
Automatic Construction of Coordinated Performance Skeletons

Jaspal Subhlok∗ Qiang Xu
University of Houston, Department of Computer Science, Houston, TX 77204

1 Overview

This research is motivated by the problem of performance prediction in dynamic and unpredictable
environments where traditional performance modeling has limited success. Examples include
shared execution environments and new software or system environments. The approach is based
on the concept of aperformance skeleton which is a short running program whose execution time in
any scenario reflects the estimated execution time of the application it represents. The fundamen-
tal goal is to build and validate a framework for automatic construction of performance skeletons
for parallel MPI programs. Earlier work in this project constructed and validated memory and
performance skeletons and explored their usage in distributed environments [3, 7, 4, 9, 5]. A new
procedure for construction of performance skeletons that is being employed now is illustrated in
Figure 1 and detailed in [8].

Record execution trace for each process

Logicalize process traces into a single program trace

Compress the program trace by identifying the loop structure

Construct executable
performance skeleton program

APPLICATION

Data Model

Sim 1

Sim 2

Pre

Vis

Stream skeleton

Data Model

Sim 1

Sim 2

Pr
e

Vi
s

Stream

Figure 1: Skeleton construction

This paper outlines the new contributions of this work whichare1) trace logicalization which
is conversion of a suite of execution traces of an SPMD MPI program into a single logical trace,
2) trace compression which involves identification of the loop structure inherent in the execution
trace to capture the core execution behavior, and(3) skeleton construction and validation.

∗This material is based upon work supported by the National Science Foundation under Grant No. ACI- 0234328
and Grant No. CNS-0410797. Contact email:jaspal@uh.edu

2 Trace logicalization

As high performance scientific applications are generally SPMD programs, the traces for different
processes are typically similar to each other and the communication is associated with a well
defined global pattern. A study of DoD and DoE HPC codes at Los Alamos National Labs [2]
and analysis of NAS benchmarks [6] shows that an overwhelming majority of these codes have a
single low degree stencil as the dominant communication pattern. These characteristics expose the
possibility of combining all processor traces into a singlelogical program trace that represents the
aggregate execution - in the same way as an SPMD program represents a family of processes that
typically execute on different nodes. An example physical and logical trace are shown in Table 1.

Table 1: Logical and physical trace for 9-process BT benchmark
PHYSICAL TRACE
......
MPI Isend(...1, MPI DOUBLE, 480, ...)
MPI Irecv(...3, MPI DOUBLE, 480, ...)
MPI Wait() /* wait for Isend */
MPI Wait() /* wait for Irecv */
......
MPI Isend(...4, MPI DOUBLE, 480, ...)
MPI Irecv(...12, MPI DOUBLE, 480, ...)
MPI Wait() /* wait for Isend */
MPI Wait() /* wait for Irecv */
......
MPI Isend(...7, MPI DOUBLE, 480, ...)
MPI Irecv(...13, MPI DOUBLE, 480, ...)
MPI Wait() /* wait for Isend */
MPI Wait() /* wait for Irecv */
......

LOGICAL TRACE
......
MPI Isend(...EAST, MPI DOUBLE, 480, ...)
MPI Irecv(...WEST, MPI DOUBLE, 480, ...)
MPI Wait() /* wait for Isend */
MPI Wait() /* wait for Irecv */
......
MPI Isend(...SOUTH, MPI DOUBLE, 480, ...)
MPI Irecv(...NORTH, MPI DOUBLE, 480, ...)
MPI Wait() /* wait for Isend */
MPI Wait() /* wait for Irecv */
......
MPI Isend(...SOUTHWEST, MPI DOUBLE, 480, ...)
MPI Irecv(...NORTHEAST, MPI DOUBLE, 480, ...)
MPI Wait() /* wait for Isend */
MPI Wait() /* wait for Irecv */
......

The logicalization framework has been developed for MPI programs and proceeds as follows.
The application is linked with the PMPI library so that all message exchanges are recorded in a
trace file during execution. Message passing patterns are analyzed to determine the application
level communication topology. Once this global topology isdetermined, a representative process
trace is analyzed in detail and transformed into a logical program trace where all message sends
and receives are to/from a logical neighbor in terms of a logical communication topology (e.g a
torus or a grid) instead of a physical process rank.

The key algorithmic challenge is the identification of the application communication topol-
ogy from the application communication matrix which represents the inter-process communication
graph. The reason this is diffiult is 1) establishing if a given communication graph matches a given
topology is equivalent to solving the well knowngraph isomorphism problem for which no poly-
nomial algorithms exist and 2) there are many different types of topologies (different stencils on
graph/torus, trees, etc.) and many instantiations within each topology type (e.g., different number
and sizes of dimensions even for a fixed number of nodes). Our approach applies the following
sequence of steps as a decision tree with simpler tests applied first for efficiency:

1. Simple Tests: Finding all possible sizes of grid/tori based on prime factors of the number of
processesN , then matching the number of edges and the degree ordered sequence of nodes.

2. Graph Spectrum Test: Based on computing eigenvalues - eigenvalue sets of isomorphic
graphs are identical.

3. Isomorphism Test: Applies graph isomorphism to establish a topology.

2

Table 2 presents observations from the application of this procedure to selected NAS bench-
marks. The topologies that remain as candidates after each of the tests and the final established
topology are listed along with processing times. Clearly the procedure is effective and efficient.

Benchmark Simple Tests Graph Spectrum Test Isomorphism Test Trace Length Time
(Processes) Records(size) (secs)
BT (121) 11×11 6-p stencil 11×11 6-p stencil 11×11 6-p stencil 50874 30.76

(2106KB)
SP (121) 11×11 6-p stencil 11×11 6-p stencil 11×11 6-p stencil 77414 49.16

(3365KB)
LU (128) 16×8 grid 16×8 grid 16×8 grid 203048 134.30

(9433KB)
CG (128) CG stencil CG stencil CG stencil 77978 47.89

16×2×2×2 grid (3224KB)
MG (128) 8×2×2×2×2 torus 8×2×2×2×2 torus 8×2×2×2×2 torus 9035 7.33

8×4×2×2 torus 8×4×2×2 torus 8×4×2×2 torus (386KB)
8×4×4 torus 8×4×4 torus 8×4×4 torus

Table 2: Identification of communication topologies of NAS benchmarks. Unique topologies are
listed in boldface with other isomorphic topologies below them.

3 Trace compression

An important step in the process of construction of performance skeletons is the identification
of repeating patterns in MPI message communication. Since the MPI communication trace is
typically a result of loop execution, discovering the executing loop nest from the trace is central to
the task of skeleton construction. The discovery of “loops”here technically refers to the discovery
of tandem repeating patterns in a trace (presumably) due to loop execution.

Common compression procedures includegzip that constructs a dictionary of frequently occur-
ing substrings and replaces each occurence with a representative symbol, andSequitur that infers
the hierarchical structure in a string by automatically constructing and applying grammar rules for
reduction of substrings. Such methods cannot always identify long range loop patterns because
of early reductions. An alternate approach is to attempt to identify the longest matching substring
first. However, simple algorithms to achieve this are at least quadratic in trace length and hence
impractical for long traces. A practical tradeoff is to limit the window size for substring matching,
which again risks missing long span loops.

Our research took a novel approach to identifying the loop structure in a trace based on Crochemore’s
algorithm [1] that is widely used in pattern analysis in bioinformatics. This algorithm can identify
all repeats in a string, including tandem, split, and overlapping repeats, inO(nlogn) time. A frame-
work was developed in this research to discover the loop neststructure by recursively identifying
the longest span tandem repeats in a trace. The procedure identifies the optimal (or most compact)
loop nest in terms of the span of the trace covered by loop nests and the size of the compressed loop
nest representation. However, the execution time was unacceptable for long traces; processing of
a trace consisting of approximately 320K MPI calls took over31 hours.

The results motivated us to develop a greedy procedure whichintuitively works bottom up -
it selectively identifies and reduces the shorter span innerloops and replaces them with a single
symbol, before discovering the longer span outer loops. While the loop nest discovered by the
greedy algorithm may not be optimal, it has well defined theoretical properties. A key analytical

3

result is that the reduction of a shorter span inner loop as prescribed in the greedy algorithm can
impact the discovery of a longer span outer loop only in the following way: if the optimal outer
loop isLo then a corresponding loopLg will be identified despite the reduction of an inner loop.
Lo andLg have identical but possibly reordered trace symbols, butLg may have up to 2 less loop
iterations thanLo. Hence, the loop structure discovered by the greedy algorithm isnear optimal.

The optimal and greedy loop nest discovery procedures were implemented and employed to
discover the loop nests in the MPI traces of NAS benchmarks. The results are listed in Table 3. As
expected, the optimal algorithm discovered perfect loop nests as validated by direct observation.
The loop nests discovered by the greedy algorithm were, in fact, identical to the optimal loop nests
except for a minor difference in the case of CG benchmark - thecompressed trace had 21 symbols
instead of 10 and the loop structure was slightly different.However, the time for greedy loop
discovery was dramatically lower, down from 31 hours to 61 seconds for one trace. To the best of
our knowledge, this is the first effort towards extracting complete loop nests from execution traces.

Table 3: Results for optimal and greedy compression procedures
Raw Compression Time Trace Span Compressed Compression

Name Trace Greedy Optimal Major Loop Structure Covered Trace Ratio
Length (secs) (secs) by Loops Length

BT B/C 17106 8.91 311.18 (85)200 = (13 + (4)3 + ... + (4)3)200 99.38% 44 388.77
SP B/C 26888 7.61 747.73 67400 99.67% 89 302.11
*CG B/C 41954 8.48 2021.78 (552)75 = ((21)26 + 6)75 98.68% 10 4195.4
MG B 8909 8.64 113.48 (416)20 93.39% 590 15.1
MG C 10047 10.88 144.54 (470)20 93.56% 648 15.5
LU B 203048 33.16 44204.82 (812)249 = ((4)100 + (4)100 + 12)249 99.58% 63 3222.98
LU C 323048 61.9 113890.21 (1292)249 = ((4)160 + (4)160 + 12)249 99.58% 63 5127.75

4 Construction and validation of performance skeletons

The final step in building a performance skeleton is converting a logicalized and compressed trace
into an executable program that recreates the behavior represented in the trace. The skeleton exe-
cution time is controlled by reducing the number of execution iterations relative to the number in
the compressed trace. Implementation of the communicationin the performance skeleton is based
on converting the MPI event symbols to real MPI communication calls. The key issues in ensuring
deadlock free communication in a skelton program are the following:

1. Identifying local communication Most MPI calls in a logical trace are matched: there is a
Recv in the trace corresponding to everySend. However, it is possible that some unmatched
MPI Send/Recv calls may exist in a trace as a small volume of communication may not be
associated with the global communication pattern. Suchlocal calls are identified and removed.
While this may cause inaccuracy, it is rare and necesssary toensure deadlock free execution.

2. Unbalanced global communication Even if the logical trace contains only global commu-
nication, it may not be balanced, meaning an MPI Send/Receive and its corresponding MPI
Receive/Send may not be matched in size or another parameter. Analysis is employed to
identify these and ensure a match, e.g., by using the median message size of a Send and Recv.

A framework to build performance skeletons has been implemented and employed to predict
performance in a number of scenarios as follows: 1) sharing of CPU with foreign processes, 2)

4

varying available communication bandwidth, 3) varying number of processors for the same number
of processes, and 4) usage of a different communication library. The results are shown in Table 4.

Table 4: Summary of prediction errors under differenct scenarios
CPU sharing with Communication sharing with Reduced Number Different MPI Lib

Name Competing Processes Differenct Avaialable Bandwidth of Processors OpenMPI-1.2.4
2 per node 4 per node 50M 20M 10M 5M Eldorado Shark PGH201 Shark

8 4 8 4
BT 38.7% 51.7% 1.4% 4.0% 4.4% 5.3% 1.4% 2.5% 2.9% n/a 9.1% 2.3%
SP 14.8% 17.7% 1.7% 7.0% 7.6% 3.4% 3.6% 3.1% 1.6% 0.3% 10.1% 6.1%
CG 17.1% 17.7% 8.0% 19.9% 17% 23.2% 4.0% 25.7% 3.6% 49.4% 21.7% 58.2%
MG 30.5% 30.7% 0.1% 3.2% 5.4% 9.7% 6.2% 10.5% 24.4% 11.5% 0.5% 14.5%
LU 23.7% 26.7% 1.3% 0.3% 2.9% 7.9% 22.2% 31.9% 15.7% 25.9% 10.7% 5.8%
Average 24.9% 28.9% 2.4% 6.9% 7.5% 9.9% 7.5% 14.8% 9.7% 21.8% 10.4% 17.4%

We observe that the error rates are generally low, except in the following cases. The errors are
relatively high for CPU sharing and are generally high for the CG benchmark. The main reasons
are that CPU sharing behavior is very sensitive to low level computation details which are not
replicated accurately in skeletons. In the case of CG benchmark, we speculate that some of the
synchronization behavior is not captured well. More analysis is presented in [8].

5 Conclusions

This paper identifies the major issues and presents new results in construction of performance
skeletons to predict application performance. Overall theapproach is very effective and some
weaknesses are identified. Detailed results are available in referenced related publications.

References
[1] M. Crochemore. An optimal algorithm for computing the repetitions in a word.Inf. Process. Lett., 12(5):244–250, 1981.

[2] D. Kerbyson and K. Barker. Automatic identification of application communication patterns via templates. In18th International Conference
on Parallel and Distributed Computing Systems, Las Vegas, NV, September 2005.

[3] S. Sodhi and J. Subhlok. Skeleton based performance prediction on shared networks. InIEEE International Symposium on Cluster Computing
and the Grid (Grids and Advanced Networks Workshop (GAN’04)), Chicago, IL, April 2004.

[4] S. Sodhi and J. Subhlok. Automatic construction and evaluation of performance skeletons. InProceedings of the 19th IEEE International
Parallel and Distributed Processing Symposium (IPDPS 2005), Denver, CO, April 2005.

[5] S. Sodhi, Q. Xu, and J. Subhlok. Performance prediction with skeletons.Cluster Computing: The Journal of Networks, Software Tools and
Applications, 2007. Accepted.

[6] T. Tabe and Q. Stout. The use of the MPI communication library in the NAS Parallel Benchmark. Technical Report CSE-TR-386-99,
Department of Computer Science, University of Michigan, Nov 1999.

[7] A. Toomula and J. Subhlok. Replicating memory behavior for performance prediction. InProceedings of LCR 2004: The 7th Workshop on
Languages, Compilers, and Run-time Support for Scalable Systems, Houston, TX, October 2004. Published in the ACM Digital Library.

[8] Q. Xu. Automatic Construction of Coordinated Performance Skeletons. PhD thesis, University of Houston, August 2007.

[9] Q. Xu and J. Subhlok. Automatic clustering of grid nodes.In Proceedings of the 6th IEEE/ACM Workshop on Grid Computing, Seattle, WA,
Nov 2005.

5

