...) A
MPI_Irecv(..., ,MPI_DOUBLE,480,...)
MPI_Wait() /* wait for Isend*/ z
MPI_Wait() /* wait for Irecv*/ z
MPI_lsend(...,SOUTH, MPI_DOUBLE,480,...) C
MPI_Irecv(...,NORTH,MPI_DOUBLE,480,...) D
MPI_Wait() /* wait for Isend*/ z
MPI_Wait() /* wait for Irecv*/ z
MPI_Isend(...,SOUTHWEST, MPI_DOUBLE,480,...|E
MPI_Irecv(..., ,MPI_DOUBLE,480,...)
: MPI_Wait() /* wait for Isend*/ z
Log ical MPI_Wait() /* wait for Irecv*/ VA
Trace

HiPC 2008, slide 7

Logicalization
(N Physical Traces = Single Logical Trace)

 In SPMD point-to-point communication all processors
typically perform the same communication....

... on different data and with different processors (e.g.
Left/Right neighbors)

A regular logical communication topology exists
(e.g. Grid, Torus, Stencil, Hypercube, Butterfly...)

Logicalization identifies the logical topology to
convert family of physical traces to a logical trace,

CS@UH

An Example — 16-process BT benchmark

11 8 9

15 12 13

11 8 9

15

3

PO: Send (7, data), P1: Send (4, data) P2:: Send (5,
data) ,... P15: Send (2, data) = Send (SW, data)

In logical trace in the context of a 2D torus topology

CS@UH

Logicalization

Key challenge: Identify dominant communication
topology from inter-node communication matrix

Matching against a known topology
Is solving graph isomorphism
* No polynomial algorithm
Practical solution with 3 Tests:
1. Match node & edge counts
2. Match eigenvalues
3. Graph Isomorphism algorithm:
employed VF2 library

Test 1 eliminates most patterns cheaply.
Test 2 and Test 3 expensive but used sparingly.
Only Test 3 proves that a match exists.

CS v UH HiPC 2008, slide 10

lllustration: BT/SP Benchmark

Benchmark | Processes | Sumple Tests Graph Spectrum Test | Isomorphism Test
9 3#3 6-p stencil 3x3 6-p stencil 33 6-p stencil
16 44 6-p stencil 44 6-p stencil 44 6-p stencil
BT/SP 36 626 6-p stencil 66 6-p stencil 66 6-p stencil
433 torus
< | 2x2x3x3 torus
64 88 6-p stencil 8+8 6-p stencil 8:8 6-p stencil
< 222020 aid
4% 2x2x2x2 torus
4x4x2x2 torus
dx4x4 torus
121 1111 6-p stencil | 1111 6-p stencil 1111 6-p stencil

*Table shows candidate topologies remaining after each test
* Non-boldface topologies are isomorphic to topology above

CS@UH

Logicalization Notes

Works well in practice!
« Main communication topology must be static & regular

e Matching only against known patterns, but patterns
easy to add and library can be large

e All n-dim grids or n-ary trees specified in one shot

« Some message exchange not related to main
communication pattern observed

— Ignored with thresholding, only dominant toplogies
captured

Multiple mixed patterns (equal to subgraph
Isomorphism) not yet implemented

More details: Q. Xu, R. Prithivathi, J. Subhlok, and R.Zheng, Logicalization of
MPI communication traces, TRUH-CS-08-07, Univ of Houston, May 08

CS U UH Vrije 2005, slide 12

Compression of Logical Trace

Goal is to identify loop nests in the trace!

Matching sliding windows of trace is O(N?3).
-- Commonly employed locally on trace sections
-- S0 can miss long range repeats (outer loops).

Two new algorithms developed.:

1. An optimal O(N?) algorithm (finds outer loops first) :
leverages Crochemore’s algorithm to find all repeats

2. Greedy algorithm (finds inner loops first) guaranteed
to miss at most 2 iterations of a loop — Very fast

CS U UH Vrije 2005, slide 13

Loop Discovery Performance

NAS Raw Compressed Optimal Greedy
Class Trace Trace Loop Loop
C Length Length Discovery Discovery
(MPI Calls) | (MPI Calls) (seconds) (seconds)
BT 17106 44 311.18 8.91
SP 26888 89 747.73 7.61
LU 323048 63 113890.21 61.9
(~30 hours)
CG 41954 10 240.27 8.48
MG 10047 648 144.54 10.88

More details: Q. Xu and J. Subhlok., Efficient discovery of loop nests in communication
traces of parallel programs, TR UH-CS-08-08, Univ of Houston, May 2008

CS@UH

HiPC 2008 slide 14

CS@UH

Skeleton Code Generation

Compressed logicalized trace, I.e., loop nest of MP!
calls and compute operations

TO
Compact Matching executable C code

1. MPI calls in trace converted to executable MPI calls
on synthetic data — global SPMD communication
pattern generated

2. Compute sections converted to synthetic
computations of equal duration

3. # of iterations in loop nest reduced to match
desired skeleton execution time

HiPC 2008, slide 15

CS@UH

Code Generation Challenges

« “Local” communication
— e.g., No matching Send in trace for a Recv

The send is ignored or a synthetic matching Recv Is
generated

« “Unbalanced” communication
— Send and Recv not matching, e.g., in data size

Match forced by adjusting parameters, e.g using mean
data size.

These represent exceptions to the global dominant
communication pattern.

Code generator ensures correctness with possible
Inaccuracy

HiPC 2008, slide 16

CS@UH

Validation of Skeleton Construction

Skeletons constructed for Class C NAS MPI
benchmarks up to 128 nodes

Skeletons constructed in one scenario -
Employed to predict performance in a new
scenario:

— Execution on a different cluster
— Execution under a new MPI library
— Execution under varying available bandwidth

— Execution with different number of nodes for
the same number of processes

— Execution under competition with other jobs

HiPC 2008, slide 17

Validation Results

Summary from a large suite of experiments!
30

25
20
15
10

5
I 1 = B

Across Cluster Archs (1.7 GHz Xeon --> 2.3 GHZ Dual Core Opteron)
Across Communication Libraries (MPICH --> Open MPI)

Simulate Bandwidth Sharing (100 Mbps --> 5, 20, 50, Mbps)

Processor Sharing within Application (1--2, 4 processes/processor)
Processor Sharing with External Apps (addl, 2 competing processes)

Average Percent Error

CS v UH HiPC 2008, slide 18

Validation Results

For most applications and scenarios, the prediction was
rather accurate with error within 10% for skeletons
running for a few minutes

However:
C Prediction in some scenarios is inaccurate

Reasons:

1. Computing not modeled precisely (memory,
Instructions)

2. Synchronization impact can exaggerate variations

CS v UH HiPC 2008, slide 19

Conclusions

« Performance skeletons are an effective tool
for estimating performance where modeling
IS Impractical

* Methodologies for logicalization and loop
nest discovery have broad applicability

FOR MORE INFORMATION (including papers/TRs
with details of logicalization and compression):

e www.cs.uh.edu/~jaspal Jaspal@uh.edu

Thanks to NSF

CS U UH Vrije 2005, slide 20

http://www.cs.uh.edu/~jaspal
mailto:jaspal@uh.edu

	One Motivation: Mapping Distributed Applications on Networks
	How to Construct a Performance Skeleton ?
	Skeleton Construction
	An Example – 16-process BT benchmark
	Logicalization
	Illustration: BT/SP Benchmark
	Skeleton Code Generation
	Code Generation Challenges
	Validation of Skeleton Construction
	Validation Results
	Validation Results
	Conclusions

