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Abstract

Execution and communication traces are central to performance modeling and analysis of
parallel applications. Since the traces can be very long, meaningful compression and extrac-
tion of representative behavior is important. Commonly used compression procedures identify
repeating patterns in sections of the input string and replace each instance with a represen-
tative symbol. This can prevent the identification of long repeating sequences corresponding
to outer loops in a trace.This paper introduces and analyzesa framework for identifying the
maximal loop nest from a trace based on Crochemore’s algorithm. The paper also introduces
a greedy algorithm for fast “near optimal” loop nest discovery with well defined bounds. Re-
sults of compressing MPI communication traces of NAS parallel benchmarks show that both
algorithms identified the basic loop structures correctly.The greedy algorithm was also very
efficient with an average processing time of 16.5 seconds foran average trace length of 71695
MPI events.

Index Terms
Trace compression, Crochemore’s algorithm, Performance analysis & modeling

1 Introduction

Execution and communication traces are central to performance analysis and performance mod-
eling of parallel applications. However, trace processingis a challenge as the trace length can be
large even for traces of relatively coarse grain events. Fortunately execution traces often contain
repeating sequences that can be identified to capture representative behavior. The specific context
of this research is the construction of performance skeletons of parallel applications for perfor-
mance prediction [14, 16, 20]. A performance skeleton is a short running program that recreates
the computation and communication behavior of the originalapplication execution. A key step
in the process of construction of performance skeletons is the identification of repeating patterns
in MPI message communication. Since the MPI communication trace is typically a result of loop
execution, discovering the executing loop nest from the trace is central to the task of skeleton
construction.

The goal of the research presented in this paper is to developeffective and efficient procedures
to identify the representative sections of an execution trace by discovering the loop nest structure
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inherent in the trace. There are, of course, several well known algorithms and tools for string com-
pression based on substring matching. The major challenge in achieving maximal compression
is discovery of long range repeating patterns, typically representing an outer loop in an execution
trace. It is normal that many overlapping repeating substrings of different lengths exist in an exe-
cution trace. Most compression procedures apply heuristics to selectively reduce sets of repeating
substrings. Examples includegzip that constructs a dictionary of frequently occurring substrings
and replaces each occurrence with a representative symbol,andSequiturthat infers the hierarchi-
cal structure in a string by automatically constructing andapplying grammar rules for reduction of
substrings. While these approaches can be efficient and procedures can be designed to have exe-
cution time that is nearly linear in trace length, they are not guaranteed to identify long range loop
patterns because of early reductions. An alternate approach is to attempt to identify the longest
matching substring first. However, simple algorithms to achieve this are quadratic for a given
match length and hence cubic in trace length, and therefore impractical for long traces. A practical
approach is to limit the window size for substring matching,which again risks missing long span
repeats.

Before presenting our approach, we introduce the basic terminology for distinguishing various
types of repeating patterns. Repeating substrings (orrepeats) in a string can betandemrepeats
where successive repeat substrings immediately follow each other,overlappingrepeats where re-
peat substrings overlap, andsplit repeats where repeat substrings are separated by other symbols.
Since we seek to identify the loop structure in a trace, we areonly interested in tandem repeats.
A tandem repeat isprimitive if it is itself not composed of tandem repeats of another substring.
A set of tandem repeats ismaximal if there is no identical substring immediately preceding or
succeeding the sequence of tandem repeats. We will refer to the primitive and maximal tandem
repeats in a string asPM-repeats. In the rest of the paper, discovery of “loops” technically refers to
the discovery of PM-repeats in the execution trace, which (presumably) exist because of execution
of program loops. Our objective is finding and reducing the PM-repeats of different spans in an
execution trace, which is the same as discovering the inherent loop nest structure in the execution
trace.

To illustrate the properties of PM repeats, consider the string abababab. The PM-repeats cor-
responding to this string are represented as(ab)4 which is the most compact representation. The
string can also be represented as tandem repeats(abab)2 but this would not be primitive, since the
repeating substring itself is a tandem repeat of another string ab. The string can also be represented
as(ab)3ab but this would not be a maximal repeat. Hence,(ab)4 represents the only PM-repeats
sequence, or optimal loop, for this string.

Our approach to identifying the loop structure in a trace is based on Crochemore’s algo-
rithm [3], which can identify all repeats in a string, including tandem, split, and overlapping
repeats, inO(nlogn) time. A framework was developed in this research to discoverthe loop
nest structure by recursively identifying the longest spantandem repeat in a trace. The procedure
identifies the optimal (or most compact) loop nest in terms ofthe span of the trace covered by
loop nests and the size of the compressed loop nest representation. The procedure was applied to
identify the loop nests in the MPI communication traces of NAS benchmarks. The compression
results were very good, but the execution time was unacceptable for long traces; processing of a
trace consisting of approximately 320K MPI calls took over 31 hours.

The results motivated us to develop a greedy procedure for the discovery of the loop structure,
which is the most important contribution of this paper. The greedy procedure intuitively works
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bottom up - it identifies and reduces the shorter span inner loops and replaces them with a single
symbol, before discovering the longer span outer loops. In this respect, it appears similar to other
approaches that apply heuristics to identify repeating substrings and replace them with symbols to
enable efficient processing. However, the key characteristic of our algorithm is that only primitive
and maximal tandem repeats (PM-repeats) representing a section of the trace that corresponds to
loop execution, are reduced to a single symbol. No other repeating substrings are reduced. The
intuition is that reduction of trace sections corresponding to complete inner loop execution will not
interfere with the discovery of outer loops.

The key analytical result in this work is that the reduction of a shorter span PM-repeats (inner
loops) can impact the discovery of a longer span PM-repeats (outer loops) only in the following
way: if the optimal outer loop isLo then a corresponding loopLg will be identified despite the
reduction of an inner loop.Lo andLg have identical number of loop elements, butLg may have up
to 2 less loop iterations thanLo. Hence, the loop structure discovered by the greedy algorithm is
near optimal.

The greedy loop nest discovery procedure was also implemented and employed to discover
the loop nests in the MPI traces of NAS benchmarks. The loop nests always satisfied the criteria
above, and were, in fact, identical to the optimal loop nestsin all but one case. However, the time
for loop discovery was dramatically lower than the optimal algorithm, with the compression time
reduced to approximately 62 seconds from 31 hours for one trace.

To the best of our knowledge, this is the first effort toward extracting complete loop nests from
execution traces. The paper presents detailed results on the effectiveness of these algorithms in
discovering loop nests and achieving compression. The performance and scalability of the greedy
and optimal algorithms are also presented and analyzed. Of particular interest are the insights
into the theoretical complexity of the algorithms and the empirical measurements of performance.
The methodology developed is applicable to any sequence that is likely to contain a loop struc-
ture even though the experimental results presented in thispaper are limited to message passing
communication traces.

The rest of the paper is organized as follows. After a discussion of related work in Section 2,
we present and analyze the optimal and greedy compression procedures in Section 3 and Section 4,
respectively. Experimental results and discussion are presented in Section 5. Finally, we conclude
in Section 6.

2 Related work

Compression is a basic operation in a wide variety of scenarios. Many algorithms have been
developed for text compression and employed in utilities likegzip[21]. The basic approach in such
algorithms is to identify recurring short strings and replace them with identifiers.Sequitur[12, 11,
10] is a well-known algorithm that was developed to discoverthe natural hierarchy in text and other
data. The insight is that repeating substrings are replacedby a grammar rule that generates that
substring and the process is continued recursively, resulting in a hierarchical representation of the
structure of the string. In order to improve the processing time and quality of compression, PGTC
(path grammar guided trace compression) [4] is proposed as an enhanced approach that employs
program static analysis to build a grammar and guide compression.

The goal of our compression approach is to identify completeloop nests from the repeating
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substrings discovered in a string. Replacement of short substrings with identifiers, as is the case in
above methods, can result in failure to identify long span repeats in traces corresponding to outer
loops.

Noeth et al. [13] have employed a scalable trace driven approach to analyze MPI communica-
tion, which is based on identifying loops from a message passing trace. The compression algorithm
maintains a queue of MPI events and attempts to greedily compress the first matching sequence
within a sliding window. They extend regular section descriptors (RSDs) for single loops to ex-
press MPI events nested in a loop in constant size [7] while power-RSDs are utilized to recursively
specify RSDs nested in multiple loops [8]. The drawback is that the algorithm is not guaranteed to
yield the optimal loop nest as matching is limited to a maximum sliding window to avoidO(n2)
time complexity in the length of the trace.

There are two well known approaches to identifying all repeats in a string systematically -
one based on suffix trees and the other based on Crochemore’s algorithm. A compression scheme
based on Crochemore’s algorithm that uses split and tandem repeats to carry out offline genetic
data compression is proposed in [17]. We have employed Crochemore’s algorithm as the basis of
our approach and that is discussed in detail in this paper. Webriefly discuss suffix trees here.

Suffix trees are a fundamental data structure supporting a wide variety of efficient string search-
ing algorithms. In particular, suffix trees are well known toallow efficient and simple solutions
to problems concerning the identification and location of repeated substrings. Several algorithms
[19, 9, 18] can build a suffix tree in linear time. Stoye and Gusfield have developed anO(n log n)
time method [15] to find all occurrences of primitive tandem repeats in a string with suffix trees.
They also proposed a novel method [6] to collect only the primitive tandem repeattypes in O(n)
time and find occurrences of all primitive tandem repeats inO(n + z) time, wherez is the number
of occurrences of primitive tandem repeats in a string. In [1], the repeating substrings in a string
and their statistics are inferred from suffix trees, and usedfor compression through greedy off-line
textual substitution.

We have based our loop nest identification procedure on Crochemore’s algorithm instead of
suffix trees for two main reasons. First, we are not aware of a straightforward approach to finding
all primitive andmaximal tandem repeats with suffix trees. Second, the process of building and
processing suffix trees is significantly more complex than that based on Crochemore’s algorithm.

Another dimension of compression of traces from parallel programs is inter-node compression.
The traces from different processes in the system can be consolidated into a single trace before
compression [20, 2] or after compression [13]. This aspect is orthogonal to the work proposed in
the paper as the trace compression procedures can be appliedto a consolidated logical trace or a
single process trace.

3 Optimal trace compression

The main contribution of this paper is a framework to compress execution traces by discovering the
loop structure inherent in the trace. All repeating substrings in a trace are identified by employing
the well known Crochemore’s algorithm. However, the repeats are implicit in a complex data
structure. The total number of repeats can be combinatorialin the size of a string and very large in
practice.Our contribution is the development of a framework to efficiently construct the loop
structure in the trace by selectively filtering and reducingthe repeats.The procedure consists
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of the following steps for discovery and reduction of outermost loops:

1. Repeats discovery:Discovery of all types of repeats (overlapping, split, and tandem) of all
sizes by Crochemore’s algorithm.

2. Loop identification: Identification of all PM-repeats (primal and maximal tandemrepeats)
corresponding to loops.

3. Loop filtering: Discovery of outermost loops and their replacement with loop symbols.

The above process is repeated recursively inside each discovered loop. For a string withn
symbols, the repeats discovery takesO(n log n) time while loop identification and loop filtering
takeO(n2) time. Hence the overall complexity isO(n2). We discuss each of the above steps and
the overall loop identification and compression procedure.

3.1 Repeats discovery

As an optimizedsuccessive refinement method, Crochemore’s algorithm [3] computes all repeat-
ing substrings (tandem, overlapping, and split) in a finite string S of lengthn in O (n log n) time.
The successive refinement begins with grouping all positions in the string that have the same sym-
bol/character into a single class. Each class is then refinedinto new subclasses that contain starting
positions of repeating substrings of length two. The process is continued to find the starting po-
sition of all repeating substrings of length, 3,4,5....until a size is reached for which no repeating
substrings exist.

Before describing the details of Crochemore’s algorithm, we introduce some basic string defi-
nitions.

Definition: A stringS = s1s2s3...sn is an ordered list of characters/symbols written contigu-
ously from left to right. Thelengthof S is |S|. S[i..j] is thesubstringof S that starts at positioni
and ends at positionj.

Definition: Ek is anequivalence relationover a stringS defined as follows:iEkj if and only
if substringsS[i..i + k] andS[j..j + k] are identical.Ek partitions the positions of stringS into
equivalence classes; ifiEkj theni andj will be in the sameEk class. We also useEk to denote
the set of those equivalence classes.

The simple successive refinement is based on the fact that forstring S, if iEkj and S[i +
k]=S[j + k], theniEk+1j. For example, consider the string
S = a b a a b a b a a b a a b $

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Initially, we construct threeE1 classes containing repeating substrings of length one. Note that
the unique character “$” is appended as the end of string symbol.

E1 : {1,3,4,6,8,9,11,12} {2,5,7,10,13} {14}
a b $

The first step of refinement splits each class ofE1 into classes that contain starting positions of
substrings of length two. We check the character following each position in that class. For classa–
{1,3,4,6,8,9,11,12}, we need to check positions{2,4,5,7,9,10,12,13} in S. SinceS[4]=S[9]=S[12]=a
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andS[2]=S[5]=S[7]=S[10]=S[13]=b, classa is split into subclassaa–{3,8,11} and subclassab–
{1,4,6,9,12}. Similarly, classb–{2,5,7,10,13} is split into subclassba–{ 2,5,7,10} and subclass
b$–{13}. The class$–{14} has no substring of length two starting from it, so it is discarded.

The successive refinement continues with checking of thekth character following the positions
in each class ofEk to constructEk+1. Any singleton classes are discarded. Eventually a value of
k is reached for which there are no classes ofEk and the process is terminated. The entire process
of refinement of stringS = abaababaabaab$ is shown in Table 1.

Table 1: Successive Refinement of Stringabaababaabaab$

Level1 − E1 : {1,3,4,6,8,9,11,12} {2,5,7,10,13} {14}
a b $

Level2 − E2 : {1,4,6,9,12} {3,8,11} {2,5,7,10} {13}
ab aa ba b$

Level3 − E3 : {1,4,6,9} {12} {3,8,11} {2,7,10} {5}
aba ab$ aab baa bab

Level4 − E4 : {1,6,9} {4} {3,8} {11} {2,7,10}
abaa abab aaba aab$ baab

Level5 − E5 : {1,6,9} {3} {8} {2,7} {10}
abaab aabab aabaa baaba baab$

level6 − E6 : {1,6} {9} {2} {7}
abaaba abaab$ baabab baabaa

Level7 − E7 : {1} {6}
abaabab abaabaa$

The total running time for the algorithm as described above isO (n2), since there can beO (n)
levels and each level can takeO (n) time. But two techniques proposed in [3] optimize the succes-
sive refinement and reduce the running time toO (n log n). We mention them very briefly here.

The first technique is “indirect refinement”. This is based on the observation that any class of
Ek+1 is a subset of someEk class. Because,iEk+1j, if and only if iEkj andi + 1Ekj + 1, we
can use classes at the same level to carry out successive refinement instead of referring back to the
original stringS. This helps in reducing the complexity when used with another technique called
“ small classes”, which can be outlined as follows. The indirect refinement process for anEk class
into Ek+1 classes requires matching against several, but not all, otherEk classes. The small classes
techniques prescribes that the classes be selected in a specific manner that favors matching against
smaller classes, and thereby avoiding some matching against larger classes. This description only
gives a flavor of these technique and the interested reader isreferred to [5, 3] for details. Our
implementation includes the indirect refinement and small classes techniques.
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3.2 Loop identification

The repeats discovered by Crochemore’s algorithm include tandem, overlapping, and split repeats.
Their definitions are as follows:

Definition For positionsi andj of stringS, that belong to the sameEk class, if|j − i| = k,
then repeating substringsS[i..i+ k− 1] andS[j..j + k− 1] aretandem repeats; if|j − i| < k they
areoverlapping repeats; and if|j − i| > k they aresplit repeats.

For example, the substringaba repeats four times in stringS at positions 1,4,6, and 9 in Table
1. The secondaba is right behind the first one, so they constitutetandem repeats. The second and
third aba areoverlapping repeats, while the first and thirdaba aresplit repeats.

Our goal here is to find loop structures, so we need to identifyand report only the tandem
repeats. Tandem repeats in a string can be represented by a triple (i, β, l), wherei is the starting
position,β is the repeated substring, andl is the number of iterations. But a substring may be repre-
sented by multiple tandem repeats. For example, the stringabababababababab, could be described
as (1, ab, 8), or (1, abab, 4), or (1, abababab, 2). Clearly the loop that we would like to identify
corresponds to(1, ab, 8). To generalize, we definePM-repeats and a correspondingPM-triple ,
where P and M stand forprimitive andmaximal. A triple (i, β, l) corresponds to a primitive
tandem repeats sequence if and only ifβ is not periodic. The triple corresponds to a maximal
tandem repeats sequence if and only if there is noβ right before or after the repeats. So, the above
string can be represented by a unique PM-triple,(1, ab, 8). (A PM-triple is a representation of a
PM-repeats sequence and we will use the terms interchangeably.)

For eachEk class refined in Crochemore’s algorithm, a PM-triple can be identified by the
following Lemma, which is also mentioned in [5]:

Lemma 1. (i,β, l) is a PM-triple, whereβ is a k-length substring, if and only if some single
class ofEk contains a maximal series of numbers i, i+k, i+2k, ..., i+lk,such that each consecutive
pair of numbers differs by k.

In order to identify loops, PM-triples must be identified at each level during the execution of
Crochemore’s algorithm. Since the total number of members in all classes at a levelk is bounded
by string lengthn, the process takesO (n) time. Since the maximal possible size ofβ, the loop
element, is half the length of the stringn, we need to report PM-triples after discovering the repeats
by Crochemore’s algorithm till leveln/2. The running time for identifying loops represented by
PM-triples isO (n2).

3.3 Loop filtering

The previous steps provide a list of PM-triples which represent all the loops in the trace. Our in-
terest is in finding all the outermost or longest span loops. These are represented by the PM-triples
at the highest level. (The inner loops are discovered by running the entire process recursively). In
case of multiple overlapping loops of equal span at the same level, we select the one that starts
earliest in the string.

As an example, for the stringabcdabcdabcdabcda, 4 PM-triples will be identified. These PM-
triples are(1, abcd, 4), (2, bcda, 4), (3, cdab, 3) and(4, dabc, 3). The first two PM-triples both have
a span of 4 versus a span of 3 for the remaining two. Based on theearliest starting point, the
selected loop will be(1, abcd, 4).
As another example, consider the stringEababababFEababababFEababababF , which contains a
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loop nest containing loops at two levels. The PM-triple(1, EababababF, 3) represents the selected
outer loop. The inner loops represented by triples(2, ab, 4), (12, ab, 4), and(22, ab, 4) are ignored
at this stage.

The loop filtering step repeatedly finds the PM-triple corresponding to the longest span loop,
until no PM-repeats are left. Since the loops can theoretically be as small as 2 elements, the theoret-
ical upper bound of this step with a simple implementation isO(n2). An O(nlogn)implementation
is possible. However, in practice this is a very quick step asthe number of loops is normally very
small, andO(n2) is a very loose upper bound.

3.4 Compression framework summary

The procedure discussed in this section identifies all outermost loops represented in a trace. The
algorithm runs recursively on the substrings that constitute the loop elements (or body) for identifi-
cation of the inner loops. The recursive steps are importantto get a high degree of compression. It
is theoretically possible to reuse some of the information from discovery of outer loops to identify
inner loops. In practice, this is likely to make little difference in performance since the processing
time is dominated by the time to discover outer loops. In order to develop a compressed represen-
tation, the loop spans in the trace are replaced with tuples(LE, l), whereLE is the loop element
symbol, andl is the number of loop iterations. A separate table is constructed, which maps a loop
element symbol to the substring that constitutes the loop element. The overall complexity of the
steps in this procedure isO(n2) and is dominated by the loop identification step.

4 Greedy trace compression

The scheme discussed in Section 3 discovers the optimal loopnest. However, the execution time
for loop discovery can be high for long traces. We will discuss experimental results in detail later
in this paper, but we take a look now at Table 4 to motivate the case for a faster approach. As an
example consider the class C SP benchmark in the table. The total time to run the algorithm is
around 747 seconds, although all program loops had already been discovered in just 5.8 seconds.
The reason is that the largest loop consists of only 67 symbols while the trace size is 26888 sym-
bols. Our approach builds equivalence classes and looks forloops in increasing order from 1 to
half the trace length. Even though all loops were discoveredby the time the equivalence class of 67
was constructed, (and these loops spanned over 99% of the trace) there is no way for the algorithm
to be certain that a larger loop does not exist, and hence refinement continues until the equivalence
class of 13444 that corresponds to half the original string size. If the loops already discovered were
replaced by a single symbol at the equivalence class of 67, the trace size to be processed would be
less than 1% of the original trace size, and the remaining processing would be much faster. This
motivates greedy compression.

4.1 Greedy trace compression

In the compression framework of Section 3, actual compression happens only after the discovery
of all PM-triples, which involves the successive refinementand identification of the tandem re-
peats until the level of half the original trace size. The keyidea of greedy compression is early
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compression as PM-triples are discovered. The entire span of the corresponding loop is replaced
by a single symbol, and compression continues on the newly formed (shorter) string. The proce-
dure continues until half the current string size is reached. Note that in the greedy approach, the
string size decreases dynamically as loops are discovered,which is the key reason for improved
performance. Figure 1 outlines the greedy compression procedure.

S = string corresponding to the original trace
Current S = S
Level = 1

Step 1:
if Level > |Current S|/2 then

Goto Step 3
else

i) Find all repeats of sizeLevel in Current S by successive refinement with Crochemore’s
algorithm.
ii) Identify all PM-triples with repeating substring of sizeLevel.
if any PM-triples with repeating substring of sizeLevel are discoveredthen

Goto Step 2
else

Level = Level + 1; Goto Step 1
end if

end if

Step 2:
UpdateCurrent S by reducing all PM-triples with repeating substrings of size Level in de-
creasing order of loop span, employing filtering (discussedin section 3.3) for overlapping triples.
The symbols replacing the PM-triples are stored in a mappingtable.
Level = 1; Goto Step 1.

Step 3:
Stop.Current S along with the mapping table for symbols is the compressed trace that captures
the loop nests.

Figure 1: Greedy compression procedure

The worst case time complexity for this greedy algorithm is the same as the optimal algorithm
discussed in Section 3. In fact, the two algorithms will run identically if there were no PM-repeats
in a trace. However, the greedy algorithm is much more efficient in practice for programs with a
loop structure as it does not need to perform repeats discovery and loop identification across long
spans of a trace. In our experience, almost all traces generated from executing programs have the
bulk of the trace included in loop nests.
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4.2 Risk of greedy compression

For most traces that we have analyzed, the greedy and optimalprocedures yield identical results.
Here we illustrate with carefully selected examples how theresults of greedy compression can be
suboptimal.

Consider the stringabaababaabaab. The greedy compression proceeds as follows:
a b a a b a b a a b a a b $
a b L1 b a b L1 b L1 b $ L1 =(a)2

a b L1 b a L2 b $ L2 =(bL1)
2 =(baa)2

The loop structured discovered by the greedy procedure isab(a)2ba(b(a)2)2b whereas the op-
timal loop structure is(ab(a)2b)2(a)2b. A 2 iteration loop with the largest element,(abaab)2, is
completely missed.

Now consider the stringabaababaababaabaab. The greedy compression proceeds as follows:
a b a a b a b a a b a b a a b a a b $
a b L1 b a b L1 b a b L1 b L1 b $ L1 =(a)2

a b L1 b a b L1 b a L2 b $ L2 =(bL1)
2 =(baa)2

L3 a L2 b $ L3 =(abL1b)
2 =(abaab)2

The loop structured discovered by the greedy procedure is(ab(a)2b)2a(b(a)2)2b whereas the
optimal loop structure is(ab(a)2b)3(a)2b. The loop with the largest loop element(abaab) is cap-
tured, but with one less iteration than optimal.

4.3 Bounds on greedy compression results

As is the case with other heuristic algorithms discussed in Section 2, this greedy algorithm may
not discover the optimal loop nest. However, the algorithm is selectively discovering and replacing
loops corresponding to PM-repeats, and not any other repeatpattern. The insight is that loops are
either nested or disjoint, hence a reduction of all sequences corresponding to a complete inner loop
will not prevent a longer span outer loop from being identified. However, this is not completely
true. Loops as recognized by PM-repeats can overlap, but only at the boundary iterations. The
general informal result is as follows:

The early reduction of all inner loops corresponding to a fixed loop body can impact the iden-
tification of a longer span outer loop only as follows: the body of the discovered loop may be a
reordering of the body of the original loop, and the number ofiterations in the discovered loop
may be up to 2 fewer than the number of iterations in the original outer span loop.

The result is formally discussed in the appendix of this paper. In other words, the discovered
outer loop may start at a different point in the trace and up to2 iterations may be lost due to
reduction of an inner loop. However, the basic loop structure will be identified, unless the outer
loop consists of only 2 or 3 iterations. For most communication traces, each loop typically iterates a
large number of times, hence missing one or two iterations orcompletely missing a 2 or 3 iteration
loop is not a significant practical problem.
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5 Experiments and results

A framework for loop discovery and compression discussed inSection 3 and a framework for
greedy compression as discussed in Section 4 were implemented. The goal was to validate loop
discovery and compression achieved by these algorithms andstudy the tradeoffs between the exe-
cution performance and the degree of compression.

5.1 MPI communication traces

This research was motivated in the context of analysis of execution traces of MPI applications to
build representative performance skeleton programs [14].The process consists of collection of
traces,logicalizationwhereby a single logical trace represents SPMD execution, compression and
identification of representative sections, and generationof an executable skeleton program [20].

All results presented in this paper are for compression of MPI communication traces for Class
B/C NAS Parallel Benchmarks running on 16 nodes. The traces were collected with the PMPI
library and the process of conversion of a trace to a string ofsymbols is illustrated in Table 2.

Table 2: Conversion of MPI communication trace to a string ofsymbols

Raw Trace MPI Event Symbol
#Generating Logfile
Node=0 #939220507ss#0#939220507
1. 2#1#3220724724#1#28#0#134#0#939220509#939220509 [MPI Bcast(...1, MPIINT, 0,...)] M4
2. 2#2#136373224#1#27#0#134#0#939220509#939220509 [MPI Bcast(...1, MPIDOUBLE, 0,...)] M5
3. 2#3#135838396#3#28#0#134#0#939220509#939220509 [MPI Bcast(...3, MPIINT, 0,...)] M6
4. 7#1#135789088#360#27#1#3000#138#153016848#0#939220509#939220509 [MPI Irecv(... 1, MPIDOUBLE, 360, ...)] P1
5. 7#2#135786208#360#27#1#2000#138#153017012#0#939220509#939220509 [MPI Irecv(... 1, MPIDOUBLE, 360, ...)] P1
6. 7#3#135794848#360#27#2#5000#138#153017176#0#939220509#939220509 [MPI Irecv(... 2, MPIDOUBLE, 360, ...)] P7
7. 7#4#135791968#360#27#2#4000#138#153017340#0#939220509#939220509 [MPI Irecv(... 2, MPIDOUBLE, 360, ...)] P7
8. 7#5#135800608#360#27#3#6000#138#153017504#0#939220509#939220509 [MPI Irecv(... 3, MPIDOUBLE, 360, ...)] P4
9. 7#6#135797728#360#27#3#7000#138#153017668#0#939220509#939220509 [MPI Irecv(... 3, MPIDOUBLE, 360, ...)] P4
10. 9#1#135812616#360#27#1#2000#138#153002824#0#939220509#939220509 [MPI Isend(... 1, MPIDOUBLE, 360, ...)] P10
11. 9#2#135809736#360#27#1#3000#138#153002964#0#939220509#939220509 [MPI Isend(... 1, MPIDOUBLE, 360, ...)] P10
12. 9#3#135818376#360#27#2#4000#138#153003104#0#939220509#939220509 [MPI Isend(... 2, MPIDOUBLE, 360, ...)] P16
13. 9#4#135815496#360#27#2#5000#138#153003244#0#939220509#939220509 [MPI Isend(... 2, MPIDOUBLE, 360, ...)] P16
14. 9#5#135824136#360#27#3#7000#138#153003384#0#939220509#939220509 [MPI Isend(... 3, MPIDOUBLE, 360, ...)] P13
15. 9#6#135821256#360#27#3#6000#138#153003524#0#939220509#939220509 [MPI Isend(... 3, MPIDOUBLE, 360, ...)] P13
16. 22#1#12#153016848#153017012#153017176#153017340#153017504 [MPI Waitall(...)] O2

#153017668#153002824#153002964#153003104#153003244#153003384
#153003524#0#939220509#939220513

17. 9#7#135786208#1470#27#1#3000#136#153003524#0#939220513#939220513 [MPI Isend(... 1, MPIDOUBLE, 1470, ...)] P11
18. 7#7#135809736#1470#27#1#3003#136#153017668#0#939220513#939220513 [MPI Irecv(... 1, MPIDOUBLE, 1470,...)] P2
19. 21#1#153003524#0##939220513#939220513 [MPI Wait(...)] O1
20. 21#2#153017668#0##939220513#939220513 [MPI Wait(...)] O1
...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...
2277. 3#1#3220724688#3220724696#1#27#100#0#134#0#939220642#939220642 [MPI Reduce(...1, MPIDOUBLE, MPI MAX, ...)] M3
2278. 1#2#91#0#939220642#939220642 [MPI Barrier] M2
#Finished writing logfile for node=0#939220642#939220646

Trace as a string of symbols is as follows:
{M4,M5,M6,P1,P1,P7,P7,P4,P4,P10,P10,P16,P16,P13,P13,O2,P11,P2,O1,O1, ... ... ,M3,M2}

Each symbol in the trace corresponds to an MPI operation and corresponding parameters, e.g,
an “isendoperation for4KBytesof data tonode 2”. A simple linear search was used to find the
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symbol corresponding to a trace entry in the symbol table, although a hash table would be more
appropriate if the number of distinct MPI operations was large. Also, similar MPI operations (e.g.
2 message sends to the same node but with slightly different size) may be combined to provide a
higher degree of compression with some lossyness [14], but this was not done for the experiments
in this paper. All results presented are for the compressionof the string of symbols derived from
the traces of NAS benchmarks.

5.2 Results and discussion

Table 3 shows the results of the optimal compression procedure. We observe that the length of the
traces ranged from 8909 to 323048 (average 71695) and the length of the compressed traces ranged
from 10 to 648 (average 165) with the degree of compression ranging from 15 to 5127 (average
1815). The structures of the major loop nests discovered arealso described in the table. Most of
the trace was covered by loops for all benchmarks, 98% on average. The conclusion is that MPI
traces typically have a loop structure that can be discovered automatically by this approach. The
degree of compression is excellent and the length of the compressed trace is typically relatively
small.

Table 3: Results of optimal compression
Trace Span Compressed

Name Trace Major Covered Trace Compression
Length Loop Structure by Loops Length Ratio

BT B/C 17106 (85)200 = (13 + (4)3 + ... + (4)3)200 99.38% 44 388.77
SP B/C 26888 67400 99.67% 89 302.11
CG B/C 41954 (552)75 = ((21)26 + 6)75 98.68% 10 4195.4
MG B 8909 (416)20 93.39% 590 15.1
MG C 10047 (470)20 93.56% 648 15.5
LU B 203048 (812)249 = ((4)100 + (4)100 + 12)249 99.58% 63 3222.98
LU C 323048 (1292)249 = ((4)160 + (4)160 + 12)249 99.58% 63 5127.75
Average 71695 98.16% 165 1815.39

Table 4 focuses on the execution time for optimal compression. The total time for loop discov-
ery is reported, which includes repeats discovery, loop identification and loop filtering. The largest
and the smallest loop element sizes are also noted. One observation is that the repeats discovery
time is a relatively small component of the total loop discovery time, which is dominated by the
loop identification time. The loop filtering time was consistently very small in comparison and is
not reported separately in the table.

The times for repeats discovery and loop discovery increaseas the trace size increases. For ex-
ample, class C LU benchmark takes 8028.83 seconds (2.23 hours) to finish discovering all possible
repeats, and identification of loops from those repeats takes 113890.21 seconds (31.64 hours). As
this is for a modest input data size running on only 16 nodes, the execution time is a major concern
for realistic larger clusters and data sizes. Figure 2 plotsthe relationship between execution time
and trace size.

Table 4 also shows the times at which the smallest loop and thelargest loop was discovered
during the compression of each benchmark trace. For all benchmarks, the largest loop was discov-
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Table 4: Performance and execution time breakup for optimalcompression. The loops discovery
time includes the time for repeats discovery that is also listed separately, loop identification and
loop filtering.

Repeats Discovery Time (s) Loops Discovery Time (s) Loop Element Size
Name Trace Up to Up to Up to Up to

Length Total Smallest Largest Total Smallest Largest Smallest Largest
Repeat Repeat Element Element Size Size

BT B/C 17106 12.85 0.47 0.87 311.18 0.63 4.84 4 85
SP B/C 26888 15.88 0.98 0.98 747.73 5.81 5.81 67 67
CG B/C 41954 239.29 1.46 5.78 2021.78 3.73 67.77 21 552
MG B 8909 35.85 0.00 3.95 113.48 0.00 13.74 1 416
MG C 10047 45.96 0.00 4.97 144.54 0.00 17.41 1 470
LU B 203048 2565.73 4.93 24.31 44204.82 6.51 463.18 4 812
LU C 323048 8028.83 7.83 59.72 113890.21 10.18 1172.63 4 1292
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Figure 2: Time of loop discovery .

ered within a small fraction of time as compared to the total execution time. A similar pattern is
observed for the largest repeats. Loop discovery with Crochemore’s algorithm employs successive
refinement from 1 up to half the trace size. However, the largest loop element in all cases was
a small fraction of the trace size. Hence, the bulk of the timespent by the algorithm was after
all the loops had already been discovered. Of course, in hindsight, the process could have been
terminated earlier with the same results. However, there isno definitive way to be certain that
optimal compression has been achieved, although heuristics can be developed based on the degree
of compression already achieved.

The observations from the results of this optimal algorithmand the fact that it spent much of the
time in processing that did not contribute to final compression was the motivation for us to develop
a greedy compression algorithm. Greedy compression reduces the running time by reducing the
length of the original string during compression as loops are discovered. Consider the trace of
class C LU benchmark. Table 4 shows that the smallest loop contains 4 elements, so the reduction
in trace size starts at level 4 by replacing those loops with new loop symbols. The largest loop has
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1292 elements, which contains two inner loops with 4 elements iterating 160 times and other 12
elements, and the loops span 99.58% of the trace. Hence, after the next reduction, which happens
at level 14, the trace size will be (100-99.58) = 0.42% of the original trace size, and compression
will be virtually over. In contrast, optimal loop discoveryprocedure will have to execute with a
trace size of 320348 until a level equal to half that size.

Table 5: Results of greedy compression
Total Time Total Time Compression Ratio

NPB Trace of Greedy of Optimal Major Loop Structure Discovered Optimal Greedy
Name Length Compression Compression by Greedy Compression Algorithm Algorithm

BT B/C 17106 8.91 311.18 (85)200 = (13 + (4)3 + ... + (4)3)200 388.77 388.77
SP B/C 26888 7.61 747.73 67400 302.11 302.11

CG B/C 41954 8.48 2021.78 (552)75 = (5 + (21)25 + 22)75 1353.35 4195.4

MG B 8909 8.64 113.48 (416)20 15.1 15.1
MG C 10047 10.88 144.54 (470)20 15.5 15.5
LU B 203048 33.16 44204.82 (812)249 = ((4)100 + (4)100 + 12)249 3222.98 3222.98
LU C 323048 61.9 113890.21 (1292)249 = ((4)160 + (4)160 + 12)249 5127.75 5127.75

The results from greedy compression are presented and compared with the optimal compres-
sion results in Table 5. The reduction in the execution time with the greedy approach is dramatic.
The maximum compression time with the greedy procedure ranges from 7.6 seconds to 61.9 sec-
onds, versus the range from 113 seconds to 113,000 seconds for the optimal procedure. Clearly,
this is a much more promising approach for large traces. Since the greedy approach is not optimal,
we report the loop nests discovered and the compression achieved for each benchmark. For 6 of
the 7 benchmarks, the loop nests discovered and the compression achieved were identical with the
optimal and greedy approaches. One exception was the CG benchmark as noted in Table 5. In
this case the optimal procedure yielded a compressed trace size of 10, while the greedy procedure
yielded a compressed trace size of 31. Clearly this is not a practical concern even though the de-
gree of compression reported varies by a factor 3. The reasonfor the difference is clear when the
loop nest discovered for the CG benchmark as shown in Table 5 is compared with the loop nest
discovered as shown in Table 3. One discovered loop with 21 symbols is offset due to the greedy
procedure such that it has one less iteration as compared to the optimal loop nest.

6 Conclusion

This paper has presented an efficient and practically optimal framework to identify complete loop
nests from execution traces. The methodology constructs a loop nest from all repeating patterns
identified by Crochemore’s algorithm. A fast greedy approach is also developed. Experimen-
tal results with traces generated with Class B/C NAS benchmarks on 16 nodes demonstrate that
the approach is effective for compression of communicationtraces. Both the optimal and greedy
approaches discover similar loop nests and deliver similarcompression results. However, the pro-
cessing time rises to hours with the optimal procedure for modest length traces of 1000s of MPI
calls. The greedy approach provides virtually identical compression at a fraction of the execution
time of the optimal method. The maximum compression time forour test suite was around one
minute with the greedy procedure. Most importantly, unlikemany other compression heuristics,
the greedy approach developed is theoretically proven to yield “near optimal” optimal results.
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While many compression algorithms exists, the efficient discovery of long range repeating
patterns due to outer loops in a trace is a significant challenge. To the best of our knowledge, this
is the first effort to discover the optimal loop nest in execution traces. The procedure developed is
general and can be applied to trace compression and similar problems in a variety of scenarios. We
believe this is an important step forward in analyzing execution traces for performance modeling
and performance prediction.

Acknowledgement:This material is based upon work supported by the National Science Founda-
tion under Grant No. ACI- 0234328 and Grant No. CNS-0410797
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A Results on near optimality of greedy compression

We first restate the main result about greedy trace compression informally:
The early reduction of all inner loops corresponding to a fixed loop body can impact the iden-

tification of a longer span outer loop only as follows: the body of the discovered loop may be a
reordering of the body of the original loop, and the number ofiterations in the discovered loop
may be up to 2 fewer than the number of iterations in the original outer span loop.

We now present a set of results that will be employed to prove the above result formally. Recall
that the notation(j, α, m) representing a PM-triple means that the corresponding PM-repeats start
at locationj in the string, the repeating substring isα and the number of repeats ism.

Lemma A.1 Suppose PM-tripleL represented as(j, α, m) is leftmostmeaning that there are no
PM-repeats of length|α| starting left ofL, from locationi − 1. Let A = |α| − 1 and assume
m > 2. Then there exist PM-triples(i + 1, β1, k1), (i + 2, β2, k2), ....(i + A, βA, kA) such thatβi is
a rotation ofα andki is eitherm or m − 1.

We refer to this group as the family of PM-triples corresponding to leftmost PM-tripleL.
Proof. This result is stating the direct observation that, for every repeating sequence, starting with
a forward offset smaller than the size of the repeating string yields another repeating sequence with
at most one fewer number of repeats and with a rotated repeating string. ⊓⊔
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Lemma A.2 Let S be a string of symbols. Suppose there exist strings A andB such that:S =
AB = BA. Then there must be another string C such thatS = [C]k. One implication is thatS
cannot be the repeating substring in a PM-repeat as it is not primal.
Proof.

1. If |A| = 1, then it can be easily shown thatS = [A]k, wherek = |S|. Same holds if|B| = 1.

2. If |A| = |B|, thenS is of the form[A]2.
If either of the above cases holds, the result holds.

3. Otherwise, without loss of generality, let|A| < |B|. Then we can define a stringT such
thatB = TA. Now, we haveS = AB = ATA, andS = BA = TAA. This implies that
S = ATA = TAA.

We defineS = S ′A, with S ′ = AT = TA. We again have:

(a) If |T | = 1, thenS ′ = [T ]k
′

, wherek′ is |S ′|. Hence,S = [T ]k, wherek is |S|. Hence
the result holds.

(b) If |T | = |A|, thenS ′ = [T ]2 = [A]2, andS = S ′A = [A]3. Hence, the result holds.

(c) Otherwise,S ′ can again be split asS was split in the previous level.

The size of the string decreases by at least 1 in every new level. The result is proved based
on the principle of induction.

⊓⊔

Lemma A.3 Given two PM-triplesL andS, with repeating substringsEL andES, respectively,
where|EL| > |ES|. If there is an overlap between any interior instance (i.e. all instances except
the first and the last) ofEL and the span ofS, then the length of the span ofS cannot equal or
exceed|EL|.
Proof.

Without loss of generality, we assume that overlapping instances ofEL, andS are aligned
at the left boundary as shown in Figure 3. If that is not the case, then the proof is generated
with an aligned member of the family of PM-triples corresponding to PM-tripleL as discussed in
Lemma A.1.

b
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Figure 3: Overlapping PM repeats

If span ofS = EL, then clearly PM-tripleS is not maximal as repeats ofES continue in the
next instance ofEL. Hence that cannot be true.
Suppose the length of span ofS > EL in contradiction to the result to be proved. Then one
instance ofES will cross the boundary between instances ofEL as shown in Figure 3. (Since the
first instance ofEL is an interior instance, a following instance must exist.) We split this instance

17



of ES in two substringsa andb at the boundary as illustrated in Figure 3, i.e.,ES = ab. Now the
left instance ofEL starts withES = ab, while the right instance ofEL starts withba. But since they
are repeats, they must be identical.

Hence we haveES = ab = ba.
From Lemma A.2,ES = [x]k for somex andk, which means thatS is not aprimitive repeat.

Hence, by contradiction, the span ofS cannot exceedEL. Therefore, the span ofS must be strictly
smaller than|EL|. ⊓⊔

We now present the main result formally.

Theorem A.4 Consider PM-tripleL represented as(j, α, m) with |α| > 2. Let β be another
substring with|α| > |β|. Suppose every PM-triple withβ as the repeating substring is identified
and reduced to a symbol. As a result of these reductions, ifL is not identified as a PM-triple, then
another PM-tripleL′ (j′, α′, m′) will be identified where,

j′ is betweenj andj + |α − 1|,
α′ andα are identical strings or one is a rotation of the elements of the other,
m′ is betweenm andm − 2.

Proof.
Let S be a PM-triple with repeating substringβ that overlaps with an interior instance of

α corresponding toL. We initially assume that no other PM-triple with repeatingsubstringβ
overlaps with this instance ofα. From Lemma A.3 we know that the entire span ofS must be
smaller than|α|. Further we assume for now that the entire span ofS is contained within a single
instance ofα.

Under the above scenarios, every instance ofα in L will contain S as part of the substring at
the same location, which will be replaced by the same symbol.Hence the identification of the
PM-triple corresponding toL will be unaffected by reductions ofS.

Now suppose the span ofS is not contained within a single instance ofα and crosses two
instances. In that case the above result can be proved for another member of the family of PM-
triples corresponding to PM-tripleL as discussed in Lemma A.1, although the number of repeats
(or iterations) may be reduced by 1.

Finally, there can be multiple PM-triples with repeating substringβ that overlap with the same
instance ofα. However these instances themselves cannot be overlapping- otherwise it can be
shown that they are not PM-repeats based on Lemma A.2. The impact of non-overlapping PM-
triples can be serialized leading to the same result as for a single overlapping PM-triple above.

The final result is that the number of repeats in the recognized PM-triples can be up to 2 less
thanL since none of the results applies to the first or the last instance ofα in L. ⊓⊔
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