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Abstract

Execution and communication traces are central to performance modeling and analysis of parallel
applications. Since the traces can be very long, meaningful compression and extraction of representative
behavior is important. Commonly used compression procedures identify repeating patterns in sections of the
input string and replace each instance with a representative symbol. This can prevent the identification of
long repeating sequences corresponding to outer loops in a trace. This paper introduces and analyzes a
framework for identifying the maximal loop nest from a trace based on Crochemore's algorithm. The paper
also introduces a greedy algorithm for fast ““near optimal" loop nest discovery with well defined bounds.
Results of compressing MPI communication traces of NAS parallel benchmarks show that both algorithms
identified the basic loop structures correctly. The greedy algorithm was also very efficient with an average
processing time of 16.5 seconds for an average trace length of 71695 MPI events.
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parallel applications. Since the traces can be very longnmgful compression and extrac-
tion of representative behavior is important. Commonlyduseampression procedures identify
repeating patterns in sections of the input string and cep&ach instance with a represen-
tative symbol. This can prevent the identification of longaating sequences corresponding
to outer loops in a trace.This paper introduces and analyZemmework for identifying the
maximal loop nest from a trace based on Crochemore’s dtgoriThe paper also introduces
a greedy algorithm for fast “near optimal” loop nest disagweith well defined bounds. Re-
sults of compressing MPI communication traces of NAS par&énchmarks show that both
algorithms identified the basic loop structures correcilge greedy algorithm was also very
efficient with an average processing time of 16.5 secondarf@verage trace length of 71695
MPI events.
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1 Introduction

Execution and communication traces are central to perfoceanalysis and performance mod-
eling of parallel applications. However, trace processing challenge as the trace length can be
large even for traces of relatively coarse grain eventstuRately execution traces often contain
repeating sequences that can be identified to capture ezpagise behavior. The specific context
of this research is the construction of performance sketetd parallel applications for perfor-
mance prediction [14, 16, 20]. A performance skeleton isatsfunning program that recreates
the computation and communication behavior of the origapglication execution. A key step
in the process of construction of performance skeletonsesdentification of repeating patterns
in MPI message communication. Since the MPI communicatecetis typically a result of loop
execution, discovering the executing loop nest from theetia central to the task of skeleton
construction.

The goal of the research presented in this paper is to deeéfleqtive and efficient procedures
to identify the representative sections of an executiotettay discovering the loop nest structure

1



inherent in the trace. There are, of course, several wellvkradgorithms and tools for string com-
pression based on substring matching. The major challangehieving maximal compression
is discovery of long range repeating patterns, typicalpresenting an outer loop in an execution
trace. It is normal that many overlapping repeating sutgsrof different lengths exist in an exe-
cution trace. Most compression procedures apply hewistiselectively reduce sets of repeating
substrings. Examples includgipthat constructs a dictionary of frequently occurring stibgs
and replaces each occurrence with a representative syamutfhequiturthat infers the hierarchi-
cal structure in a string by automatically constructing apglying grammar rules for reduction of
substrings. While these approaches can be efficient an@guoes can be designed to have exe-
cution time that is nearly linear in trace length, they arequ@aranteed to identify long range loop
patterns because of early reductions. An alternate aplprgao attempt to identify the longest
matching substring first. However, simple algorithms toiewh this are quadratic for a given
match length and hence cubic in trace length, and therefgpesictical for long traces. A practical
approach is to limit the window size for substring matchwdjch again risks missing long span
repeats.

Before presenting our approach, we introduce the basidetagy for distinguishing various
types of repeating patterns. Repeating substringsef@eat$ in a string can beéandemrepeats
where successive repeat substrings immediately follow e#lter,overlappingrepeats where re-
peat substrings overlap, asglit repeats where repeat substrings are separated by otheolsymb
Since we seek to identify the loop structure in a trace, weoatg interested in tandem repeats.
A tandem repeat iprimitive if it is itself not composed of tandem repeats of another tsurgs
A set of tandem repeats mmaximalif there is no identical substring immediately preceding or
succeeding the sequence of tandem repeats. We will reflietprimitive and maximal tandem
repeats in a string @M-repeats In the rest of the paper, discovery of “loops” technicaéifers to
the discovery of PM-repeats in the execution trace, whichsgpmably) exist because of execution
of program loops. Our objective is finding and reducing the-ieldeats of different spans in an
execution trace, which is the same as discovering the inh&ep nest structure in the execution
trace.

To illustrate the properties of PM repeats, consider thagtabababab The PM-repeats cor-
responding to this string are represented@s* which is the most compact representation. The
string can also be represented as tandem repeats)? but this would not be primitive, since the
repeating substring itself is a tandem repeat of anothiegsib. The string can also be represented
as(ab)3ab but this would not be a maximal repeat. Hengé))* represents the only PM-repeats
sequence, or optimal loop, for this string.

Our approach to identifying the loop structure in a trace asda on Crochemore’s algo-
rithm [3], which can identify all repeats in a string, inclod tandem, split, and overlapping
repeats, in0O(nlogn) time. A framework was developed in this research to disceerloop
nest structure by recursively identifying the longest sfgandlem repeat in a trace. The procedure
identifies the optimal (or most compact) loop nest in termshefspan of the trace covered by
loop nests and the size of the compressed loop nest repaisantThe procedure was applied to
identify the loop nests in the MPI communication traces ofS\Benchmarks. The compression
results were very good, but the execution time was unacekeptar long traces; processing of a
trace consisting of approximately 320K MPI calls took ovéitdurs.

The results motivated us to develop a greedy procedure éadidtovery of the loop structure,
which is the most important contribution of this paper. Theegly procedure intuitively works
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bottom up - it identifies and reduces the shorter span inrogrsland replaces them with a single
symbol, before discovering the longer span outer loopshiBrespect, it appears similar to other
approaches that apply heuristics to identify repeatingsings and replace them with symbols to
enable efficient processing. However, the key charadteogour algorithm is that only primitive
and maximal tandem repeats (PM-repeats) representingiarset the trace that corresponds to
loop execution, are reduced to a single symbol. No otherateme substrings are reduced. The
intuition is that reduction of trace sections correspogdoicomplete inner loop execution will not
interfere with the discovery of outer loops.

The key analytical result in this work is that the reductidmchorter span PM-repeats (inner
loops) can impact the discovery of a longer span PM-repeat®i( loops) only in the following
way: if the optimal outer loop i€, then a corresponding loap, will be identified despite the
reduction of an inner loopL, and L, have identical number of loop elements, liytmay have up
to 2 less loop iterations thah,. Hence, the loop structure discovered by the greedy alguoris
near optimal

The greedy loop nest discovery procedure was also implesdearid employed to discover
the loop nests in the MPI traces of NAS benchmarks. The logpsraways satisfied the criteria
above, and were, in fact, identical to the optimal loop nastdl but one case. However, the time
for loop discovery was dramatically lower than the optinlgbaithm, with the compression time
reduced to approximately 62 seconds from 31 hours for oge.tra

To the best of our knowledge, this is the first effort towartt@sting complete loop nests from
execution traces. The paper presents detailed resultseoeffigctiveness of these algorithms in
discovering loop nests and achieving compression. Thepeance and scalability of the greedy
and optimal algorithms are also presented and analyzed.aflitplar interest are the insights
into the theoretical complexity of the algorithms and thep@ial measurements of performance.
The methodology developed is applicable to any sequentasthi&ely to contain a loop struc-
ture even though the experimental results presented irp#psr are limited to message passing
communication traces.

The rest of the paper is organized as follows. After a disonssf related work in Section 2,
we present and analyze the optimal and greedy compressioagures in Section 3 and Section 4,
respectively. Experimental results and discussion aregpted in Section 5. Finally, we conclude
in Section 6.

2 Related work

Compression is a basic operation in a wide variety of scesarMany algorithms have been
developed for text compression and employed in utilitiesdizip[21]. The basic approach in such
algorithms is to identify recurring short strings and regléhem with identifiersSequituf{12, 11,
10]is a well-known algorithm that was developed to discakematural hierarchy in text and other
data. The insight is that repeating substrings are replagesigrammar rule that generates that
substring and the process is continued recursively, iaguh a hierarchical representation of the
structure of the string. In order to improve the processimg tand quality of compression, PGTC
(path grammar guided trace compression) [4] is proposed anlaanced approach that employs
program static analysis to build a grammar and guide corsfmes

The goal of our compression approach is to identify comglmde nests from the repeating



substrings discovered in a string. Replacement of shogtangs with identifiers, as is the case in
above methods, can result in failure to identify long spareags in traces corresponding to outer
loops.

Noeth et al. [13] have employed a scalable trace driven agbrto analyze MPI communica-
tion, which is based on identifying loops from a messageipgssace. The compression algorithm
maintains a queue of MPI events and attempts to greedily cessghe first matching sequence
within a sliding window. They extend regular section dgstonis (RSDs) for single loops to ex-
press MPI events nested in a loop in constant size [7] whilegpdRSDs are utilized to recursively
specify RSDs nested in multiple loops [8]. The drawback & the algorithm is not guaranteed to
yield the optimal loop nest as matching is limited to a maximsliding window to avoid)(n?)
time complexity in the length of the trace.

There are two well known approaches to identifying all répaa a string systematically -
one based on suffix trees and the other based on Crochemig@gham. A compression scheme
based on Crochemore’s algorithm that uses split and tandpeats to carry out offline genetic
data compression is proposed in [17]. We have employed @mote’s algorithm as the basis of
our approach and that is discussed in detail in this papebig8y discuss suffix trees here.

Suffix trees are a fundamental data structure supportinge vériety of efficient string search-
ing algorithms. In particular, suffix trees are well knownattow efficient and simple solutions
to problems concerning the identification and location peaged substrings. Several algorithms
[19, 9, 18] can build a suffix tree in linear time. Stoye and &g have developed af(n logn)
time method [15] to find all occurrences of primitive tandespeats in a string with suffix trees.
They also proposed a novel method [6] to collect only the firentandem repeatypes in O(n)
time and find occurrences of all primitive tandem repeat3(in + z) time, wherez is the number
of occurrences of primitive tandem repeats in a string. I tfe repeating substrings in a string
and their statistics are inferred from suffix trees, and dsedompression through greedy off-line
textual substitution.

We have based our loop nest identification procedure on @roore’s algorithm instead of
suffix trees for two main reasons. First, we are not aware tfagghtforward approach to finding
all primitive andmazimal tandem repeats with suffix trees. Second, the process daifbbgihnd
processing suffix trees is significantly more complex tha flased on Crochemore’s algorithm.

Another dimension of compression of traces from parallepems is inter-node compression.
The traces from different processes in the system can beokdated into a single trace before
compression [20, 2] or after compression [13]. This aspeotthogonal to the work proposed in
the paper as the trace compression procedures can be ajgpiierbnsolidated logical trace or a
single process trace.

3 Optimal trace compression

The main contribution of this paper is a framework to compeegecution traces by discovering the
loop structure inherent in the trace. All repeating subgsiin a trace are identified by employing
the well known Crochemore’s algorithm. However, the repeat implicit in a complex data
structure. The total number of repeats can be combinataribk size of a string and very large in
practice.Our contribution is the development of a framework to efficiently construct the loop
structure in the trace by selectively filtering and reducingthe repeats.The procedure consists



of the following steps for discovery and reduction of outestrioops:

1. Repeats discoveryDiscovery of all types of repeats (overlapping, split, aadem) of all
sizes by Crochemore’s algorithm.

2. Loop identification: Identification of all PM-repeats (primal and maximal tandepeats)
corresponding to loops.

3. Loop filtering: Discovery of outermost loops and their replacement witlplspmbols.

The above process is repeated recursively inside eachveismbloop. For a string with
symbols, the repeats discovery takeg: log »n) time while loop identification and loop filtering
takeO(n?) time. Hence the overall complexity 3(n?). We discuss each of the above steps and
the overall loop identification and compression procedure.

3.1 Repeats discovery

As an optimizedsuccessive refinement methgdCrochemore’s algorithm [3] computes all repeat-
ing substrings (tandem, overlapping, and split) in a finiteng S of lengthn in O (nlogn) time.
The successive refinement begins with grouping all postioithe string that have the same sym-
bol/character into a single class. Each class is then reiimedew subclasses that contain starting
positions of repeating substrings of length two. The preéssontinued to find the starting po-
sition of all repeating substrings of length, 3,4,5...iluatsize is reached for which no repeating
substrings exist.

Before describing the details of Crochemore’s algorithra,imroduce some basic string defi-
nitions.

Definition: A string .S = s1s983...5, IS an ordered list of characters/symbols written contigu-
ously from left to right. Thdengthof Sis |S|. S|i..j] is thesubstringof Sthat starts at position
and ends at position

Definition: Ej, is anequivalence relatioover a stringS defined as followsiE,,j if and only
if substringsS|[i..i + k| andS[j..; + k] are identical. £}, partitions the positions of strin§ into
equivalence classes;if’,j theni andj will be in the sameF), class. We also usg), to denote
the set of those equivalence classes.

The simple successive refinement is based on the fact thatriog S, if iEj and S[i +
k|=S[j + k|, theniEy,,j. For example, consider the string

S—=abaababaab a a b $
1234567 89 10 11 12 13 14

Initially, we construct threé”; classes containing repeating substrings of length onee that
the unique character “$” is appended as the end of string eymb

E,:{1,3,4,6,8,9,11,12 {2,5,7,10,13 {14}
a b $

The first step of refinement splits each clasg®finto classes that contain starting positions of
substrings of length two. We check the character followiacheposition in that class. For class
{1,3,4,6,8,9,11,12 we need to check positiok8,4,5,7,9,10,12,13n S. SinceS[4]=S[9]=S[12]=a
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and S[2|=5[5]=5[7|=S[10]=S[13]=b, classa is split into subclasaa—{3,8,11} and subclassb—
{1,4,6,9,12. Similarly, classh—{2,5,7,10,13 is split into subclas$a—{ 2,5,7,1¢ and subclass
b$—{13}. The clas$—{14} has no substring of length two starting from it, so it is disieal.

The successive refinement continues with checking oktheharacter following the positions
in each class of);, to constructF,, ;. Any singleton classes are discarded. Eventually a value of
k is reached for which there are no classe#&'pfind the process is terminated. The entire process
of refinement of stringg = abaababaabaab$ is shown in Table 1.

Table 1: Successive Refinement of Strittgababaabaab$

Levell — F;: {1,3,4,6,8,9,11,12 {2,5,7,10,13 —{—];l%—
a b

Level2 — E,: {1,4,6,9,12 {3,8,11 {2,5,7,1¢ 3}
ab aa ba b$
Level3 — FEs: {1,4,6,9 {12} {3,8,13 {2,7,10 5}
aba ab$ aab baa bab
Leveld — E, : {1,6,9 {4} {3,8} £ {2,7,10
abaa abab aaba aab$ baab
Level5 — FEs : {1,6,9 {3+ {8} {2,7}
abaab aabab aabaa baaba baab$
level6 — FEg : {1,6} {9} {2} 17}
abaaba abaab$ baabab baabaa
Level?7 — FE;:
abaabab abaabaa$

The total running time for the algorithm as described abev#(in?), since there can b@ (n)
levels and each level can tak(n) time. But two techniques proposed in [3] optimize the succes
sive refinement and reduce the running timét log n). We mention them very briefly here.

The first technique isifhdirect refinement. This is based on the observation that any class of
E). is a subset of somé&), class. BecauséF.j, if and only if iE}j and: + 1E,j + 1, we
can use classes at the same level to carry out successivamefihinstead of referring back to the
original stringS. This helps in reducing the complexity when used with anotkehnique called
“ small classes which can be outlined as follows. The indirect refinememtgess for art,, class
into £, classes requires matching against several, but not aflf 6thclasses. The small classes
techniques prescribes that the classes be selected iniicspemnner that favors matching against
smaller classes, and thereby avoiding some matching ddaiger classes. This description only
gives a flavor of these technique and the interested readefesed to [5, 3] for details. Our
implementation includes the indirect refinement and sniafises techniques.



3.2 Loop identification

The repeats discovered by Crochemore’s algorithm incladdem, overlapping, and split repeats.
Their definitions are as follows:

Definition For positions and; of string.S, that belong to the sam®, class, if|j — i| = k,
then repeating substringdi..i + k — 1] andS|j..j + k — 1] aretandem repeats; ifj — i| < k they
areoverlapping repeats; and ifj — i| > k they aresplit repeats.

For example, the substringa repeats four times in strin§ at positions 1,4,6, and 9 in Table
1. The secondba is right behind the first one, so they constittaadem repeats. The second and
third aba areoverlapping repeats, while the first and thirda aresplit repeats.

Our goal here is to find loop structures, so we need to ideatiiy report only the tandem
repeats. Tandem repeats in a string can be representedipledirs, (), where: is the starting
position,3 is the repeated substring, ahid the number of iterations. But a substring may be repre-
sented by multiple tandem repeats. For example, the stbagbababababab, could be described
as(1,ab,8), or (1,abab,4), or (1, abababab,2). Clearly the loop that we would like to identify
corresponds td1, ab, 8). To generalize, we defineM-repeats and a correspondingM-triple ,
where P and M stand farimitive andmaximal. A triple (i, 3,1) corresponds to a primitive
tandem repeats sequence if and only ifs not periodic. The triple corresponds to a maximal
tandem repeats sequence if and only if there ig might before or after the repeats. So, the above
string can be represented by a unique PM-tripleab, 8). (A PM-triple is a representation of a
PM-repeats sequence and we will use the terms interchalygeab

For eachF), class refined in Crochemore’s algorithm, a PM-triple can deniified by the
following Lemma, which is also mentioned in [5]:

Lemma 1. (i,0, 1) is a PM-triple, wheres is a k-length substring, if and only if some single
class ofE);, contains a maximal series of numbers i, i+k, i+2Kk, ..., i+¢kich that each consecutive
pair of numbers differs by k.

In order to identify loops, PM-triples must be identified atk level during the execution of
Crochemore’s algorithm. Since the total number of membeadliclasses at a levélis bounded
by string lengthn, the process takes (n) time. Since the maximal possible size@fthe loop
element, is half the length of the stringwe need to report PM-triples after discovering the repeats
by Crochemore’s algorithm till levet/2. The running time for identifying loops represented by
PM-triples isO (n?).

3.3 Loop filtering

The previous steps provide a list of PM-triples which reprgsll the loops in the trace. Our in-
terestis in finding all the outermost or longest span loop&sE are represented by the PM-triples
at the highest level. (The inner loops are discovered byingntie entire process recursively). In
case of multiple overlapping loops of equal span at the sa&wed,|lwe select the one that starts
earliest in the string.

As an example, for the stringhcdabcdabedabeda, 4 PM-triples will be identified. These PM-
triples are(1, abed, 4), (2, beda, 4), (3, edab, 3) and(4, dabe, 3). The first two PM-triples both have
a span of 4 versus a span of 3 for the remaining two. Based oratiest starting point, the
selected loop will bé1, abed, 4).

As another example, consider the strifigbabababF EababababF EababababF', which contains a



loop nest containing loops at two levels. The PM-tripleFababababF, 3) represents the selected
outer loop. The inner loops represented by triglesb, 4), (12, ab, 4), and(22, ab, 4) are ignored
at this stage.

The loop filtering step repeatedly finds the PM-triple cqomesling to the longest span loop,
until no PM-repeats are left. Since the loops can theoitiba as small as 2 elements, the theoret-
ical upper bound of this step with a simple implementatiof(s?). An O(nlogn)implementation
is possible. However, in practice this is a very quick stethasnumber of loops is normally very
small, andO(n?) is a very loose upper bound.

3.4 Compression framework summary

The procedure discussed in this section identifies all oudst loops represented in a trace. The
algorithm runs recursively on the substrings that corstitivie loop elements (or body) for identifi-
cation of the inner loops. The recursive steps are impottaget a high degree of compression. It
is theoretically possible to reuse some of the informatromfdiscovery of outer loops to identify
inner loops. In practice, this is likely to make little difésce in performance since the processing
time is dominated by the time to discover outer loops. In ptdelevelop a compressed represen-
tation, the loop spans in the trace are replaced with tuglés /), whereLE is the loop element
symbol, and is the number of loop iterations. A separate table is contd) which maps a loop
element symbol to the substring that constitutes the loemeht. The overall complexity of the
steps in this procedure §3(n?) and is dominated by the loop identification step.

4  Greedy trace compression

The scheme discussed in Section 3 discovers the optimallesip However, the execution time
for loop discovery can be high for long traces. We will discegperimental results in detail later
in this paper, but we take a look now at Table 4 to motivate Hsedor a faster approach. As an
example consider the class C SP benchmark in the table. Tdletitoe to run the algorithm is
around 747 seconds, although all program loops had alreaely tiscovered in just 5.8 seconds.
The reason is that the largest loop consists of only 67 sysnbile the trace size is 26888 sym-
bols. Our approach builds equivalence classes and looHsdps in increasing order from 1 to
half the trace length. Even though all loops were discovbyetie time the equivalence class of 67
was constructed, (and these loops spanned over 99% of teg theere is no way for the algorithm
to be certain that a larger loop does not exist, and henceeraéint continues until the equivalence
class of 13444 that corresponds to half the original string. 4f the loops already discovered were
replaced by a single symbol at the equivalence class of 6#ralse size to be processed would be
less than 1% of the original trace size, and the remaininggasing would be much faster. This
motivates greedy compression.

4.1 Greedy trace compression

In the compression framework of Section 3, actual compoedsappens only after the discovery
of all PM-triples, which involves the successive refinemamd identification of the tandem re-
peats until the level of half the original trace size. The ldga of greedy compression is early



compression as PM-triples are discovered. The entire sptre @orresponding loop is replaced
by a single symbol, and compression continues on the newtyefd (shorter) string. The proce-

dure continues until half the current string size is reachdte that in the greedy approach, the
string size decreases dynamically as loops are discovetadh is the key reason for improved

performance. Figure 1 outlines the greedy compressioregroe.

S = string corresponding to the original trace

Current.S = S

Level =1

Step 1:

if Level > |Current_S|/2 then
Goto Step 3

else
i) Find all repeats of sizé.cvel in Current_S by successive refinement with Crochemore’s
algorithm.

ii) Identify all PM-triples with repeating substring of gizevel
if any PM-triples with repeating substring of sizevel are discoverethen
Goto Step 2
else
Level = Level + 1; Goto Step 1
end if
end if

Step 2:

UpdateCurrent_S by reducing all PM-triples with repeating substrings ofesizvel in de-
creasing order of loop span, employing filtering (discussagction 3.3) for overlapping triples.
The symbols replacing the PM-triples are stored in a mapiaiblg.

Level = 1; Goto Step 1.

Step 3:
Stop.Current_S along with the mapping table for symbols is the compressegtthat captures
the loop nests.

Figure 1: Greedy compression procedure

The worst case time complexity for this greedy algorithmhiss s¢ame as the optimal algorithm
discussed in Section 3. In fact, the two algorithms will rdaritically if there were no PM-repeats
in a trace. However, the greedy algorithm is much more efftdie practice for programs with a
loop structure as it does not need to perform repeats disgavel loop identification across long
spans of a trace. In our experience, almost all traces geweirmm executing programs have the
bulk of the trace included in loop nests.



4.2 Risk of greedy compression

For most traces that we have analyzed, the greedy and opginmeddures yield identical results.
Here we illustrate with carefully selected examples howrdseilts of greedy compression can be
suboptimal.

Consider the stringbaababaabaab. The greedy compression proceeds as follows:

abaababaabaabt$
ableableL1b$ le(a)2
ablL bal, b$ Ly=(bL,)?=(baa)?

The loop structured discovered by the greedy procedui®(ig?ba(b(a)?)*b whereas the op-
timal loop structure igab(a)?b)*(a)?b. A 2 iteration loop with the largest elemerttibaab)?, is
completely missed.

Now consider the stringbaababaababaabaab. The greedy compression proceeds as follows:

abaababaababaabaab$
abL bablL bablL bl b$ L =(a)?
ab Ly b a bL1 b a Lo b $ ng(bLl)Qz(baa)Q
Ly aly, b'$ L3 = (abL,b)* = (abaab)?

The loop structured discovered by the greedy procedufebis)?b)?a(b(a)?)*h whereas the
optimal loop structure i$ab(a)?b)*(a)?b. The loop with the largest loop elemefathaabd) is cap-
tured, but with one less iteration than optimal.

4.3 Bounds on greedy compression results

As is the case with other heuristic algorithms discussedeti®n 2, this greedy algorithm may
not discover the optimal loop nest. However, the algorithiselectively discovering and replacing
loops corresponding to PM-repeats, and not any other r@agigrn. The insight is that loops are
either nested or disjoint, hence a reduction of all sequeoceesponding to a complete inner loop
will not prevent a longer span outer loop from being idendifi¢€lowever, this is not completely
true. Loops as recognized by PM-repeats can overlap, bytairthe boundary iterations. The
general informal result is as follows:

The early reduction of all inner loops corresponding to adikeop body can impact the iden-
tification of a longer span outer loop only as follows: the pat the discovered loop may be a
reordering of the body of the original loop, and the numbeitefations in the discovered loop
may be up to 2 fewer than the number of iterations in the oalgiuter span loop.

The result is formally discussed in the appendix of this papeother words, the discovered
outer loop may start at a different point in the trace and ug tterations may be lost due to
reduction of an inner loop. However, the basic loop strietill be identified, unless the outer
loop consists of only 2 or 3 iterations. For most commundaratiaces, each loop typically iterates a
large number of times, hence missing one or two iteratiomeopletely missing a 2 or 3 iteration
loop is not a significant practical problem.
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5 Experiments and results

A framework for loop discovery and compression discusse8antion 3 and a framework for
greedy compression as discussed in Section 4 were implethefhe goal was to validate loop
discovery and compression achieved by these algorithmstadg the tradeoffs between the exe-
cution performance and the degree of compression.

5.1 MPI communication traces

This research was motivated in the context of analysis ofi@n traces of MPI applications to
build representative performance skeleton programs [T4 process consists of collection of
tracesjogicalizationwhereby a single logical trace represents SPMD execut@npcession and
identification of representative sections, and generati@n executable skeleton program [20].
All results presented in this paper are for compression of édfmunication traces for Class
B/C NAS Parallel Benchmarks running on 16 nodes. The tracge wollected with the PMPI
library and the process of conversion of a trace to a strirgyofbols is illustrated in Table 2.

Table 2: Conversion of MPI communication trace to a stringyohbols

Raw Trace MPI Event Symbol

#Generating Logfile
Node=0 #939220507ss#0#939220507

1. 2#1#3220724724#1#28#0#134#0#939220509#939220509 MPI_Bcast(...1, MPIINT, 0,...] M4
2. 2#2#136373224#1#27#0#134#0#939220509#939220509 MPI_Bcast(...1, MPIDOUBLE, 0,...) M5
3. 2#3#135838396#3#28#0#134#0#939220509#939220509 MPI_Bcast(...3, MPIINT, 0,...] M6
4. T#1#135789088#360#27#1#3000#138#153016848#0#03022939220509 MPI_Irecv(... 1, MPLDOUBLE, 360, ..) P1
5. 7T#2#135786208#360#27#1#2000#138#153017012#0#93022939220509 MPI_Irecv(... 1, MPLDOUBLE, 360, ..] P1
6. 7#3#135794848#360#27#2#5000#138#153017176#0#93922939220509 MPI_Irecv(... 2, MPLDOUBLE, 360, ..) P7
7. T#4#135791968#360#27#2#4000#138#153017340#0#93922939220509 MPI_Irecv(... 2, MPLDOUBLE, 360, ..) P7
8. 7#5#135800608#360#27#3#6000#138#153017504#0#93022939220509 MPI_Irecv(... 3, MPLDOUBLE, 360, ..]) P4
9. T#6#135797728#360#27#3#7000#138#153017668#0#93922939220509 MPI_Irecv(... 3, MPLDOUBLE, 360, ..) P4
10. 9#1#135812616#360#27#1#2000#138#153002824#0280302#939220509  MPI_Isend(... 1, MPIDOUBLE, 360, ..) P10
11. 9#2#135809736#360#27#1#3000#138#153002964#0203092#939220509  MPI_Isend(... 1, MPIDOUBLE, 360, ..) P10
12. 9#3#135818376#360#27#2#4000#138#153003104#0280302#939220509  MPI_Isend(... 2, MPIDOUBLE, 360, ..) P16
13. 9#4#135815496#360#27#2#5000#138#153003244#020302#939220509  MPI_Isend(... 2, MPIDOUBLE, 360, ..) P16
14. 9#5#135824136#360#27#3#7000#138#153003384#020302#939220509  MPI_Isend(... 3, MPIDOUBLE, 360, ..) P13
15. 9#6#135821256#360#27#3#6000#138#153003524#020302#939220509  MPI_Isend(... 3, MPIDOUBLE, 360, ..) P13
16. 22#1#12#153016848#153017012#153017176#153017330%7504 MPI_Waitall(...) 02
#153017668#153002824#153002964#153003104#153008234@&3384
#153003524#0#939220509#939220513
17. 9#7#135786208#1470#27#1#3000#136#153003524#R20393#939220513 MPI_Isend(... 1, MPIDOUBLE, 1470, ..]) P11
18. 7#7#135809736#1470#27#1#3003#136#153017668#220393#939220513 MPI_Irecv(... 1, MPLDOUBLE, 1470,..]) P2
19. 21#1#153003524#0##939220513#939220513 MPI1[Wait(...)} o1
20. 21#2#153017668#0##939220513#939220513 MPI[Wait(...) o1

2277. 3#1#3220724688##3220724696#1#27#100#0#134#P20892#939220642 MPI_Reduce(...1, MRBDOUBLE, MPLMAX, ...] M3
2278. 1#2#91#0#939220642#939220642 [MPI_Barrier] M2
#Finished writing logfile for node=0#939220642#939220646

Trace as a string of symbols is as follows:
{M4,M5,M6,P1,P1,P7,P7,P4,P4,P10,P10,P16,P16,P13,PB3P11,P2,01,01,...... ,M3,MP

Each symbol in the trace corresponds to an MPI operation amdsponding parameters, e.g,
an ‘isendoperation fordKBytesof data tonode 2. A simple linear search was used to find the
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symbol corresponding to a trace entry in the symbol tabtépaljh a hash table would be more
appropriate if the number of distinct MPI operations wagéarAlso, similar MPI operations (e.g.
2 message sends to the same node but with slightly diffeizeX may be combined to provide a
higher degree of compression with some lossyness [14]hiBivas not done for the experiments
in this paper. All results presented are for the compressidhe string of symbols derived from
the traces of NAS benchmarks.

5.2 Results and discussion

Table 3 shows the results of the optimal compression praeetile observe that the length of the
traces ranged from 8909 to 323048 (average 71695) and ththlefithe compressed traces ranged
from 10 to 648 (average 165) with the degree of compressiogimg from 15 to 5127 (average
1815). The structures of the major loop nests discoveredlacedescribed in the table. Most of
the trace was covered by loops for all benchmarks, 98% orageerThe conclusion is that MPI
traces typically have a loop structure that can be discovautomatically by this approach. The
degree of compression is excellent and the length of the oesapd trace is typically relatively
small.

Table 3: Results of optimal compression

Trace Span Compressed

Name Trace Major Covered Trace Compression

Length Loop Structure by Loops Length Ratio
BT B/C | 17106 | (85)%%0 = (13 + (4)> + ... + (4)3)?° 99.38% 44 388.77
SP B/C | 26888 67400 99.67% 89 302.11
CGB/C | 41954 (552)™ = ((21)%° +6)™ 98.68% 10 4195.4
MG B 8909 (416)%° 93.39% 590 15.1
MG C 10047 (470)%° 93.56% 648 155
LUB 203048| (812)%19 = ((4)'00 4 (4)100 4 12)24° 99.58% 63 3222.98
LuC 323048 (1292)%%% = ((4)'%0 + (4)1%0 - 12)?%9 |  99.58% 63 5127.75
Average| 71695 98.16% 165 1815.39

Table 4 focuses on the execution time for optimal comprasdibe total time for loop discov-
ery is reported, which includes repeats discovery, looptifieation and loop filtering. The largest
and the smallest loop element sizes are also noted. Onevaliseris that the repeats discovery
time is a relatively small component of the total loop disegvtime, which is dominated by the
loop identification time. The loop filtering time was consistly very small in comparison and is
not reported separately in the table.

The times for repeats discovery and loop discovery incraagke trace size increases. For ex-
ample, class C LU benchmark takes 8028.83 seconds (2.28)hodinish discovering all possible
repeats, and identification of loops from those repeatstak8890.21 seconds (31.64 hours). As
this is for a modest input data size running on only 16 nodhesekecution time is a major concern
for realistic larger clusters and data sizes. Figure 2 glagelationship between execution time
and trace size.

Table 4 also shows the times at which the smallest loop anthtgest loop was discovered
during the compression of each benchmark trace. For allHmearks, the largest loop was discov-
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Table 4: Performance and execution time breakup for optaoalpression. The loops discovery
time includes the time for repeats discovery that is aldediseparately, loop identification and
loop filtering.

Repeats Discovery Time (S) Loops Discovery Time (s) Loop Element Size
Name | Trace Up to Up to Upto Up to
Length | Total | Smallest| Largest Total Smallest| Largest| Smallest| Largest
Repeat | Repeat Element| Element| Size Size
BT B/C | 17106 | 12.85 0.47 0.87 311.18 0.63 4.84 4 85
SPB/C| 26888 | 15.88 0.98 0.98 747.73 5.81 5.81 67 67
CGB/C| 41954 | 239.29 1.46 5.78 2021.78 3.73 67.77 21 552
MG B 8909 35.85 0.00 3.95 113.48 0.00 13.74 1 416
MG C | 10047 | 45.96 0.00 4.97 144.54 0.00 17.41 1 470
LUB | 203048| 2565.73| 4.93 24.31 | 44204.82| 6.51 463.18 4 812
LUC | 323048| 8028.83| 7.83 59.72 | 113890.21| 10.18 | 1172.63 4 1292

¢MGB mMGC aBT xXxSP XCG eLUB +LUC

1.00E+06

1.00E+05 -

1.00E+04

Time (seconds)

1.00E+03

1.00E+02 *

1.00E+01 . .
1.00E+03 1.00E+04 1.00E+05 1.00E+06

Trace Size (MPI Events)

Figure 2: Time of loop discovery .

ered within a small fraction of time as compared to the totaketion time. A similar pattern is
observed for the largest repeats. Loop discovery with Groare’s algorithm employs successive
refinement from 1 up to half the trace size. However, the Eriggop element in all cases was
a small fraction of the trace size. Hence, the bulk of the tapent by the algorithm was after
all the loops had already been discovered. Of course, insightl the process could have been
terminated earlier with the same results. However, thermislefinitive way to be certain that
optimal compression has been achieved, although hesrsit be developed based on the degree
of compression already achieved.

The observations from the results of this optimal algorithnd the fact that it spent much of the
time in processing that did not contribute to final compm@ssvas the motivation for us to develop
a greedy compression algorithm. Greedy compression redtheerunning time by reducing the
length of the original string during compression as loops discovered. Consider the trace of
class C LU benchmark. Table 4 shows that the smallest loofatm¥ elements, so the reduction
in trace size starts at level 4 by replacing those loops wath lmop symbols. The largest loop has
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1292 elements, which contains two inner loops with 4 eleséatating 160 times and other 12
elements, and the loops span 99.58% of the trace. Hencetledtaext reduction, which happens
at level 14, the trace size will be (100-99.58) = 0.42% of thginal trace size, and compression
will be virtually over. In contrast, optimal loop discovepyocedure will have to execute with a

trace size of 320348 until a level equal to half that size.

Table 5: Results of greedy compression

Total Time Total Time Compression Ratio
NPB Trace of Greedy of Optimal Major Loop Structure Discovered Optimal Greedy
Name | Length | Compression| Compression by Greedy Compression Algorithm | Algorithm
BTB/C | 17106 8.91 311.18 (85)?99 = (13 + (4)3 + ... + (4)3)?% 388.77 388.77
SP B/C | 26888 7.61 747.73 67700 302.11 302.11
CGBIC | 41954 8.48 2021.78 (552)75 = (5 + (21)2° 4 22)75 4195.4
MG B 8909 8.64 113.48 (416)2° 15.1 15.1
MG C 10047 10.88 144.54 (470)?° 155 155
LUB | 203048 33.16 44204.82 | (812)?19 = ((4)100 + (4)100 4 12)2%9 3222.98 | 3222.98
LUC | 323048 61.9 113890.21 | (1292)%%9 = ((4)160 4 (4)160 + 12)219 | B5127.75 | 5127.75

The results from greedy compression are presented and cedhpéh the optimal compres-
sion results in Table 5. The reduction in the execution tinté tihe greedy approach is dramatic.
The maximum compression time with the greedy procedureasifrgm 7.6 seconds to 61.9 sec-
onds, versus the range from 113 seconds to 113,000 secanitie foptimal procedure. Clearly,
this is a much more promising approach for large traces.eSime greedy approach is not optimal,
we report the loop nests discovered and the compressioawvachfor each benchmark. For 6 of
the 7 benchmarks, the loop nests discovered and the conpreshieved were identical with the
optimal and greedy approaches. One exception was the CGiipank as noted in Table 5. In
this case the optimal procedure yielded a compressed tizzefsl0, while the greedy procedure
yielded a compressed trace size of 31. Clearly this is noaetijgal concern even though the de-
gree of compression reported varies by a factor 3. The refasdhe difference is clear when the
loop nest discovered for the CG benchmark as shown in Taldecbmpared with the loop nest
discovered as shown in Table 3. One discovered loop with 2ibsis is offset due to the greedy
procedure such that it has one less iteration as comparaé tptimal loop nest.

6 Conclusion

This paper has presented an efficient and practically opfrax@ework to identify complete loop
nests from execution traces. The methodology construais@nest from all repeating patterns
identified by Crochemore’s algorithm. A fast greedy apphoecalso developed. Experimen-
tal results with traces generated with Class B/C NAS bencksnan 16 nodes demonstrate that
the approach is effective for compression of communicatiaces. Both the optimal and greedy
approaches discover similar loop nests and deliver sirodarpression results. However, the pro-
cessing time rises to hours with the optimal procedure fodesblength traces of 1000s of MPI
calls. The greedy approach provides virtually identicahpoession at a fraction of the execution
time of the optimal method. The maximum compression timeotar test suite was around one
minute with the greedy procedure. Most importantly, unilkany other compression heuristics,
the greedy approach developed is theoretically provenetid ynear optimal” optimal results.
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While many compression algorithms exists, the efficientaliery of long range repeating
patterns due to outer loops in a trace is a significant chgdéleiio the best of our knowledge, this
is the first effort to discover the optimal loop nest in ex@nutraces. The procedure developed is
general and can be applied to trace compression and sinmlialgons in a variety of scenarios. We
believe this is an important step forward in analyzing executraces for performance modeling
and performance prediction.
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A Results on near optimality of greedy compression

We first restate the main result about greedy trace compresgormally:

The early reduction of all inner loops corresponding to adikeop body can impact the iden-
tification of a longer span outer loop only as follows: the pad the discovered loop may be a
reordering of the body of the original loop, and the numbeitefations in the discovered loop
may be up to 2 fewer than the number of iterations in the oalgiuter span loop.

We now present a set of results that will be employed to prog@bove result formally. Recall
that the notationij, o, m) representing a PM-triple means that the corresponding €&)ats start
at locationj in the string, the repeating substringisnd the number of repeatsiis

Lemma A.1 Suppose PM-tripld. represented a§j, o, m) is leftmostmeaning that there are no
PM-repeats of length| starting left of L, from locationi — 1. Let A = |a| — 1 and assume
m > 2. Then there exist PM-triple§ + 1, 51, k1), (i + 2, 02, k2), ...(i + A, B4, k4) such that3; is
a rotation ofa andk; is eitherm or m — 1.

We refer to this group as the family of PM-triples correspioigdo leftmost PM-triplel..
Proof. This result is stating the direct observation that, for gvepeating sequence, starting with
a forward offset smaller than the size of the repeatinggtyialds another repeating sequence with
at most one fewer number of repeats and with a rotated reygestting. O
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Lemma A.2 Let S be a string of symbols. Suppose there exist strings ABasuth that:S =
AB = BA. Then there must be another string C such that [C]*. One implication is thats
cannot be the repeating substring in a PM-repeat as it is mobal.

Proof.

1. If |A] = 1, then it can be easily shown théit= [A]*, wherek = |S|. Same holds ifB| = 1.

2. If |A| = |B|, thenS is of the form[A]>.
If either of the above cases holds, the result holds.

3. Otherwise, without loss of generality, let| < |B|. Then we can define a stririg such
that B = T'A. Now, we haveS = AB = AT A, andS = BA = T AA. This implies that
S =ATA=TAA.

We defineS = S’ A, with 8" = AT = T'A. We again have:

(@) If |T| = 1, thenS’ = [T)*, wherek’ is |S'|. Hence,S = [T]*, wherek is |S|. Hence
the result holds.

(b) If |T| = |A|, thenS’ = [T)?> = [A]?, andS = S’A = [A]3. Hence, the result holds.

(c) OtherwiseS’ can again be split as was split in the previous level.

The size of the string decreases by at least 1 in every new [€lie result is proved based
on the principle of induction.

O

Lemma A.3 Given two PM-triplesl, and S, with repeating substring&’;, and E, respectively,
where|E.| > |Es|. If there is an overlap between any interior instance (i.kirestances except
the first and the last) of’;, and the span of, then the length of the span Sfcannot equal or
exceedEy|.

Proof.

Without loss of generality, we assume that overlappingams¢s ofE;, and.S are aligned
at the left boundary as shown in Figure 3. If that is not theecdéisen the proof is generated
with an aligned member of the family of PM-triples corresgimg to PM-triple L as discussed in
LemmaA.l.

Es | Es | ...... Esi | Es | ...
1
a |b a [b] a b

Figure 3: Overlapping PM repeats

If span of S = E, then clearly PM-tripleS is not maximal as repeats éfs continue in the
next instance of/;. Hence that cannot be true.
Suppose the length of span 6f > FE; in contradiction to the result to be proved. Then one
instance ofEs will cross the boundary between instancessgfas shown in Figure 3. (Since the
first instance off;, is an interior instance, a following instance must existg $flit this instance
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of Es in two substrings: andb at the boundary as illustrated in Figure 3, i8g = ab. Now the
left instance of;, starts withEs = ab, while the right instance aF/;, starts withba. But since they
are repeats, they must be identical.

Hence we havé&'s = ab = ba.

From Lemma A.2Es = [z]* for somex andk, which means tha$ is not aprimitive repeat.
Hence, by contradiction, the span®tannot exceed’;. Therefore, the span &f must be strictly
smaller than Ey|. O

We now present the main result formally.

Theorem A.4 Consider PM-tripleL represented a$j, o, m) with || > 2. Let 3 be another
substring with|a| > |3|. Suppose every PM-triple with as the repeating substring is identified
and reduced to a symbol. As a result of these reductiodsiginot identified as a PM-triple, then
another PM-tripleL’ (j', o/, m’) will be identified where,

j'is betweery andj + |a — 1],

o/ and« are identical strings or one is a rotation of the elementshef dther,

m'’ is betweenn andm — 2.

Proof.

Let S be a PM-triple with repeating substring that overlaps with an interior instance of
« corresponding td.. We initially assume that no other PM-triple with repeatsgostrings
overlaps with this instance @f. From Lemma A.3 we know that the entire spanSofnust be
smaller tharja|. Further we assume for now that the entire spaf «f contained within a single
instance of.

Under the above scenarios, every instance of L will contain S as part of the substring at
the same location, which will be replaced by the same symbl@nce the identification of the
PM-triple corresponding té will be unaffected by reductions &f.

Now suppose the span ¢f is not contained within a single instance afand crosses two
instances. In that case the above result can be proved ftheanmember of the family of PM-
triples corresponding to PM-triplé as discussed in Lemma A.1, although the number of repeats
(or iterations) may be reduced by 1.

Finally, there can be multiple PM-triples with repeatingpstiing that overlap with the same
instance ofa. However these instances themselves cannot be overlappithgrwise it can be
shown that they are not PM-repeats based on Lemma A.2. Thacingh non-overlapping PM-
triples can be serialized leading to the same result as fimgéesoverlapping PM-triple above.

The final result is that the number of repeats in the recogniPd-triples can be up to 2 less
than L since none of the results applies to the first or the lastmestafx in L. O
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